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ABSTRACT
Analytical tools are valuable to study gravitational collapse. However, solutions are hard to find due to the highly non-linear
nature. Only a few simple but powerful tools exist so far. Two examples are the spherical collapse model (SCM) and stable
clustering hypothesis (SCH). We present a new analytical tool based on the elementary step of inverse mass cascade in dark
matter flow, i.e. a two-body collapse model (TBCM). TBCM plays the same role as harmonic oscillator in dynamics and can be
fundamental to understand structure evolution. For convenience, TBCM is formulated for gravity with any potential exponent 𝑛 in
a static background with a fixed damping (𝑛=-1 for Newtonian gravity). The competition between gravity, expanding background
(or damping), and angular momentum classifies two-body collapse into: 1) free fall collapse for weak angular momentum, where
free fall time is greater if same system starts to collapse at earlier time; 2) equilibrium collapse for weak damping that persists
longer in time, whose perturbative solutions lead to power-law evolution of system energy and momentum. Two critical values
𝛽𝑠1 = 1 and 𝛽𝑠2 = 1/3𝜋 are identified that quantifies the competition between damping and gravity. Value 𝛽𝑠2 only exists for
discrete values of potential exponent 𝑛 = (2 − 6𝑚)/(1 + 3𝑚) = -1,-10/7... for integer 𝑚. Critical density ratio (Δ𝑐 = 18𝜋2)
is obtained for 𝑛=-1 that is consistent with SCM. TBCM predicts angular velocity ∝ 𝐻𝑟−3/2 for two-body system of size 𝑟 .
The isothermal density is a result of infinitesimal halo lifetime or extremely fast mass accretion. TBCM is able to demonstrate
SCH, i.e. mean pairwise velocity (first moment) 〈Δ𝑢〉 = −𝐻𝑟. A generalized SCH is developed for higher order moments
〈Δ𝑢2𝑚+1〉 = −(2𝑚 + 1)〈Δ𝑢2𝑚〉𝐻𝑟 that is validated by N-body simulation. Energy evolution in TBCM is independent of particle
mass and energy equipartition does not apply. TBCM can be considered as a non-radial SCM. Both models predict the same
critical density ratio, while TBCM contains much richer information.
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1 INTRODUCTION

Collisionless systems often showproperties strongly suggesting com-
mon physical principles that control the system motion and evolu-
tion. The self-gravitating collisionless fluid dynamics (SG-CFD) is
the study of motion of collisionless matter under its own gravity. The
large-scale gravitational collapse of dark matter is an example of SG-
CFD and the basis of standardmodels for the formation of large-scale
structures. Structure formation starts from the gravitational collapse
of small-scale density fluctuations and proceeds hierarchically in a
"bottom-up" fashion with small structures merging into large struc-
tures. The same process can be described by a halo-mediated inverse
mass cascade, where halos (building blocks) pass their mass onto
larger and larger halos, until halo mass growth becomes dominant
over the mass propagation (Xu 2021a). Halos are necessary to form
for collisionless system with long-range interaction to maximize sys-
tem entropy (Xu 2021c,d). The merging of halos is an elementary
step in mass cascade and the focus of current paper.
The hierarchical merging of structures is a fundamental and com-

plex step for structure formation. In a finite time interval Δ𝑡, the hier-
archical merging might involve multiple substructures merging into
a single large structure. However, for an infinitesimal interval 𝑑𝑡, that
process should involve themerging of two and only two substructures
(Mo et al. 2010). In this regard, the two-body gravitational collapse
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2 Z. Xu

is an elementary and fundamental step for hierarchical structure for-
mation during mass cascade. While the two-body problem in static
background (no space expansion) without damping is well-known, a
comprehensive understanding of the two-body collapse (TBCM) in
expanding background seems not fully developed. In fact, the TBCM
can be a powerful analytical tool to study the non-linear structure for-
mation and provide many insights into the energy and momentum
evolution of N-body system (Xu 2022h). This is made possible with
analytical solutions of TBCM by transforming the original two-body
system in a comoving expanding background to an equivalent trans-
formed system in a static background with a fixed damping. Results
analytically obtained in the transformed system can be equivalently
transformed back to the original comoving system.
Despite the great success of large-scale N-body simulations for

structure formation, there are always motivations for finding ana-
lytical approaches to gravitational collapse. However, this can be
extremely difficult due to the highly non-linear nature of structure
formation. Nonetheless, a few simple but powerful analytical tools
exist for structure evolution. The first example makes use a spherical
symmetry of an over-density to formulate the gravitational collapse,
i.e. a spherical collapse model (SCM). Developed by Gunn & Gott
(Gunn & Gott 1972) and Gunn (Gunn 1977) in 1970s, the first SCM
model provides solutions for the collapse of a spherical mass shell
surrounding an over-densitywith an uniform density. The self-similar
spherical collapse model was later developed in 1980s to allow for
a non-uniform initial density and collapse of new shells (Fillmore &
Goldreich 1984; Bertschinger 1985). The idea of SCM model was
further developed to consider the effect of non-radial orbit by intro-
ducing an additional constant centrifugal force due to the non-radial
motion (White & Zaritsky 1992; Nusser 2001). The SCM predicts
the critical density ratio of halos that has been widely used for the
development of halo mass functions and density profiles (Press &
Schechter 1974; Cooray & Sheth 2002). Similar predictions were
also extended to the ellipsoidal collapse (Sheth et al. 2001; Sheth &
Tormen 2002).
The second example assumes that on a sufficiently small scale,

the clusters of mass particles are bound and stable with a fixed
mean physical separation between particles, i.e. a stable clustering
hypothesis (SCH) (Peebles 1974; Davis & Peebles 1977). There
is no stream motion between particles in physical coordinate. In
this sense, the peculiar motion cancels out the Hubble flow and
the hypothesis equivalently states that the mean (first order moment)
pairwise peculiar velocity is proportional to the separation r (physical
distance) as 〈Δ𝑢𝐿〉 = −𝐻𝑟 . The stable clustering hypothesis is a
fundamental assumption for the nonlinear gravitational collapse at
small scales. Combined with pair conservation equation (Peebles
1980), the hypothesis can be used to predict the dynamic evolution of
density correlation function on small scales. While directly proving
SCH based on fundamental rules seems challenging, there have been
many attempts to verify this assumption with N-body simulations
(Efstathiou et al. 1988; Colombi et al. 1996). The limited resolution
of simulationsmakes it difficult to achieve a sufficiently high accuracy
at small sales where this assumption is valid. This paper provides a
proof of original stable clustering hypothesis (SCH) based on the
analytical solution of two-body collapse model (TBCM) and extends
SCH to high order moments of pairwise velocity.
The mass and energy cascade (Xu 2021a,e) involve a series of el-

emetary two-body collapse, i.e. a chain reaction description (see Xu
2021a, Fig. 8). Understanding the cascade process is critical for the
development of halo energy and momentum evolution (Xu 2022e,h)
and the statistical theory for dark matter flow (Xu 2022f,g,i). In ad-
dition, the two-body collapse based mass and energy cascade are

also potentially relevant to the dark matter particle mass and proper-
ties (Xu 2022j), MOND (modified Newtonian dynamics) theory (Xu
2022k), and baryonic-to-halo mass relation (Xu 2022l).
In this paper, the elementary step of mass cascade (two-body

collapse model – TBCM) is mathematically formulated to provide
another useful analytical tool and more insights into the structure
formation and evolution. The TBCM model can demonstrate the
standard stable clustering hypothesis on small scale for the first mo-
ment of pairwise velocity. A generalized stable clustering hypothesis
(GSCH) can be subsequently derived for high order moments of pair-
wise velocity. The connections of TBCM with other analytical tools,
including violent relaxation and spherical collapse model (SCM), are
also discussed in detail. Both leads to the same prediction of critical
halo density ratio, while TBCM contains much richer information.
The rest of the paper is organized as follows: Section 2 introduces

the equations of motion for the dynamics of a N-body system. Equiv-
alence is established between the original comoving system in ex-
panding background and a transformed system in static background.
The elementary gravitational collapse (TBCM model) is formulated
and analytically solved in Section 3, along with the applications of
TBCM to identify distinct regimes and critical values. Connections
with stable clustering hypothesis, violent relaxation and spherical
collapse models are discussed in Section 4.

2 EQUATIONS OF MOTION IN COMOVING AND
TRANSFORMED SYSTEMS

In this section, the equivalence is first established between a comov-
ing system in expanding background and a transformed system in
static background. The self-gravitating of a system of N collisionless
particles in expanding background can be studied by solving gov-
erning equation of motion (see Peebles 1980, p. 44) in a comoving
system (comoving coordinates x and physical time t) as

𝑑2x𝑖
𝑑𝑡2

+ 2𝐻 𝑑x𝑖
𝑑𝑡

= −
𝐺𝑚𝑝

𝑎3

𝑁∑︁
𝑗≠𝑖

x𝑖 − x 𝑗��x𝑖 − x 𝑗
��3 , (1)

where x𝑖 is the comoving coordinate of N particles with equal mass
𝑚𝑝 and𝐺 is the standard gravitational constant. The Hubble constant
𝐻 (𝑡) = ¤𝑎/𝑎, where a is the scale factor.
For growing halos from continuous mass accretion, an effective

gravitational potential exponent 𝑛𝑒 ≈ −1.3 can be different from
-1 for standard gravitational potential due to the finite halo surface
energy (see Xu 2021b, Eq. (96)). This hints that it might be beneficial
by looking at a general potential with an arbitrary exponent n. The
maximum entropy distributions of velocity and energy in SG-CFD
have been developed for the long-range power-law potential with
any exponent n in (Xu 2021c). In this paper, we assume the same
power-law gravitational potential 𝑉𝑝 with an arbitrary exponent of n
for particle-particle interacting, i.e. 𝑉𝑝 (𝑟) = −𝐺𝑛𝑚2𝑝/𝑟−𝑛. Here 𝐺𝑛
is a generalized gravitational constant (𝐺𝑛 = 𝐺 when 𝑛 = −1). The
equation of motion with arbitrary exponent n reads

𝑑2x𝑖
𝑑𝑡2

+ 2𝐻 𝑑x𝑖
𝑑𝑡

=
𝑛𝐺𝑛𝑚𝑝

𝑎3

𝑁∑︁
𝑗≠𝑖

x𝑖 − x 𝑗��x𝑖 − x 𝑗
��2−𝑛 . (2)

Let’s introduce a new transformed time scale s as 𝑑𝑠/𝑑𝑡 = 𝑎𝑝 , where
p is an arbitrary exponent. The original Eq. (2) can be equivalently
transformed to

𝑑2x𝑖
𝑑𝑠2

+ 𝑑x𝑖
𝑑𝑠

(𝑝 + 2) 𝑎−𝑝𝐻 =
𝑛𝐺𝑛𝑚𝑝

𝑎3+2𝑝

𝑁∑︁
𝑗≠𝑖

x𝑖 − x 𝑗��x𝑖 − x 𝑗
��2−𝑛 . (3)
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Obviously 𝑠 = 𝑡 if 𝑝 = 0 andEq. (3) is reduced to Eq. (2). Specifically,
𝑝 = −2 eliminates the first order derivative and s is the time variable
for integration of N-body simulation that allows for a symplectic
(phase space volume preserving) integrator. Time scale s becomes
conformal time if 𝑝 = −1. Another special case can be identified
with 𝑝 = −3/2 for a matter-dominant model,

𝐻20 = 𝐻
2𝑎3,

𝑑𝐻

𝑑𝑡
= −3
2
𝐻2, and 𝐻2 =

8𝜋𝐺𝜌̄𝑦 (𝑎)
3

, (4)

where 𝐻0 is the Hubble constant at the present epoch (a=1) and
𝜌̄𝑦 (𝑎) is the physical density of the homogeneous background.
For 𝑝 = −3/2 with Eq. (4), Eq. (3) now becomes

𝑑2x𝑖
𝑑𝑠2

+ 1
2
𝐻0

𝑑x𝑖
𝑑𝑠

= 𝑛𝐺𝑛𝑚𝑝

𝑁∑︁
𝑗≠𝑖

x𝑖 − x 𝑗��x𝑖 − x 𝑗
��2−𝑛 =

F𝑖
𝑚𝑝

, (5)

where F𝑖 is the resultant force on particle i in comoving system.
Clearly, the scale factor a does not explicitly appear in Eq. (5) and
the Hubble constant 𝐻0 can be considered as a constant damping
that is time-invariant. The original Eq. (2) in expanding background
is now equivalently converted to a transformed system in static back-
ground with a constant damping 𝐻0/2 (Eq. (5)) evolving with a new
time scale s. The transformed system consists of a comoving spatial
coordinate x𝑖 and a transformed time scale s.
The particle velocity v𝑖 for transformed system can be written as,

v𝑖 =
𝑑x𝑖
𝑑𝑠

= 𝑎3/2
𝑑x𝑖
𝑑𝑡

= 𝑎1/2u𝑖 , (6)

while the peculiar velocity u𝑖 in physical time t can be related to the
new velocity v𝑖 ,

u𝑖 = 𝑎
𝑑x𝑖
𝑑𝑡

=
𝑑r𝑖
𝑑𝑡

− 𝐻r𝑖 = 𝑎−1/2v𝑖 , (7)

where r𝑖 = 𝑎x𝑖 is the physical coordinate of particle i.
In this section, the original equation of motion (Eq. (2)) for a co-

moving system in expanding background is equivalently transformed
to Eq. (5) for a transformed system with a constant damping in static
background. While two systems are essentially equivalent, analytical
solutions can be more accessible in the transformed system for the
sake of convenience.

3 ANALYTICAL SOLUTIONS FOR TBCM IN EXPANDING
BACKGROUND

The two-body gravitational collapse is a fundamental and elementary
process. Halos are often created by two-body collapse of two smaller
halos with comparable or very different masses (for example, halos
merging with a single merger). By this mean, halos pass their mass to
larger and larger halos such that two-body gravitational collapse is an
elementary step for inverse mass cascade (Xu 2021a). Therefore, it
should be very instructive to solve a simple two-body collapse model
(TBCM) in expanding background.

3.1 Analytical formulation of TBCM model

Solutions are well-known for two-body problem in a static back-
ground without damping. Here we focus on the two-body collapse in
expanding background. Again, the two-body interaction is assumed
to be a general power-law with an exponent n. We first analytically
solve the TBCM model in transformed system (static background
with a constant damping) for convenience. Results can be readily
transformed back to the original comoving system.

Figure 1. Schematic plot of a two-body gravitational collapse in expanding
background. The two-body system consists of two masses 𝑚1 and 𝑚2 with
a separation of 2r, where r is the displacement vector. Here v1, v2 and v are
the velocities of two masses and the displacement vector, respectively.

As shown in Fig. 1, the two-body system of two masses𝑚1 and𝑚2
with a separation of 2r in expanding background can be equivalently
written as (in transformed system from Eq. (5)),

¥x1 +
𝐻0
2

¤x1 =
𝑛𝐺𝑛𝑚2

(2𝑟)1−𝑛
· r
|r| , (8)

¥x2 +
𝐻0
2

¤x2 = − 𝑛𝐺𝑛𝑚1
(2𝑟)1−𝑛

· r
|r| , (9)

where x1 and x2 are position vectors of two masses and v 𝑗 = ¤x 𝑗 (j=1,
2) is the velocity in transformed system with time derivative with
respect to s. The displacement vector is defined as r = (x1 − x2) /2
and r is the magnitude of vector r. The equation of motion for the
center of mass can be obtained by multiplying Eqs. (8) and (9) with
𝑚1 and 𝑚2, respectively, and adding them together,

¥R + 𝐻0
2

¤R = 0, (10)

where R = (𝑚1x1 + 𝑚2x2) /(𝑚1 + 𝑚2) is the position vector of the
center of mass. Similarly, the equation for displacement vector r can
be obtained by subtracting Eq. (9) from Eq. (8),

¥r + 𝐻0
2

¤r =
𝑛𝐺𝑛 (𝑚1 + 𝑚2)
2 (2𝑟)1−𝑛

· r
|r| ,

Position vectors can be expressed in terms of r and R as
x1 = R + 2𝑚2r/(𝑚1 + 𝑚2) = R + 𝜇r,
x2 = R − 2𝑚1r/(𝑚1 + 𝑚2) = R − (2 − 𝜇) r,

(11)

where 𝜇 = 2𝑚2/(𝑚1 + 𝑚2) is a dimensionless constant.
We assume a fixed center of mass at the origin o (see Fig. 1)

such that R = 0 and Eq. (10) is trivial by properly choosing the
initial positions and velocities of two masses. The dynamics of the
original problem is now reduced to themotion of a point mass subject
to gravity and a constant damping 𝐻0/2 (Eq. (11)). This equation
exactly mimics a one degree-of-freedom harmonic oscillator, i.e.

¥r + (𝑐/𝑚) ¤r = −(𝑘/𝑚)r, (12)

where 𝑐 is damping and 𝑘 is a spring constant. Just like the funda-
mental role of harmonic oscillator (Eq. (12)) in dynamics, we will
demonstrate the similar role of two-body collapse model plays in
self-gravitating collisionless dark matter flow.
Since two-body motion is planar, let’s try a general solution for

the displacement vector r in the x-y plane, where the Cartesian com-
ponents of displacement vector r and its velocity v read

𝑥 = 𝑟 (𝑠) cos (𝜔 (𝑠) 𝑠) and 𝑦 = 𝑟 (𝑠) sin (𝜔 (𝑠) 𝑠) , (13)
𝑣𝑥 = ¤𝑥 = ¤𝑟 cos (𝜔𝑠) − 𝑟 sin (𝜔𝑠) (𝜔 + 𝑠 ¤𝜔)
and
𝑣𝑦 = ¤𝑦 = ¤𝑟 sin (𝜔𝑠) + 𝑟 cos (𝜔𝑠) (𝜔 + 𝑠 ¤𝜔) .

(14)
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Both radius 𝑟 (𝑠) and frequency term 𝜔 (𝑠) are functions of time s.
From Eq. (11), the position and velocity of two masses can be

related to that of the displacement vector ras

x1 = 𝜇r and x2 = − (2 − 𝜇) r, (15)
v1 = 𝜇¤r and v2 = − (2 − 𝜇) ¤r. (16)

For example, the position (x1) and velocity vectors (v1) of mass 𝑚1
in x-y plane can be found as,

𝑥1 = 𝜇𝑟 (𝑠) cos (𝜔𝑠) and 𝑦1 = 𝜇𝑟 (𝑠) sin (𝜔𝑠) (17)
𝑣𝑥1 = 𝜇𝑣𝑥 = 𝜇 ¤𝑟 cos (𝜔𝑠) − 𝜇𝑟 sin (𝜔𝑠) (𝜔 + 𝑠 ¤𝜔)
and
𝑣𝑦1 = 𝜇𝑣𝑦 = 𝜇 ¤𝑟 sin (𝜔𝑠) + 𝜇𝑟 cos (𝜔𝑠) (𝜔 + 𝑠 ¤𝜔) .

(18)

The initial positions of two masses 𝑚1 and 𝑚2 are set as

𝑟1 (𝑠 = 0) = |x𝑖1 | = 𝜇𝑟𝑖 , 𝑟2 (𝑠 = 0) = |x𝑖2 | = (2 − 𝜇) 𝑟𝑖 , (19)

where 𝑟𝑖 = 𝑟 (𝑠 = 0) is the magnitude of the displacement vector r,
x𝑖1 and x𝑖2 are the initial position vectors of two masses. The initial
velocities of masses 𝑚1 and 𝑚2 can be set as,

𝑣𝑥1 (𝑠 = 0) = 0 and 𝑣𝑦1 (𝑠 = 0) = 𝑣𝑖1 = 𝜇𝑣𝑖 , (20)
𝑣𝑥2 (𝑠 = 0) = 0 and 𝑣𝑦2 (𝑠 = 0) = 𝑣𝑖2 = − (2 − 𝜇) 𝑣𝑖 , (21)

where 𝑣𝑖 is the initial velocity of the displacement vector r in y
direction. These initial conditions satisfy a zero linear momentum
with 𝑚1𝑣𝑖1 + 𝑚2𝑣𝑖2 = 0. Obviously, R = 0 is a trivial solution for
Eq. (10) with these initial conditions (Eqs. (19), (20), (21)).
A special case is that the initial speed 𝑣𝑖 of vector r satisfies

𝑣𝑖 = 𝑣𝑟𝑖 =

√︄
−𝑛𝐺𝑛𝑟𝑖
(2𝑟𝑖)1−𝑛

𝑚1 + 𝑚2
2

, (22)

where the corresponding speeds of two masses 𝑣𝑖1 and 𝑣𝑖2 are

𝑣2
𝑖1

|x𝑖1 |
=

−𝑛𝐺𝑛𝑚2
(2𝑟𝑖)1−𝑛

and
𝑣2
𝑖2

|x𝑖2 |
=

−𝑛𝐺𝑛𝑚1
(2𝑟𝑖)1−𝑛

. (23)

Here 𝑣𝑟𝑖 is the circling velocity of the displacement vector r if there is
no damping. For this special case, the two-body system is stable with
both masses circling around the center of mass if the background
is static (𝐻0 = 0). More specifically, the initial system is in a virial
equilibrium (2𝐾𝐸 − 𝑛𝑃𝐸 = 0) with

𝑣2𝑖 = 𝑣
2
𝑟𝑖 = 𝛼𝑠

𝐺𝑛 (𝑚1 + 𝑚2)
𝑟−𝑛
𝑖

= 𝛼𝑠
𝐺𝑛𝑀

𝑟−𝑛
𝑖

, (24)

where constant 𝛼𝑠 = −𝑛/22−𝑛 and 𝑀 = 𝑚1 +𝑚2 is the total mass of
the system.
Without loss of generality, we will try to solve the two-body col-

lapse problem with an arbitrary initial velocity 𝑣𝑖 for displacement
vector r. Substituting the assumed solution (Eq. (13)) into Eq. (11)
gives rise to two coupled equations for two unknown functions: radius
𝑟 (𝑠) and frequency 𝜔 (𝑠),

¥𝑟 + 𝐻0
2︸︷︷︸
1

¤𝑟 − 𝑛𝐺𝑛 (𝑚1 + 𝑚2)
2 (2𝑟)1−𝑛︸              ︷︷              ︸

2

= 𝑟 (𝜔 + 𝑠 ¤𝜔)2︸        ︷︷        ︸
3

= 𝑟

(
𝜕 (𝜔𝑠)
𝜕𝑠

)2
, (25)

¤𝑟
𝑟
= −1
2

[
𝜕 ln (𝜔 + 𝑠 ¤𝜔)

𝜕𝑠
+ 𝐻0
2

]
. (26)

with initial conditions,

𝑟 |𝑠=0 = 𝑟𝑖 and
(
𝜕𝑟

𝜕𝑠

)����
𝑠=0

= 0. (27)

Three forces contribute to the equation of motion for 𝑟 (𝑠) in
Eq. (25), i.e. the damping force (term 1), the gravitational force
(term 2), and the frequency force (term 3). Term 3 (frequency force)
origins from the angular momentum as we will show in Eq. (30).
The competition among three forces dominates the evolution of 𝑟 (𝑠).
Let’s now introduce a frequency function as

𝐹 (𝑠) = (𝜔 + 𝑠 ¤𝜔)−1/2 =
(
𝜕 (𝜔𝑠)
𝜕𝑠

)−1/2
. (28)

The radius 𝑟 (𝑠) can be obtained by solving Eq. (26),

𝑟 (𝑠) = (𝑟𝑖𝑣𝑖)1/2 𝐹 (𝑠) exp
(
−1
4
𝐻0𝑠

)
. (29)

A single equation for radius 𝑟 (𝑠) can be easily obtained by substi-
tution of Eq. (29) for frequency function 𝐹 (𝑠) into Eq. (25),

¥𝑟 + 𝐻0
2

¤𝑟 − 𝑛𝐺𝑛 (𝑚1 + 𝑚2)
2 (2𝑟)1−𝑛

=
(𝑟𝑖𝑣𝑖)2

𝑟3
exp (−𝐻0𝑠) . (30)

The frequency force (term 3 in Eq. (25)) is now related to the ini-
tial angular momentum (𝑟𝑖𝑣𝑖 on the right hand side (RHS)) and is
exponentially decaying with time s. Complete solution of Eq. (30)
depends on five parameters, i.e. the exponent 𝑛, damping 𝐻0, initial
conditions 𝑟𝑖 and 𝑣𝑖 , and system mass 𝑀 = 𝑚1 + 𝑚2. This equa-
tion mimics the spherical collapse model (SCM) but with a non-zero
angular momentum on RHS. Comparison is discussed in Section 4.3.
However, Eq. (30) is complex to solve analytically. Here we take a

different route by directly solving the frequency function 𝐹 (𝑠) (in-
stead of 𝑟 (𝑠) in Eq. (30)) , where five parameters can be grouped and
significantly reduced to exponent n and two dimensionless numbers
(Eqs. (60) and (61)). Equations (25) and (26) are first combined and
rewritten in terms of the frequency function 𝐹 (𝑠),

¥𝑟
𝑟
+ 𝐻0
2

¤𝑟
𝑟
+
𝑣2
𝑟𝑖

𝑟2

(
𝑟

𝑟𝑖

)𝑛
= 𝐹−4 (𝑠) , (31)

¤𝑟
𝑟
=
1

𝐹 (𝑠)
𝜕𝐹

𝜕𝑠
− 𝐻0
4
. (32)

With the identity

¥𝑟
𝑟
=
𝜕 ( ¤𝑟/𝑟)
𝜕𝑠

+
(
¤𝑟
𝑟

)2
, (33)

substitution of Eq. (32) into Eq. (31) leads to a single equation for
frequency function 𝐹 (𝑠) (no first order derivative involved):

𝜕2𝐹

𝜕𝑠2
=
𝐻20
16
𝐹 (𝑠)︸    ︷︷    ︸
1

− 𝛾𝑠
(
𝑣𝑖

𝑟𝑖

)1+𝑛/2
𝐹𝑛−1 (𝑠) exp

(
−𝑛 − 2
4

𝐻0𝑠

)
︸                                                 ︷︷                                                 ︸

2

+ 𝐹−3 (𝑠)︸  ︷︷  ︸
3

(34)

with initial conditions:

𝐹 (𝑠 = 0) =
(
𝑟𝑖

𝑣𝑖

)1/2
and

𝜕𝐹

𝜕𝑠

����
𝑠=0

=
𝐻0
4

(
𝑟𝑖

𝑣𝑖

)1/2
, (35)

from (Eq. (27)), where 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2 is a dimensionless number
indicating how far the initial system is away from virial equilibrium
(the special case in (Eq. (22)). 𝛾𝑠 = 1 corresponds to the special case
with initial system in virial equilibrium.
With function 𝐹 (𝑠) fully determined by the Eq. (34) and initial

condition in (35), the radius 𝑟 (𝑠) and frequency 𝜔 (𝑠) can be solved
subsequently using Eqs. (29) and (28). Similarly, three terms (1, 2 and
3) on the RHS of Eq. (34), i.e. the damping force, the gravitational
force, and the frequency force (from angular momentum), contribute
to the evolution of 𝐹 (𝑠).

Vol. 000, 1–16 (2022)



Two-body collapse model (TBCM) and GSCH 5

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

n=-1.0

n=-1.5

n=-0.5

Figure 2. The trajectory of the displacement vector r in x-y plane for three
different nwith 𝐻0 = 0.4,𝐺𝑛𝑀 = 1, 𝑟𝑖 = 1 and 𝛾𝑠 = 1 (or 𝑣𝑖 = 𝑣𝑟𝑖), i.e. the
initial system is in virial equilibrium. The trajectory becomes very complex for
systems with different potential exponents n and a nonzero damping (𝐻0 ≠ 0
stands for expanding background).

3.2 Numerical solutions and three distinct regimes for TBCM

Exact solution of highly nonlinear Eq. (34) is still not available in a
closed form. However, numerical solutions can be easily obtained.
Figure 2 shows typical trajectories of displacement vector r in x-y
plane for three different n = -0.5, -1.0, and -1.5. The trajectories are
for the gravitational collapse of two masses in a transformed system.
Initial systems are in virial equilibrium, where displacement vector
r simply circles around the origin if 𝐻0 = 0. The trajectory becomes
very complex for systems with different potential exponent n and a
nonzero damping (𝐻0 ≠ 0 for expanding background).
Figure 3 plots the time evolution of specific kinetic, potential, and

total energy for the same three cases in Fig. 2. Both kinetic and
potential energies of two-body system (𝐾𝑠 and 𝑃𝑠) vibrate around
theirmean values before the final collapse. The oscillation cancels out
for total energy 𝐸𝑠 = 𝐾𝑠 + 𝑃𝑠 , which is relatively smooth. A smaller
exponent n tends to have a longer time span of oscillation and smaller
oscillation amplitude. More detailed discussion of energy evolution
and their solutions is presented in Section 3.6.
Figure 4 presents typical trajectories for four different scenarios,

depending on a dimensionless number 𝜆𝑠 = 𝐻0𝑟𝑖/(4𝑣𝑖) and the ex-
ponent n. All scenarios have 𝛾𝑠 = 1 or 𝑣𝑖 = 𝑣𝑟𝑖 , i.e. the special case
considered in Eq. (22). The periodic motion only exists for small 𝜆𝑠
and−2 < 𝑛 < 0. The dimensionless number 𝜆𝑠 quantifies the compe-
tition between gravity and damping, while the ratio 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2
quantifies the competition between gravity and angular momentum.
There exists a critical value of 𝜆𝑠 for the existence of periodic motion
that we will identify later. This exactly mimics the critical damping
𝑐𝑠 = 2

√
𝑘𝑚 for harmonic oscillator in Eq. (12), abovewhich damping

is dominant to eliminate the periodic motion (overdamped system).
Figure 5 shows the time variation of the radius function 𝑟 (𝑠) of

displacement vector for the same four scenarios in Fig. 4. Three
distinct regimes can be identified for an equilibrium collapse (green
line), i.e. an initial transitional range dominated by the damping force,
an equilibrium range dominated by the competition between the
gravitational and the frequency forces, and a final collapse. System
spends most time in the equilibrium range if an oscillating motion
exists, which corresponds to the statistically steady state in SG-CFD.
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Figure 3. The temporal evolution of energy for a two-body gravitational
collapse for three different exponents n with 𝐻0 = 0.4,𝐺𝑛𝑀 = 1, 𝑟𝑖 = 1 and
𝛾𝑠 = 1 (or 𝑣𝑖 = 𝑣𝑟𝑖). Both kinetic and potential energy (𝐾𝑠 and 𝑃𝑠) vibrate
around their mean values before the final collapse. The oscillation cancels
out for the total energy 𝐸𝑠 = 𝐾𝑠 + 𝑃𝑠 . A smaller exponent n tends to have a
longer time span of oscillation and smaller amplitude of oscillation.
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Figure 4. Four typical trajectories for different combinations of parameter 𝜆𝑠
and potential exponent 𝑛 with 𝛾𝑠 = 1. The oscillatory motion only exists for
small 𝜆𝑠 (weak damping) and−2 < 𝑛 < 0. The critical value of 𝜆𝑠 for an
oscillatory motion will be identified.

Term 1 (damping) on the RHS of Eq. (34) can be dominant over
the other two terms initially. The solution of 𝐹 (𝑠) for the transition
range can be found as,

𝐹 (𝑠) =
(
𝑟𝑖

𝑣𝑖

)1/2
exp

(
𝐻0𝑠

4

)
and 𝑟 (𝑠) = 𝑟𝑖 . (36)

Since term 1 (damping) is dominant at the transition range, we have
(from Eq. (34)),

𝐻20
16
𝐹 (𝑠𝑡 ) =

�����𝛾𝑠 (
𝑣𝑖

𝑟𝑖

)1+𝑛/2
𝐹𝑛−1 (𝑠𝑡 ) exp

(
−𝑛 − 2
4

𝐻0𝑠𝑡

)
− 𝐹−3 (𝑠𝑡 )

�����
(37)
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Figure 5. The temporal evolution of radius function 𝑟 (𝑠) with time s for four
cases presented in Fig. 4. For an equilibrium collapse with oscillating motion
(under damped), three distinct ranges can be identified, an initial transition
range dominated by the damping force, an equilibrium range dominated by
the competition between the gravitational and the frequency forces, and a
final collapse. The equilibrium collase only exists for weak damping with a
small 𝜆𝑠 , −2 < 𝑛 < 0, and 𝛾𝑠 ≈ 1.

to define a transition time 𝑠𝑡 . After substitution of Eq. (36) into Eq.
(37), we have

𝜆2𝑠 = |𝛾𝑠 − exp (−𝐻0𝑠𝑡 ) | , (38)

where the dimensionless number 𝜆𝑠 is defined as 𝜆𝑠 = 𝐻0𝑟𝑖/(4𝑣𝑖)
and the transition time 𝑠𝑡 is dependent on 𝜆𝑠 and 𝛾𝑠 . Damping force
is dominant for 𝑡 < 𝑠𝑡 .
For equilibrium range, term 2 (gravitational force) approximately

balances the term 3 (the frequency force) which leads to a mean
frequency function 𝐹𝑚 (𝑠) from Eq. (34),

𝐹𝑚 (𝑠) = 𝛾−1/(2+𝑛)𝑠

(
𝑟𝑖

𝑣𝑖

)1/2
exp

(
−2 − 𝑛
2 + 𝑛 · 𝐻0𝑠

4

)
. (39)

The actual solution 𝐹 (𝑠) vibrates around the mean solution 𝐹𝑚 (𝑠).
The mean solutions for the radius and frequency can be found using
Eqs. (29) and (28),

𝑟𝑚 (𝑠) = 𝛾−1/(2+𝑛)𝑠 𝑟𝑖 exp
(
− 𝐻0𝑠

2 + 𝑛

)
, (40)

𝜔𝑚 (𝑠) = 1
2𝜆𝑠𝑠

2 + 𝑛
2 − 𝑛 𝛾

2/(2+𝑛)
𝑠 exp

(
2 − 𝑛
2 + 𝑛 · 𝐻0𝑠

2

)
. (41)

Actual radius and frequency solutions should also vibrate aboutmean
solutions (Fig. 5).

3.3 Free fall collapse and free fall time in expanding
background

The free fall time is the characteristic time it takes for two-body to
collapse under their own gravity. The TBCM model can be used to
estimate the free fall time in expanding background. For small initial
velocity with 𝑣𝑖 → 0 (vanishing angular momentum) or large expo-
nent n (𝑣𝑟𝑖 → ∞ fromEq. (22)), the parameter 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2 → ∞,
i.e. a zero angular momentum. This is the free fall of a test particle

from rest at an initial distance of 𝑟𝑖 with a fixed damping. Term 2
(gravitational force) in Eq. (34) should be dominant for free fall and
the solution of 𝐹 (𝑠) is approximately a parabolic function without
oscillatory motion. From Eq. (34) and initial condition in Eq. (35),
equation for 𝐹 (𝑠) reads

𝜕2𝐹

𝜕𝑠2
≈ −𝛾𝑠

(
𝑣𝑖

𝑟𝑖

)1+𝑛/2
𝐹𝑛−1 (𝑠 = 0) = −𝛾𝑠

(
𝑣𝑖

𝑟𝑖

)3/2
. (42)

With initial conditions in Eq. (35), the solution of Eq. (42) is

𝐹 (𝑠) ≈
(
𝑟𝑖

𝑣𝑖

)1/2 [
− 1
32

(
𝐻0
𝜆𝑠𝑖

)2
𝑠2 + 1

4
𝐻0𝑠 + 1

]
, (43)

where parameter (quantifies the competition of gravity with damping
for free fall collapse)

𝜆𝑠𝑖 =
𝐻0𝑟𝑖
4𝑣𝑟𝑖

= 𝜆𝑠𝛾
−1/2
𝑠 =

𝜆𝑠𝑣𝑖

𝑣𝑟𝑖
= 𝐻0

√︄
2−𝑛−2𝑟2−𝑛

𝑖

−𝑛𝐺𝑛 (𝑚1 + 𝑚2)
. (44)

The radius function 𝑟 (𝑠) can be found from Eq. (29),

𝑟 (𝑠) ≈ 𝑟𝑖 exp
(
−1
4
𝐻0𝑠

) [
− 1
32

(
𝐻0
𝜆𝑠𝑖

)2
𝑠2 + 1

4
𝐻0𝑠 + 1

]
. (45)

The final collapse (free fall) time 𝑠𝑐 in time scale s can be estimated
by setting 𝑟 (𝑠 = 𝑠𝑐) = 0,

𝑠𝑐 ≈
4𝜆2
𝑠𝑖

𝐻0

[
1 +

√︄
1 + 2

𝜆2
𝑠𝑖

]
. (46)

For small 𝜆
𝑠𝑖
(𝑟𝑖 → 0, or weak damping 𝐻0 → 0, or 𝑀 → ∞)

in Eq. (44), 𝑠𝑐 is essentially the free fall time in static background
without damping (from Eq. (46)),

𝑠𝑐 ≈ 𝑠𝑐1 = 4
√
2
𝜆𝑠𝑖

𝐻0
=

√︄
23−𝑛𝑟2−𝑛

𝑖

−𝑛𝐺𝑛 (𝑚1 + 𝑚2)
=

√
2
2𝜋
𝑇𝑟𝑖 , (47)

which is independent of damping 𝐻0. Here 𝑇𝑟𝑖 is the orbital period,

𝑇𝑟𝑖 =
2𝜋𝑟𝑖
𝑣𝑟𝑖

=
2𝜋 (2𝑟𝑖)1−𝑛/2√︁
−𝑛𝐺𝑛 (𝑚1 + 𝑚2)

. (48)

Specifically, for 𝑛 = −1, we have

𝑠𝑐1 =
4𝑟3/2
𝑖√︁

𝐺 (𝑚1 + 𝑚2)
=

√
2
2𝜋
𝑇𝑟𝑖 , (49)

which well approximates the exact free fall time 𝑠𝑐𝑒 in static back-
ground without damping, where

𝑠𝑐𝑒 =
𝜋𝑟
3/2
𝑖√︁

𝐺 (𝑚1 + 𝑚2)
=

√
2
8
𝑇𝑟𝑖 (50)

is the exact free fall time in static background. Note that 𝑠𝑐1 is
analytically obtained from the approximation Eq. (42) and cannot
fully reduce to the exact free fall time 𝑠𝑐𝑒.
While for large 𝜆

𝑠𝑖
(𝑟𝑖 → ∞, or strong damping 𝐻0 → ∞, or

𝑀 → 0) in Eq. (44), the free fall time is proportional to 𝐻0,

𝑠𝑐 ≈ 𝑠𝑐2 = 8
𝜆2
𝑠𝑖

𝐻0
=
𝐻0𝑟

2
𝑖

2𝑣2
𝑟𝑖

=
𝐻0
8𝜋2

𝑇2𝑟𝑖 =
𝐻021−𝑛𝑟2−𝑛𝑖

−𝑛𝐺𝑛 (𝑚1 + 𝑚2)
. (51)

The critical value between two regimes can be obtained from Eqs.
(47) and (51) with 𝑠𝑐1 = 𝑠𝑐2, where 𝜆𝑠𝑖 =

√
2/2. The free fall time

from Eq. (46) approximates the true free fall time in transformed
system. Figure 6 plots the variation of free fall time (normalized by
𝐻0) with the dimensionless number 𝜆𝑠𝑖 . The comparison between
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Figure 6. The variation of free fall time 𝑠𝑐 (normalized by 𝐻0) with dimen-
sionless number 𝜆

𝑠𝑖
. The comparison between numerical solution by solving

the original equation of motion and the analytical approximation is also pre-
sented. The ratio between two is plotted as the correction factor 𝜆𝑐 . The free
fall time 𝑠𝑐(in transformed systemwith static background and fixed damping)
is proportional to damping 𝐻0 for large 𝜆𝑠𝑖 . The variation of the physical free
fall time 𝑡𝑐 (normalized by the free fall time 𝑠𝑐𝑒 that is for static background
and no damping) with 𝜆

𝑠𝑖
is also plotted on the right axis, which increases

with 𝜆
𝑠𝑖
. The two-body system starting to collapse at an earlier time will

have a longer free fall time. Time 𝑡𝑐 approaches 𝑠𝑐𝑒 when 𝑠𝑐𝑒 is small (small
separation or large mass) or when collapse time 𝑡𝑖 approaches 𝑡0.

the numerical solution by solving the original Equation (Eqs. (8) and
(9)) and approximation Eq. (46) justifies a correction factor 𝜆𝑐 ,

𝑠𝑐 = 4𝜆𝑐
𝜆2
𝑠𝑖

𝐻0

[
1 +

√︄
1 + 2

𝜆2
𝑠𝑖

]
,

where the correction factor

𝜆𝑐 =
𝜋

4
for 𝜆𝑠𝑖 → 0 and 𝜆𝑐 =

1
3
for 𝜆𝑠𝑖 → ∞.

(52)

Note that 𝑠𝑐 is the free fall time in transformed system. To trans-
form it back to the original comoving system, the relation between
time scales t and s (𝑑𝑠/𝑑𝑡 = 𝑎−3/2) is

𝑠 = 𝑡0 ln (𝑡/𝑡𝑖) and 𝑡𝑒 = 𝑡𝑖 exp (𝑠𝑐/𝑡0) , (53)

where 𝑡𝑖 = 𝑎
3/2
𝑖
𝑡0 and 𝑡𝑒 are the start and end of a two-body free

fall in physical time t, 𝑎𝑖 is the scale factor at initial time 𝑡𝑖 . Here
𝑡0 is the present physical time with 𝐻0𝑡0 = 2/3. The free fall time
(𝑡𝑐 = 𝑡𝑒 − 𝑡𝑖) for a two-body system to fully collapse in expanding
background is,

𝑡𝑐 = 𝑡𝑖

(
exp

(
𝑠𝑐

𝑡0

)
− 1

)
≈ 𝑡𝑖𝑠𝑐

𝑡0
. (54)

Let’s consider a two-body system with an initial separation of 2𝑟
𝑦𝑖

in physical coordinates, the exact free fall time for such a two-body
system in static background without damping should be (same as Eq.
(50), but in a physical coordinate 𝑟𝑦𝑖 = 𝑎𝑖𝑟𝑖),

𝑠𝑐𝑒 =
𝜋𝑟
3/2
𝑦𝑖√︁

𝐺 (𝑚1 + 𝑚2)
. (55)

For 𝑛 = −1, the dimensionless 𝜆
𝑠𝑖
can be rewritten in terms of the

ratio 𝑠𝑐𝑒/𝑡𝑖 from Eq. (44),

𝜆𝑠𝑖 = 𝐻0

(
𝑟𝑦𝑖/𝑎𝑖

)3/2√︁
2𝐺𝑛 (𝑚1 + 𝑚2)

=

√
2
3𝜋

𝑠𝑐𝑒

𝑡𝑖
. (56)

The free fall time in the original comoving system is given by
(from Eqs. (54), (52), and (56))

𝑡𝑐

𝑠𝑐𝑒
=

√
2

3𝜋𝜆𝑠𝑖

(
exp

[
6𝜆𝑐𝜆2𝑠𝑖

(
1 +

√︄
1 + 2

𝜆2
𝑠𝑖

)]
− 1

)

=
𝑡𝑖

𝑠𝑐𝑒

©­«exp

4𝜆𝑐
3𝜋2

(
𝑠𝑐𝑒

𝑡𝑖

)2 ©­«1 +
√︄
1 + 9𝜋2

(
𝑡𝑖

𝑠𝑐𝑒

)2ª®¬
 − 1ª®¬ .

(57)

where two regimes can be clearly identified as,

𝑡𝑐 =
4
𝜋
𝜆𝑐𝑠𝑐𝑒 for 𝜆𝑠𝑖 → 0

and

𝑡𝑐 = 𝑡𝑖 exp

[
8𝜆𝑐
3𝜋2

(
𝑠𝑐𝑒

𝑡𝑖

)2]
for 𝜆𝑠𝑖 → ∞.

(58)

The variation of the physical free fall time 𝑡𝑐 with𝜆𝑠𝑖 is also presented
in Fig. 6 if correction factor 𝜆𝑐 = 1 (the right axis). Conversely, Eq.
(57) can be used to estimate the start time 𝑡𝑖 of a free fall if the free
fall time 𝑡𝑐 is known.
The free fall time 𝑡𝑐 increases if the same two-body system starts

to collapse at an earlier time 𝑡𝑖 . This is expected because the Hubble
constant (damping) is greater at earlier time where larger resistance
to the gravitational collapse is expected. Time 𝑡𝑐 approaches 𝑠𝑐𝑒
when 𝑠𝑐𝑒 is small (small separation or large mass) or when initial
time 𝑡𝑖 approaches 𝑡0. Clearly, larger 𝜆𝑠𝑖 (either greater separation
between two body 𝑟𝑖 → ∞ or smaller total mass 𝑀 → 0 in Eq.
(44)) or smaller 𝑡𝑖 (free fall starts at earlier physical time) will lead
to a much larger free fall time than the exact free fall time in static
background (𝑡𝑐 � 𝑠𝑐𝑒).

3.4 TBCM model in the simplest form and perturbative
solutions for equilibrium collapse

Next, the equation for 𝐹 (𝑠) can be further simplified by introducing
an amplitude function 𝐹𝑎 (𝜔𝑚𝑠). The original frequency function
𝐹 (𝑠) can be decoupled into the product of the mean solution 𝐹𝑚 (𝑠)
(Eq. (39)) and an amplitude function 𝐹𝑎 (𝜔𝑚𝑠) as

𝐹 (𝑠) = 𝐹𝑚 (𝑠) 𝐹𝑎 (𝜔𝑚𝑠)

= 𝛾
−1/(2+𝑛)
𝑠

(
𝑟𝑖

𝑣𝑖

)1/2
exp

(
−2 − 𝑛
2 + 𝑛 · 𝐻0𝑠

4

)
𝐹𝑎 (𝜔𝑚𝑠).

(59)

Substitution of Eq. (59) into the original Eq. (34) for 𝐹 (𝑠) leads to a
very simple equation for the amplitude function 𝐹𝑎 (𝑥) with respect
to a dimensionless variable 𝑥 = 𝜔𝑚 (𝑠) 𝑠,

𝜕2𝐹𝑎 (𝑥)
𝜕𝑥2

=
2𝑛

(2 − 𝑛)2
𝐹𝑎 (𝑥)
𝑥2︸              ︷︷              ︸

1

− 𝐹𝑛−1𝑎 (𝑥)︸    ︷︷    ︸
2

+ 𝐹−3
𝑎 (𝑥)︸  ︷︷  ︸
3

, (60)

with initial conditions (using Eq. (35)),

𝐹𝑎 (𝑥0) = 𝛾1/
(2+𝑛)

𝑠 and
𝜕𝐹𝑎

𝜕𝑥

����
𝑥=𝑥0

=
𝛽𝑠𝛾

−1/(2+𝑛)
𝑠

2 + 𝑛 ,

where 𝑥0 =
2𝛾2/(2+𝑛)𝑠

𝛽𝑠

2 + 𝑛
2 − 𝑛 .

(61)
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The ratio 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2with 𝑣𝑟𝑖 fromEq. (22), 𝑣𝑖 is the initial speed,
and the parameter 𝛽𝑠 = 4𝜆𝑠 = 𝐻0𝑟𝑖/𝑣𝑖 is introduced for convenience.
Similarly, 𝛽𝑠𝑖 = 4𝜆𝑠𝑖 = 𝐻0𝑟𝑖/𝑣𝑟𝑖 can be defined (Eq. (44)).
Note that Eq. (60) is exact and is the simplest representation of

original problem (Eq. (11)). Solution is fully determined by three
dimensionless parameters, i.e. n, 𝛽𝑠 and 𝛾𝑠 , a significant reduction
from five parameters in original Eq. (30).
For small x or 𝑛 = −2, term 1 (damping force) on the RHS of Eq.

(60) is dominant and we have the exact solution of

𝐹𝑎 (𝑥 → 𝑥0) =
(
𝛽𝑠𝛾

−1/2
𝑠

2
2 − 𝑛
2 + 𝑛 𝑥

)2/(2−𝑛)
, (62)

which is consistent with the transient solution in Eq. (36).
For large x, term 2 (gravitational force) and term 3 (frequency force

due to the angular momentum) are dominant. The trivial solution
𝐹𝑎 (𝑥) = 1 can be easily identified for 𝛾𝑠 = 1 and 𝛽𝑠 = 0 (i.e. static
background without damping). If 𝑛 = −1 and 𝛽𝑠 = 0, the original
problem is reduced to the classical two-body gravitational problem
in static background without damping.
Herewe focus on amore general casewith aweak damping 𝛽𝑠 → 0

and −2 < 𝑛 < 0 (large x 𝑥 > 𝑥0 � 0 from Eq. (61)), where the
competition between terms 2 and 3 leads to an oscillatory solution
vibrating around the mean value 𝐹𝑎 (𝑥) = 1. It can be easily shown
that if 𝐹𝑎 (𝑥) < 1, we have 𝐹−3

𝑎 (𝑥) > 𝐹𝑛−1𝑎 (𝑥), the positive curvature
𝜕2𝐹𝑎 (𝑥)/𝜕𝑥2 > 0 from Eq. (60) brings 𝐹𝑎 (𝑥) back to 𝐹𝑎 (𝑥) > 1; If
𝐹𝑎 (𝑥) > 1,we have𝐹−3

𝑎 (𝑥) < 𝐹𝑛−1𝑎 (𝑥), curvature 𝜕2𝐹𝑎 (𝑥)/𝜕𝑥2 < 0
brings 𝐹𝑎 (𝑥) back to the region 𝐹𝑎 (𝑥) < 1; No oscillatory solution
exists for short range force with 𝑛 6 −2.
We are especially interested in the oscillatory solutions with a

weak damping (𝛽𝑠 → 0), which is more relevant to the gravitational
collapse in large-scale N-body simulations. For weak damping, a
harmonic function can be used to solve Eq. (60),

𝐹𝑎 (𝑥) ≈ 𝐴0 + 𝐴1 sin [𝑘𝑠 (𝑥 − 𝑥0) + 𝐴3] , (63)

where 𝐴0 is the mean value, 𝐴1 is the amplitude, 𝐴3 is the phase
angle, and 𝑘𝑠 is a dimensionless frequency. Substitution of Eq. (63)
into Eq. (60), the frequency 𝑘𝑠can be approximated by,

𝑘𝑠 ≈
���(𝑛 − 1) 𝐴𝑛−20 + 3𝐴−40

���1/2 . (64)

To satisfy the boundary conditions (Eq. (61)), we have

𝐴0 + 𝐴1 sin (𝐴3) = 𝛾1/
(2+𝑛)

𝑠

and

𝑘𝑠𝐴1 cos (𝐴3) =
𝛽𝑠𝛾

−1/(2+𝑛)
𝑠

(2 + 𝑛) .

(65)

Two limiting situations can be identified for weak damping (𝛽𝑠 → 0):

(i) Small initial velocity 𝑣𝑖 where 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2 � 1. This is the
free fall collapse and free fall time is discussed in Section 3.3.
(ii) Large initial velocity 𝑣𝑖 where 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2 � 1. There
exists a point in the trajectory with a vanishing kinetic energy and
maximum potential (turning point). If this point is considered as the
initial position, the trajectory after this point should be a free fall that
is considered in 1). Therefore, both 1) and 2) will not likely lead to
oscillatory motion.
(iii) A more interesting case is the special case we discussed before,
namely the initial velocity 𝑣𝑖 ≈ 𝑣𝑟𝑖 and 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2 ≈ 1 for initial
system close to virial equilibrium.

Case (iii) leads to an equilibrium collapse with oscillatory solu-
tions, as shown in Fig. 5. For this case, 𝐴0 = 1 � 𝐴1 (the fluctuation

is small compared to the mean solution in Eq. (63)), 𝑘𝑠 =
√
2 + 𝑛

(from Eq. (64)), and 𝐴3 = 0. Final perturbative solution for the
amplitude function 𝐹𝑎 (𝑥) (first order of 𝛽𝑠) reads

𝐹𝑎 (𝑥) ≈ 1 +
𝛽𝑠

(2 + 𝑛)3/2
sin

[√
2 + 𝑛 (𝑥 − 𝑥0)

]
= 1 + 𝛽𝑠

(2 + 𝑛)3/2
sin (𝜃𝑠 (𝑥)) ,

(66)

where the angle function 𝜃𝑠 is (with Eq. (41) for 𝜔𝑚 and Eq. (40) for
mean radius 𝑟𝑚)

𝜃𝑠 (𝑥) ≡ 𝜃𝑠 (𝜔𝑚𝑠) =
√
2 + 𝑛 (𝜔𝑚𝑠 − 𝑥0)

=
2
√
2 + 𝑛
𝛽𝑠

2 + 𝑛
2 − 𝑛

[(
𝑟𝑚

𝑟𝑖

)−(2−𝑛)/2
− 1

]
,

(67)

Or equivalently

𝜃𝑠 (𝑠) =
2
√
2 + 𝑛
𝛽𝑠

2 + 𝑛
2 − 𝑛

[
exp

(
2 − 𝑛
2 + 𝑛

𝐻0𝑠

2

)
− 1

]
≈
√
2 + 𝑛 𝑠𝑣𝑖

𝑟𝑖
(68)

for 𝐻0𝑠 � 1, which approximates the angle swept by the displace-
ment vector r within time s if 𝐻0𝑠 � 1. Obviously solution (66) is
valid only for 𝛽𝑠 < (2 + 𝑛)3/2 such that the amplitude of oscillation
is less than one in Eq. (66) for a positive amplitude function 𝐹𝑎 (𝑥).
This leads to the first critical value of 𝛽𝑠 , just like the critical 𝑐 for
over damped and under damped system in Eq. (12).
Solutions for 𝛽𝑠 = 0 and 𝑛 = −1 are well known for two-body

gravitational problem in static background (Kepler’s law). Competi-
tion between gravity, damping, and angular momentum for 𝛽𝑠 ≠ 0
and −2 < 𝑛 < 0 determines the free fall or equilibrium collapse for
gravitational collapse in expanding background.
For a fixed mean radius 𝑟𝑚 (𝑠), two-body systems with different

initial separation 𝑟𝑖 can have different angle 𝜃𝑠 that is dependent on
𝑟𝑖 (Eq. (67)). Other relevant solutions can be found as,

𝐹 (𝑠) = 𝐹𝑚 (𝑠) 𝐹𝑎 (𝜔 (𝑠) 𝑠)

=

(
𝑟𝑖

𝑣𝑖

) 1
2
exp

(
−2 − 𝑛
2 + 𝑛

𝐻0𝑠

4

) {
1 + 𝛽𝑠

(2 + 𝑛)3/2
sin (𝜃𝑠)

}
,
(69)

𝑟 (𝑠) = 𝑟𝑚 (𝑠) 𝐹𝑎 (𝜔𝑚 (𝑠) 𝑠)

= 𝑟𝑖 exp
(
− 𝐻0𝑠

2 + 𝑛

) {
1 + 𝛽𝑠

(2 + 𝑛)3/2
sin (𝜃𝑠)

}
,

(70)

the frequency function 𝜔 (𝑠) from Eq. (28)

𝜔 (𝑠) = 1
𝑠

∫
𝐹−2
𝑚 (𝑠) 𝐹−2

𝑎 (𝜔𝑚 (𝑠) 𝑠) 𝑑𝑠, (71)

and the time derivative of radius (or the radial velocity)

¤𝑟 = 𝜕𝑟 (𝑠)
𝜕𝑠

=
𝐻0𝑟𝑖
(2 + 𝑛) exp

(
− 𝑛𝐻0𝑠

2 (2 + 𝑛)

)
cos (𝜃𝑠) −

𝐻0𝑟

2 + 𝑛 . (72)

Note that the first term on the RHS (right hand side) of Eq. (72) is
from the time variation of angle 𝜃𝑠 . This term becomes dominant over
the second term with 𝑟 → 0 but can be averaged out for random 𝜃𝑠 .
This expressionwill be used to derive the stable clustering hypothesis
(SCH) in Section 4.1 (Eq. (114)). For a given potential exponent n,
parameter 𝛽𝑠 controls both the amplitude and period of vibration
(Eqs. (68) and (69)).
The temporal evolution in transformed system with time scale s

can be equivalently transformed back to the evolution in original co-
moving system with physical time t (Eq. (53)), where 𝑠 = 𝑡0 ln (𝑡/𝑡𝑖).
Here 𝑡𝑖 (or 𝑎𝑖) is the initial time (or initial scale factor) and 𝑡0 is the
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physical time of the present epoch. The exponential evolution with
time s is equivalent to a power-law evolution with physical time t,

exp (𝜏𝐻0𝑠) → (𝑎/𝑎𝑖)𝜏 . (73)

Transforming back to comoving system, the mean separation 𝑟𝑚

𝑟𝑚 ∝ exp (−𝐻0𝑠/(2 + 𝑛)) = (𝑎/𝑎𝑖)−1/(2+𝑛) (74)

following a power-law can be obtained from Eq. (40) for the equilib-
rium range in Fig. 5. Stable clustering hypothesis (SCH) refers to a
comoving separation 𝑟𝑚 ∝ 𝑎−1 or a fixed proper separation frozen
in the physical time t. Clearly, only the equilibrium collapse with
𝑛 = −1 will lead to the stable clustering in expanding background
(Eq. (74)).

3.5 Critical 𝛽𝑠 for equilibrium collapse and critical density

For convenience, numerical constant 𝛽𝑠 = 4𝜆𝑠 = 𝐻0𝑟𝑖/𝑣𝑖 is intro-
duced to quantify the competition between expanding background
and gravity. Two critical values of 𝛽𝑠 can be identified from TBCM
model and its solutions.
Let’s consider a two-body system that starts to collapse at an initial

physical time 𝑡𝑖 with a corresponding Hubble constant 𝐻𝑖 and scale
factor 𝑎𝑖 . The evolution of angle function 𝜃𝑠 and separation 𝑟 in time
scale s (Eqs. (68) and (70)) can be equivalently transformed back to
the evolution in physical time t, where

𝜃𝑠 (𝑡) =
1
2𝜆𝑠

(2 + 𝑛)3/2
2 − 𝑛

[
exp

(
2 − 𝑛
2 + 𝑛 · 𝐻0𝑠

2

)
− 1

]
=
2
𝛽𝑠

(2 + 𝑛)3/2
2 − 𝑛

((
𝑡

𝑡𝑖

) 2−𝑛
3(2+𝑛)

− 1
)
,

(75)

𝑟 (𝑡) = 𝑟𝑖
( 𝑎𝑖
𝑎

)1/(2+𝑛) {
1 + 𝛽𝑠

(2 + 𝑛)3/2
sin [𝜃𝑠 (𝑡)]

}
. (76)

Specifically, for 𝑛 = −1,

𝑟 (𝑡) = 𝑟𝑖
( 𝑎𝑖
𝑎

) {
1 + 𝛽𝑠 sin

[
2
3𝛽𝑠

(
𝑡

𝑡𝑖
− 1

)]}
and

𝜃𝑠 (𝑡) =
2
3𝛽𝑠

(
𝑡

𝑡𝑖
− 1

)
.

(77)

The first critical value of 𝛽𝑠 can be identified for the existence of
an equilibrium range (under damped in Fig. 5) from Eq. (76),

𝛽𝑠1 =
𝐻0𝑟𝑖𝑐
𝑣𝑖𝑐

= (2 + 𝑛)3/2 , (78)

which leads to a critical initial separation 𝑟𝑖𝑐 or initial velocity 𝑣𝑖𝑐
when combined with Eq. (22),

𝑟𝑖𝑐 =
1
2

[
−𝑛𝐺𝑛 (𝑚1 + 𝑚2)
𝐻20 (2 + 𝑛)

−3

]1/(2−𝑛)
and

𝑣𝑖𝑐 =
1
2
[−𝑛𝐺𝑛 (𝑚1 + 𝑚2)]1/(2−𝑛)[
𝐻0 (2 + 𝑛)

−3/2
]𝑛/(2−𝑛) .

(79)

Both 𝑟𝑖𝑐 and 𝑣𝑖𝑐 are only dependent on the systemmass, the damping
𝐻0 and the potential exponent n. For𝑚1 = 𝑚2 = 2.27×10

11𝑀𝑠𝑢𝑛/ℎ,
𝑟𝑖𝑐 = 0.29𝑀𝑝𝑐/ℎ and 𝑣𝑖𝑐 = 29𝑘𝑚/𝑠. This is the maximum separa-
tion and the corresponding velocity for the existence of an equilib-
rium two-body collapse.

For systems that evolve from initial virial equilibrium (the special
case 𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2 = 1), the equilibrium collapse exists only if
𝛽𝑠 6 𝛽𝑠1 = (2 + 𝑛)3/2 (or 𝑟𝑖 < 𝑟𝑖𝑐 or 𝑣𝑖 = 𝑣𝑟𝑖 > 𝑣𝑖𝑐), where gravity
is sufficiently large to balance expanding background in order to form
the equilibrium collapse. For 𝛽𝑠 > 𝛽𝑠1 = (2 + 𝑛)3/2, gravity is too
weak to establish an equilibrium collapse and system is over damped.
Next, the second critical value of 𝛽𝑠 can be obtained by considering

a continuous growth of a halo starting from 𝑡 = 0 to 𝑡 = 𝑡0 with an
infinitesimal lifetime and extremely fast mass accretion. This halo is
formed by continuously growing via a sequence of two-body collapse
(merging) events with single mergers with an infinitesimal waiting
time. This is a good approximation for large halos as the lifetime of
halo 𝜏𝑔 ∝ 𝑚−2/3

ℎ
(see Xu 2021a, Eq. (45)). Therefore, halos with an

infinitesimal lifetime have no time to relax and should always follow
the mean solutions of radius 𝑟𝑚 and frequency 𝐹𝑚. The phase angle
should vanish in Eq. (76) such that

sin [𝜃𝑠 (𝑡)] = 0 for any 𝑡 ∈ [0, 𝑡0] , (80)

where 𝑟 (𝑡) = 𝑟𝑚 in Eqs. (70) and (76) from 𝑡 = 0 to 𝑡 = 𝑡0 without
oscillation. Let us assume the first merging event occurs at time 𝑡𝑖 .
With 𝑡𝑖 → 0, we can safely assume that 𝑘 = 𝑡/𝑡𝑖 is an integer. From
Eqs. (75) and (80),

sin [𝜃𝑠 (𝑡)] = sin
[
2
𝛽𝑠

(2 + 𝑛)3/2
2 − 𝑛

(
𝑘
2−𝑛
3(2+𝑛) − 1

)]
= 0. (81)

The second critical value of 𝛽𝑠 can be identified from Eq. (81) for
any arbitrary integer 𝑘 ,

𝛽𝑠2 =
(2 + 𝑛)3/2
(2 − 𝑛) 𝜋 . (82)

Note that there exists a constant value of 𝛽𝑠2 satisfying Eq. (81) for
any integer 𝑘 if and only if

𝑚 =
2 − 𝑛
3 (2 + 𝑛) and 𝑛 =

2 − 6𝑚
1 + 3𝑚 = −1,−10

7
,−8
5
... − 2

with 𝑚 = 1, 2, ...∞, and

𝛽𝑠2 =
2

3𝜋𝑚
√
1 + 3𝑚

=
1
3𝜋
,
1
3𝜋

√
7
...0.

(83)

The parameter 𝛽𝑠 for halos with infinitesimal waiting time should
always satisfy 𝛽𝑠 = 𝛽𝑠2. The time derivative of angle 𝜃𝑠 (angular
speed) can be easily obtained from Eq. (75),

𝑑𝜃𝑠

𝑑𝑡

����
𝑡=𝑡𝑖

=
2
√
2 + 𝑛
3𝛽𝑠2𝑡

=
(2 − 𝑛)
(2 + 𝑛)

2𝜋
3𝑡
, (84)

from which we can find the period 𝑇𝑠 for large halos formed at any
instant time t,

𝑇𝑠 =
2𝜋

𝑑𝜃𝑠/𝑑𝑡
=
3 (2 + 𝑛)
(2 − 𝑛) 𝑡 =

𝑡

𝑚
. (85)

Specifically, for large halos with an infinitesimal lifetime and 𝑛 = −1,
halos formed at any instant t from a two-body collapse with a single
merger has a period of 𝑇𝑠 = 𝑡 (the orbital period of outer region of
halos should be comparable to the current physical time t).
Two numerical constants 𝛼𝑠 (in Eq. (24)) and 𝛽𝑠 = 𝐻0𝑟𝑖/𝑣𝑖 are

closely related to the density ratio of two-body system to the back-
ground. The critical density ratio Δ𝑐 = 18𝜋2 (usually derived from
spherical collapse model) can be simply derived by our two-body
collapse model (TBCM) as follows:
Let’s consider halos start equilibrium collapse at physical time 𝑡𝑖

with a corresponding Hubble constant 𝐻𝑖 (𝐻20 = 𝐻2
𝑖
𝑎3
𝑖
) and scale
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factor 𝑎𝑖 . The two numerical constants are defined as

𝛽𝑠 =
𝐻0𝑟𝑖
𝑣𝑖

=
𝐻0𝑟𝑖

𝑢𝑖𝑎
1/2
𝑖

=
𝐻𝑖𝑟𝑦𝑖

𝑢𝑖

and

𝛼𝑠 =
𝑣2
𝑖
𝑟−𝑛
𝑖

𝐺𝑛𝑚ℎ
=
𝑢2
𝑖
𝑎𝑖𝑟

−𝑛
𝑖

𝐺𝑛𝑚ℎ
=
𝑢2
𝑖
𝑟−𝑛
𝑦𝑖
𝑎𝑛+1
𝑖

𝐺𝑛𝑚ℎ
.

(86)

Here 𝛼𝑠 is the virial constant from Eq. (24) , 𝑢𝑖 = 𝑣𝑖𝑎
−1/2
𝑖

is
the peculiar velocity at time 𝑡𝑖 , 𝑣𝑖 is the velocity in transformed
system with time scale s, and 𝑟𝑦𝑖 = 𝑎𝑖𝑟𝑖 is the separation in physical
coordinate at time 𝑡𝑖 . Large halos with infinitesimal lifetime are
synchronized. All halos are generated at the same time t and both
constants 𝛼𝑠 and 𝛽𝑠 should approach constant values (Eqs. (82) and
(24)), i.e a direct delta distribution. For small halos with a finite
lifetime, there can be a distribution of values of 𝛼𝑠 and 𝛽𝑠 since
small halos are generated at different initial time 𝑡𝑖 can co-exist at the
same time t. The mass dependence of both parameters is presented
in a separate paper (see Xu 2022h, Fig. 2).
Note that 𝐻2 = 8𝜋𝐺𝜌̄𝑦 (𝑡) /3, where 𝜌̄𝑦 (𝑡) is the physical density

of background, Eq. (86) can be used to derive a ratio Δ𝑐 of the
physical density of halos to the background density at time 𝑡𝑖 ,

Δ𝑐 =
𝜌𝑠 (𝑡𝑖)
𝑎3
𝑖
𝜌̄𝑦 (𝑡𝑖)

=
𝜌𝑦 (𝑡𝑖)
𝜌̄𝑦 (𝑡𝑖)

=
1

4𝛼𝑠𝛽2𝑠

𝐺

𝐺𝑛𝑟
1+𝑛
𝑖

. (87)

Here 𝜌𝑦 is the mean physical density of halo. Comoving density 𝜌𝑠
of the two-body system is

𝜌𝑠 (𝑡𝑖) =
𝑀

4𝜋 (2𝑟𝑖)3 /3
, (88)

where 𝑀 = 𝑚1 + 𝑚2 and the halo size is 𝑟ℎ = 2𝑟𝑖 because of
𝑚1 � 𝑚2 (large halo merges with a single merger where the mass
of a single merger is much smaller) and 𝜇 = 2 (in Eq. (11)).
The critical density can be computed based on two critical values

𝛽𝑠1 and 𝛽𝑠2. For gravitational collapse of a two-body system with
𝑛 = −1,𝐺 = 𝐺𝑛, 𝛼𝑠 = −𝑛/22−𝑛 = 1/8 (Eq. (24)), and 𝛽𝑠 < 𝛽𝑠1 = 1,
only the system with a physical density 𝜌𝑦 (𝑡𝑖) > 2𝜌̄𝑦 (𝑡𝑖) (from Eq.
(87)) will lead to an equilibrium collapse. Systems with a physical
density 𝜌𝑦 (𝑡𝑖) < 2𝜌̄𝑦 (𝑡𝑖) will have a free fall collapse that can be
completed in a much short period (Fig. 5).
For 𝑛 = −1, the density ratio Δ of large halos with an infinitesimal

lifetime and 𝛽𝑠 = 𝛽𝑠2 is (from Eqs. (87), (82), and 𝛼𝑠 = −𝑛/22−𝑛),

Δ𝑐 =
𝜌𝑦 (𝑡𝑖)
𝜌̄𝑦 (𝑡𝑖)

=
1

4𝛼𝑠𝛽2𝑠2
= −2

−𝑛 (2 − 𝑛)2

𝑛 (2 + 𝑛)3
𝜋2 = 18𝜋2 for n=-1. (89)

Surprisingly, this critical density ratio is consistent with the predic-
tion from spherical collapse model (SCM) and reveals deep connec-
tions between TBCM and SCM models. More discussion will be
presented in Sections 4.3.

3.6 Solutions for energy, virial quantity, and angular
momentum

We can demonstrate that the specific kinetic and potential energies
(per unit mass) for two-body collapsing system are evolving expo-
nentially in the time scale s (or equivalently a power-law with respect
to a in the original comoving system using Eq. (73)). The specific

kinetic energy reads (from Eqs. (17), (18), and (28))

𝐾𝑠 =
1

(𝑚1 + 𝑚2)

[
1
2
𝑚1

(
𝑣2
𝑥1 + 𝑣

2
𝑦1

)
+ 1
2
𝑚2

(
𝑣2
𝑥2 + 𝑣

2
𝑦2

)]
=

2𝑚1𝑚2
(𝑚1 + 𝑚2)2

 ¤𝑟2︸︷︷︸
1

+ 𝑟2𝐹 (𝑠)−4︸      ︷︷      ︸
2

 .
(90)

The first term (term1) on the RHS represents the contribution from
the radial motion that is small when compared to the second term.
The ratio between two terms on the RHS of Eq. (90) can be obtained
from Eqs. (32) and (69),[

¤𝑟
𝑟𝐹 (𝑠)−2

]2
= 𝐹4

(
𝜕 ln 𝐹
𝜕𝑠

− 𝐻0
4

)2
≈

𝛽2𝑠
(2 + 𝑛)2

exp
(
−2 − 𝑛
2 + 𝑛 · 𝐻0𝑠

)
.

(91)

For small 𝛽𝑠 , this ratio is exponentially decaying with time s and
proportional to 𝛽2𝑠 (second order). By neglecting the high order term
(term 1) and using Eqs. (69) for 𝐹 (𝑠) and Eq. (70) for 𝑟 (𝑠), the final
expression of the specific kinetic energy reads

𝐾𝑠 ≈
2𝑚1𝑚2𝑣2𝑖
(𝑚1 + 𝑚2)2

exp
(
−𝑛𝐻0𝑠
2 + 𝑛

) [
1 − 2𝛽𝑠

(2 + 𝑛)3/2
sin 𝜃𝑠

]
. (92)

Similarly, the specific potential energy reads (with the expression
of r from Eq. (70) and 𝑣2

𝑖
from Eq. (24)),

𝑃𝑠 = −𝐺𝑛𝑚1𝑚2(2𝑟)−𝑛
1

(𝑚1 + 𝑚2)

≈
2𝑚1𝑚2𝑣2𝑖
(𝑚1 + 𝑚2)2

exp
(
−𝑛𝐻0𝑠
2 + 𝑛

) [
2
𝑛
+ 2𝛽𝑠
(2 + 𝑛)3/2

sin 𝜃𝑠

]
.

(93)

Total energy for two-body system and each individual mass are

𝐸𝑠 = 𝐾𝑠 + 𝑃𝑠 =
(2 + 4/𝑛) 𝑚1𝑚2𝑣

2
𝑖

(𝑚1 + 𝑚2)2
exp

(
−𝑛𝐻0𝑠
2 + 𝑛

)
=

− (2 + 𝑛) 𝑚1𝑚2
(𝑚1 + 𝑚2)

𝐺𝑛𝑟𝑖

(2𝑟𝑖)1−𝑛
exp

(
−𝑛𝐻0𝑠
2 + 𝑛

)
,

(94)

𝐸𝑠1 =

©­­­­­«
−𝑛𝑚22
𝑚1 + 𝑚2︸     ︷︷     ︸
𝑘𝑖𝑛𝑒𝑡𝑖𝑐

−𝑚2︸︷︷︸
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

ª®®®®®¬
(−2) 𝑣2

𝑖

𝑛 (𝑚1 + 𝑚2)
exp

(
−𝑛𝐻0𝑠
2 + 𝑛

)

=

©­­­­­«
−𝑛𝑚22
𝑚1 + 𝑚2︸     ︷︷     ︸
𝑘𝑖𝑛𝑒𝑡𝑖𝑐

−𝑚2︸︷︷︸
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

ª®®®®®¬
𝐺𝑛𝑟𝑖

(2𝑟𝑖)1−𝑛
exp

(
−𝑛𝐻0𝑠
2 + 𝑛

)
,

(95)

𝐸𝑠2 =

(
−𝑛𝑚21
𝑚1 + 𝑚2

− 𝑚1

)
(−2) 𝑣2

𝑖

𝑛 (𝑚1 + 𝑚2)
exp

(
−𝑛𝐻0𝑠
2 + 𝑛

)
=

(
−𝑛𝑚21
𝑚1 + 𝑚2

− 𝑚1

)
𝐺𝑛𝑟𝑖

(2𝑟𝑖)1−𝑛
exp

(
−𝑛𝐻0𝑠
2 + 𝑛

)
,

(96)

respectively. As shown in Fig. 3, both 𝐾𝑠 and 𝑃𝑠 vibrate about their
mean solutions with an amplitude proportional to the parameter 𝛽𝑠
to the first order. The specific energy 𝐸𝑠 does not vibrate due to the
cancellation of first order perturbation in 𝐾𝑠 and 𝑃𝑠 (Eq. (94)).

Vol. 000, 1–16 (2022)



Two-body collapse model (TBCM) and GSCH 11

By considering an ensemble of many two-body systems with ran-
domly distributed angles 𝜃𝑠 , the ensemble average of kinetic and
potential energies of these two-body systems are

〈𝐾𝑠〉 =
2𝑚1𝑚2𝑣2𝑖
(𝑚1 + 𝑚2)2

exp
(
−𝑛𝐻0𝑠
2 + 𝑛

)
and

〈𝑃𝑠〉 =
4𝑚1𝑚2𝑣2𝑖

𝑛 (𝑚1 + 𝑚2)2
exp

(
−𝑛𝐻0𝑠
2 + 𝑛

)
,

(97)

where first order perturbations are averaged out. The average kinetic
and potential energy satisfy the virial equilibrium, where 2 〈𝐾𝑠〉 −
𝑛 〈𝑃𝑠〉 = 0 in the equilibrium range.
The system spends most time in the equilibrium range with an

exponential evolution of energy in time scale s (from Eqs. (92),
(93) and (97)). Equivalently, energy follows a power-law evolution
in physical time t, i.e. 〈𝐾𝑠〉 ∝ 𝑡 and 〈𝑃𝑠〉 ∝ 𝑡 for n=-1, that will
provide some clues for the energy evolution in large scale N-body
system, as discussed in a separate paper (see Xu 2022h, Fig. 1a).
More importantly, this also hints a constant rate of energy cascade
𝜖𝑢 in dark matter flow (Xu 2022h, 2021e).
More interestingly for n=-1, the evolution of specific energy of

two individual particles (Eqs. (95) and (96)) is the same for both
particles regardless of their masses, where 𝐸𝑠 = 𝐸𝑠1 = 𝐸𝑠2. For a
two-body system with unequal mass 𝑚1 ≠ 𝑚2, the specific energy
is independent of particle mass (𝐸𝑠1 = 𝐸𝑠2), while the total energy
is proportional to particle mass. The energy equipartition does not
apply for the two-body system in equilibrium range, where there is no
energy transfer between two particles. The energy evolution does not
depend on individual mass, which seems consistent with the concept
of violent relaxation. More discussion is presented in Section 4.2.
The temporal evolution of the specific virial quantity 𝐺𝑠 (mass

averaged radial velocity moment) can be found from Eqs. (13) and
(14), where 𝐺𝑠 is defined as,

𝐺𝑠 =

∑
𝑚𝑖x𝑖 · v𝑖
Σ𝑚𝑖

=
𝑚1x1 · v1 + 𝑚2x2 · v2

𝑚1 + 𝑚2

=
4𝑚1𝑚2

(𝑚1 + 𝑚2)2
r · v =

4𝑚1𝑚2
(𝑚1 + 𝑚2)2

¤𝑟𝑟.
(98)

Using Eqs. (70) and (72) for radius 𝑟 and ¤𝑟, the specific virial quantity
𝐺𝑠 can be written as,

𝐺𝑠 =
4𝑚1𝑚2

(𝑚1 + 𝑚2)2

{
𝐻0𝑟

2
𝑖

(2 + 𝑛) exp
(
−𝐻0𝑠
2

) (
cos 𝜃𝑠 +

𝛽𝑠

2 (2 + 𝑛)3/2
sin 2𝜃𝑠

)
−
𝐻0𝑟

2
𝑖

2 + 𝑛 exp
(
−2𝐻0𝑠
2 + 𝑛

) (
1 + 𝛽𝑠

(2 + 𝑛)3/2
sin 𝜃𝑠

)2 .
(99)

Similarly, the specific angular momentum of the two-body system
can be obtained as,

H𝑠 =
𝑚1x1 × v1 + 𝑚2x2 × v2

𝑚1 + 𝑚2
=

4𝑚1𝑚2
(𝑚1 + 𝑚2)2

r × v

=
4𝑚1𝑚2

(𝑚1 + 𝑚2)2
𝑟2𝐹−2 (𝑠) ẑ =

4𝑚1𝑚2𝑣𝑖𝑟𝑖
(𝑚1 + 𝑚2)2

exp
(
−1
2
𝐻0𝑠

)
ẑ.

(100)

The angular momentum H𝑠 decays exponentially at a rate of 𝐻0/2
that is independent of the potential exponent n.

3.7 Two-body angular velocity 𝜔𝑡 , angle of incidence 𝜃vr,
and halo kinetic energy

The two-body collapse model (TBCM) and its solutions are pre-
sented. The two critical density ratios are identified. Rich information
contained in TBCMmodel can be used to provide more insights into
the structure formation and energy evolution. This section presents
several additional applications of TBCM.
The first example is about the two-body angular velocity 𝜔𝑠 that

can be found from the kinetic energy solution with

1
2

(
𝑚1𝜇

2 + 𝑚2 (2 − 𝜇)2
)
𝜔2𝑠𝑟

2 = (𝑚1 + 𝑚2) 𝐾𝑠 . (101)

With 𝑟 from Eq. (70), 𝜇 = 2𝑚2/(𝑚1 + 𝑚2) from Eq. (11), and kinetic
energy from Eq. (92), the angular velocity 𝜔𝑠 in transformed system
is obtained from Eq. (101),

𝜔𝑠 ≈
𝑣
𝑖

𝑟𝑖
exp

[
2 − 𝑛
2 (2 + 𝑛)𝐻0𝑠

]
. (102)

For 𝑛 = −1, angular velocity 𝜔𝑡 in original comoving system (with
𝛾𝑠 = 1 and 𝑟𝑚 in Eq. (40) and Eq. (73) for transformation) is,

𝜔𝑡 = 𝜔𝑠
𝑑𝑠

𝑑𝑡
= 𝜔𝑠𝑎

−3/2 =
𝑟
3/2
𝑖

𝛽𝑠
𝐻𝑟

−3/2
𝑚 , (103)

where the two-body angular velocity 𝜔𝑡 ∼ 𝐻𝑟
−3/2
𝑚 is inversely pro-

portional to the mean separation 𝑟𝑚 and is proportional to the Hubble
parameter. This can be confirmed by N-body simulation in separate
papers (see Xu 2021e, Fig. 15) (also see Xu 2022e, Fig. 3).
The second example is about the angle of incidence 𝜃vr, i.e. the

angle between particle velocity and the vector of separation. The
virial quantity 𝐺𝑠 (Eqs. (98) and (99)) represents the relative motion
of two particles in the radial direction, while H𝑠 (Eq. (100)) stands
for the relative motion in the tangential direction. Terms involving
𝜃𝑠 in Eq. (99) can be averaged out when averaging over many two-
body systems with random angle 𝜃𝑠 . The angle 𝜃vr between the
displacement vector r and its velocity vector v can be computed
using Eqs. (99), (100), Eq. (70) for r, and the transformation between
time scales 𝑠 = 𝑡0 ln (𝑡/𝑡𝑖),

cot (𝜃vr) = − 𝑣𝑟

𝑣𝑐𝑖𝑟
=

r · v
|r × v| =

𝐺𝑠

|H𝑠 |

≈ − 𝐻0𝑟𝑖
𝑣𝑖 (2 + 𝑛)

exp
(
𝑛 − 2
2 (𝑛 + 2)𝐻0𝑠

)
= − 𝛽𝑠

(2 + 𝑛)

(
𝑎

𝑎𝑖

) 𝑛−2
2(𝑛+2)

,

(104)

where 𝑣𝑟 is the radial velocity and 𝑣𝑐𝑖𝑟 is the circular velocity. For
𝛽𝑠 = 𝛽𝑠2, i.e. halos with an infinitesimal lifetime, the angle 𝜃vr is
slightly > 𝜋/2 (i.e. cot (𝜃vr) ≈ cos (𝜃vr)) due to the gravitational
interaction. Equation (104) predicts that for two-body system, the
angle 𝜃vr between the pairwise velocity Δu = u1 − u2 and their
separation vector Δr = r1 − r2 satisfies

cot (𝜃vr) = −𝛽𝑠
(
𝑎

𝑎𝑖

)−3/2
= −𝛽𝑠

(
𝑟𝑚

𝑟𝑖

)3/2
, (105)

where 𝑟𝑚 is the mean separation and 𝜃vr → 𝜋/2 with time t or
a. For two-body collapse between large halos with an infinitesimal
lifetime and a single merger, 𝛽𝑠 = 𝛽𝑠2 and cot (𝜃vr) = −1/(3𝜋)
such that the angle between the velocity v of that single merger at
halo surface and its position vector r from halo center should be
𝜃vr ≈ 96.06𝑜, which is consistent with the result for halos with an
isothermal density profile (see Xu 2021b, Eq. (31)). The ratio of
radial velocity of single merger to its circular velocity is always a
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constant 𝑣𝑟 /𝑣𝑐𝑖𝑟 = 𝛽𝑠2 = 1/3𝜋. This angle represents the angle of
incidence when single merger merges with halos. It is relevant to the
interpretation of critical acceleration 𝑎0 for MOND theory (modified
Newtonian dynamics) (see Xu 2022k, Fig. 8 and Eq. (12)).
Finally, halo with an isothermal density profile can be a direct

result of infinitesimal waiting time such that the radial flow vanishes
(see Xu 2021b, Section 3.3). This point can also be demonstrated by
the application of TBCM model to derive the halo energy. The last
example is to derive the kinetic and potential energy for large halos
with an infinitesimal lifetime.
Let’s consider a halo of mass M with a specific peculiar kinetic

energy 𝐾ℎ that is continuously growing via elementary two-body
merging with a single merger of mass dM during an infinitesimal
time dt. Since 𝑑𝑡 ≈ 0, the change of total kinetic energy of two-body
system in transformed system will be (𝑀 + 𝑑𝑀) · 𝐾𝑠 (𝑠 = 0) with
𝐾𝑠 from Eq. (92). The incremental change of the specific peculiar
kinetic energy in comoving system from a single merging event is

𝑑𝐾ℎ =
𝐾𝑠 (𝑠 = 0)

𝑎
=
2𝑀
𝑀2

𝑑𝑀
𝑣2
𝑖

𝑎
=
2𝑀
𝑀2

𝑑𝑀 · 𝛼𝑠
𝐺𝑛𝑀

𝑎𝑟−𝑛
𝑖

, (106)

where the last equality is from the fact that 𝑣2
𝑖
= 𝛼𝑠𝐺𝑛𝑀/𝑟𝑖−𝑛 (Eq.

(24)) and 𝑟𝑖 is the comoving length of the displacement vector. Since
𝑑𝑡 ≈ 0, the merging is instantaneous. The halo mass 𝑀 ∝ 𝑟3

𝑖
and

the halo kinetic energy 𝐾ℎ ∝ 𝐺𝑛𝑀/𝑟𝑖−𝑛 ∝ 𝑀1+𝑛/3 for halos of
different mass at the same redshift (virial theorem). From Eq. (106)
𝑑 ln𝐾ℎ
𝑑 ln𝑀

=
2𝛼𝑠𝐺𝑛𝑀
𝐾ℎ𝑎𝑟

−𝑛
𝑖

= 1 + 𝑛
3
. (107)

The final expressions for halo kinetic and potential energy are: (using
the virial theorem 2𝐾ℎ − 𝑛𝑒𝑃ℎ = 0, where 𝑛𝑒 ≈ −1.3 is an effective
exponent due to halo surface energy and 𝑛𝑒 ≈ −1.5 for halos with an
isothermal density (see Xu 2021b, Eq. (96))

𝐾ℎ =
6𝛼𝑠
3 + 𝑛

𝐺𝑛𝑀

𝑎𝑟−𝑛
𝑖

and 𝑃ℎ =
12

(3 + 𝑛)
𝛼𝑠

𝑛𝑒

𝐺𝑛𝑀

𝑎𝑟−𝑛
𝑖

. (108)

The one-dimensional velocity dispersion

𝜎2𝑣 =
2
3
𝐾ℎ =

4𝛼𝑠
3 + 𝑛

𝐺𝑛𝑀

𝑎𝑟−𝑛
𝑖

, (109)

with 𝛼𝑠 = −𝑛/22−𝑛 defined in Eq. (24). Specifically, for 𝑛 = −1,

𝐾ℎ =
3
8
𝐺𝑀

𝑎𝑟
𝑖

=
3
8
𝐺𝑀

𝑟
𝑦𝑖

=
3
4
𝐺𝑀

𝑟ℎ
, 𝑃ℎ =

3
4
𝐺𝑀

𝑛𝑒𝑎𝑟𝑖
=
3
2𝑛𝑒

𝐺𝑀

𝑟ℎ
, (110)

and halo virial dispersion

𝜎2𝑣 =
2
3
𝐾ℎ = 2

𝑣2
𝑖

𝑎
= 2𝑢2𝑖 =

1
4
𝐺𝑀

𝑎𝑟
𝑖

=
𝐺𝑀

2𝑟ℎ
, (111)

where 𝑟
𝑦𝑖

= 𝑎𝑟𝑖 = 𝑟ℎ/2 is the length of displacement vector in
physical coordinate and 𝑟ℎ is halo size. For large halos merging with
a single merger such that 𝑚2 � 𝑚1, 𝜇 = 2, and 𝑟

𝑦𝑖
= 𝑟ℎ/2 (from

Eqs. (11) and (15)). Here 𝑣2
𝑖
= 𝐺𝑀/8𝑟𝑖 (Eq. (24)). Surprisingly, the

halo kinetic and potential energies can be derived simply based on the
elementary two-body collapse for large halos with an infinitesimal
lifetime, where halo density profile information is not even required.
On the other hand, the halo potential energy can be obtained for

halos with a power-law density profile of 𝜌ℎ (𝑟) ∼ 𝑟−𝑚,

𝑃ℎ = −

∫ 𝑟ℎ
0

𝐺
𝑦

[∫ 𝑦
0 𝜌ℎ (𝑥) 4𝜋𝑥2𝑑𝑥

]
𝜌ℎ (𝑦) 4𝜋𝑦2𝑑𝑦∫ 𝑟ℎ

0 𝜌ℎ (𝑥) 4𝜋𝑥2𝑑𝑥
= − 3 − 𝑚
5 − 2𝑚

𝐺𝑀

𝑟ℎ
.

(112)

The potential energy from an isothermal profile withm=2 (Eq. (112))
is exactly consistent with that from the TBCMmodel in Eq. (110) (the
effective potential exponent 𝑛𝑒 = −1.5 for isothermal density (see
Xu 2021b, Eq. (96)). This fact indicates that the isothermal density
profile of large halos is a direct result of extremely fast mass accretion
or infinitesimal lifetime. In reality, halos have a finite lifetime, and
the density profile cannot be exactly isothermal.

4 CONNECTIONS WITH EXISTING THEORIES

Solutions developed for TBCM model in Section 3 provide signifi-
cant insights into existing theories. In this Section, TBCM model is
applied to demonstrate the stable clustering hypothesis (SCH). The
generalized stable clustering hypothesis (GSCH) is proposed with
an interesting scaling for high order moments of pairwise velocity.
Finally, connections with violent relaxation and standard spherical
collapse model (SCM) are also discussed.

4.1 Stable clustering hypothesis (SCH) from TBCM and
generalized SCH for pairwise velocity

The stable clustering hypothesis is a fundamental assumption and
one of the few key analytical tools for deeply nonlinear regime of
gravitational collapse (Peebles 1980). The dynamic evolution of the
density correlation function can be predicted based on this hypoth-
esis and pair conservation equation. The hypothesis states that on
sufficiently small scales, there is no stream motion between particles
in the physical coordinate. In this case, the peculiar motion cancels
out the Hubble flow. The hypothesis equivalently states that the mean
pairwise peculiar velocityΔ𝑢𝐿(first order moment) is proportional to
the proper separation r between pair of particles, i.e 〈Δ𝑢𝐿〉 = −𝐻𝑟 .
The structure is bound and frozen and the mean particle separation r
(in physical coordinate) is a constant on sufficiently small scales. In
this section, the TBCM model is applied to demonstrate the stable
clustering hypothesis and extend it to high order moments of Δ𝑢𝐿 .
The temporal evolution with time scale s can be equivalently trans-

formed to the evolution with physical time t, where 𝑠 = 𝑡0 ln (𝑡/𝑡𝑖)
with 𝑡𝑖 and 𝑡0 being the initial and current physical time (Eq. (53)).
The evolution of comoving size 𝑟𝑚 ∝ exp (−𝐻0𝑠) ∝ 𝑎−1 for 𝑛 = −1
in the equilibrium range can be obtained from Eq. (40), which means
a stable clustering frozen in physical coordinate with a fixed proper
separation. The stable clustering is only possible for 𝑛 = −1 in ex-
panding background (Eq. (40)). The peculiar pairwise velocity for
particle pair with equal mass is defined as (see Xu 2022f, Fig. 1)

Δ𝑢𝐿 (2𝑟) = (u1 − u2) ·
(x1 − x2)
|x1 − x2 |

, (113)

which can be directly related to the virial quantity (radial momentum)
𝐺𝑠 (𝑠) derived in Eq. (99). After converting velocity to peculiar
velocity with Eq. (6), the pairwise velocity is (from Eq. (72)),

𝑎1/2Δ𝑢𝐿 = Δ𝑣𝐿 = 2
r · v1
𝑟

= 2
𝐺𝑠 (𝑠)
𝑟

= 2 ¤𝑟

=
2𝐻0𝑟𝑖
2 + 𝑛 exp

(
−𝑛𝐻0𝑠
2 (2 + 𝑛)

)
cos 𝜃𝑠 −

2𝐻0𝑟
2 + 𝑛 ,

(114)

Therefore, for 𝑛 = −1 (using Eq. (74)),

Δ𝑢𝐿 = −2𝐻𝑎𝑟
2 + 𝑛 +

2𝐻0𝑟𝑖
2 + 𝑛 cos 𝜃𝑠𝑎

𝑛
2(2+𝑛)
𝑖

𝑎−
𝑛+1
𝑛+2

= −2𝐻𝑎𝑟 + 2𝐻0𝑟𝑖𝑎
− 12
𝑖
cos 𝜃𝑠 = −2𝐻𝑎𝑟 + 2𝛽𝑠𝑢𝑖 cos 𝜃𝑠 .

(115)

Pairs of particles at time a with a separation r can be formed
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at different initial time 𝑎𝑖 with random initial separations 𝑟𝑖 and
peculiar velocity 𝑢𝑖 . Angles 𝜃𝑠 at a given time a can be treated
as a random variable (Eq. (67)). Like our treatment of kinetic and
potential energies in Eq. (97), the mean peculiar pairwise velocity
for many pairs of particles (ensemble average) is

〈Δ𝑢𝐿〉 = −2𝐻𝑎𝑟 + 2 〈𝛽𝑠𝑢𝑖 cos 𝜃𝑠〉 . (116)

We may safely assume that 𝛽𝑠 , 𝑢𝑖 , and angle 𝜃𝑠 are independent
random variables for a sufficiently large number of pairs. The second
term on the RHS of Eq. (116) should vanish as 〈cos 𝜃𝑠〉 = 0. The
first order moment of pairwise velocity is therefore proportional to
the separation 2r for 𝑟 → 0 such that

〈Δ𝑢𝐿〉 = −2𝐻𝑎𝑟 = −2𝑎−1/2𝐻0𝑟. (117)

Equation (117) is often presented as a direct result of stable clustering
hypothesis. There have beenmany attempts to verify this relationwith
N-body simulations (Efstathiou et al. 1988; Colombi et al. 1996),
while here we are able to directly demonstrate this result using the
two-body collapse (TBCM) model.
Similar argument can be extended to higher order moments of

pairwise velocity. For second order moment, namely the pairwise
velocity dispersion, we have (from Eq. (115))〈
Δ𝑢2𝐿

〉
(𝑟 → 0) = 4

〈
𝛽2𝑠𝑢

2
𝑖 cos

2 𝜃𝑠
〉
> 0 (118)

that is dependent on the exact distributions of 𝛽𝑠 , 𝑢𝑖 , and 𝜃𝑠 . The
non-zero pairwise velocity dispersion is an important signature of
the collisionless flow, while

〈
Δ𝑢2
𝐿

〉
(𝑟 → 0) = 0 for collisional hy-

drodynamics where pairs of particles are fully correlated with 𝑟 → 0
(see Xu 2022i, Table 3). For a uniform distribution of 𝜃𝑠 between [0,
2π],

〈
cos2 𝜃𝑠

〉
= 1/2. For particle pairs that will form an equilibrium

range (stable clustering), a necessary condition is,

𝛽𝑠 =
𝐻0𝑟𝑖
𝑣𝑖

6 𝛽𝑠1 = 1 (119)

〈
Δ𝑢2𝐿

〉
(𝑟 → 0) = 2𝐻20

〈
𝑟2𝑖 𝑎

−1
𝑖

〉
= 2

〈
𝛽2𝑠𝑢

2
𝑖

〉
. (120)

The higher order moments of pairwise velocity with 𝑟 → 0 can be
similarly derived from Eq. (115), where the even and odd moments
can be obtained up to the first order of r,〈
Δ𝑢2𝑚𝐿

〉
(𝑟 → 0) = (2𝐻0)2𝑚

〈
𝑟2𝑚𝑖

〉 〈
𝑎−𝑚𝑖

〉 〈
cos2𝑚 𝜃𝑠

〉
, (121)

〈
Δ𝑢2𝑚+1
𝐿

〉
(𝑟 → 0) = −2𝐻𝑎𝑟 (2𝐻0)2𝑚

〈
𝑟2𝑚𝑖

〉 〈
𝑎−𝑚𝑖

〉 〈
cos2𝑚 𝜃𝑠

〉
.

(122)

A simplified relation is found between the odd and even pairwise
velocity moments with 𝑟 → 0,〈
Δ𝑢2𝑚+1
𝐿

〉
= (2𝑚 + 1)

〈
Δ𝑢2𝑚𝐿

〉 〈
Δ𝑢𝐿

〉
= (2𝑚 + 1)

〈
Δ𝑢2𝑚𝐿

〉
(−2𝐻𝑎𝑟) ,
(123)

which reduces to the standard stable clustering hypothesis (Eq. (117))
for 𝑚 = 0. Equation (123) can be considered as a generalized sta-
ble clustering hypothesis for pairwise velocity that can be directly
confirmed by N-body simulations.
In N-body simulation, all particle pairs with a given separation

𝑟 were identified. The moments of pairwise velocity is computed
as the average for all pairs of particles with the same 𝑟 ((also see
Xu 2022i, Fig. 24)). Figure 7 presents the plot of Eq. (123) from
N-body simulation, i.e. the ratio between odd and even moments

10
-1

10
0

10
1

10
2

r (Mpc/h)

10
0

10
1

10
2

10
3

< u
L
3>/[< u

L
2>< u

L
>]

< u
L
5>/[< u

L
4>< u

L
>]

< u
L
7>/[< u

L
6>< u

L
>]

< u
L
9>/[< u

L
8>< u

L
>]

Figure 7. The ratio between (2m+1)th odd and (2m)th even order moments
of pairwise velocity fromN-body simulation. This ratio is predicted by gener-
alized stable clustering hypothesis (GSCH in Eq. (123)) to be (2m+1). Com-
parison between prediction of GSCH and N-body simulation is presented in
Fig. 8 for high order moments of pairwise velocity.
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Figure 8. The comparison of predicted ratio from generalized stable cluster-
ing hypothesis in Eq. (123) and those from N-body simulation (Fig. 7) for
(2m+1)th moments of pairwise velocity. The deviation might require further
study using N-body simulations with higher resolution to sample the statistics
of particle pairs on small scale.

of pairwise velocity 〈Δ𝑢2𝑚+1
𝐿

〉/(〈Δ𝑢2𝑚
𝐿

〉〈Δ𝑢𝐿〉). Figure 8 presents
the comparison of that ratio with predicted value of 2m+1. The
deviation from prediction for higher order moments might come
from the spatial intermittence of energy cascade and require N-body
simulations with higher resolution to reduce the large fluctuation at
small 𝑟 in Fig. 7. The spatial intermittence of energy cascade in dark
matter flow leads to different rate of energy cascade for different
halos and affects the small scale dynamics (see Xu 2022l, Fig. 9).
The 2mth order generalized kurtosis of the PDF (Probability Dis-
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tribution Function) of pairwise velocity Δ𝑢𝐿 is defined as,

𝐾2𝑚 =

〈
Δ𝑢2𝑚𝐿

〉
/
〈
Δ𝑢2𝐿

〉𝑚
. (124)

Let’s assume the second ordermoment has a general formof
〈
Δ𝑢2
𝐿

〉
=

𝛼𝑢𝑢
2
0𝑎
𝛽𝑢 when 𝑟 → 0, where 𝑢20 is the one-dimensional velocity

dispersion of the entire N-body system at present epoch. The high
order moments and generalized kurtosis of the pairwise velocity for
𝑟 → 0 can be obtained as (from Eq. (123)),〈
Δ𝑢2𝑚𝐿

〉
= 𝐾2𝑚𝛼

𝑚
𝑢 𝑢
2𝑚
0 𝑎𝛽𝑢𝑚, (125)

〈
Δ𝑢2𝑚+1
𝐿

〉
= −2 (2𝑚 + 1) 𝐾2𝑚𝛼𝑚𝑢 𝑢2𝑚+1

0 𝑎𝛽𝑢𝑚− 12 𝐻0𝑟
𝑢0

< 0, (126)

𝐾2𝑚+1 (𝑟) = −2 (2𝑚 + 1) 𝐾2𝑚𝛼
− 12
𝑢 𝑎−

(1+𝛽𝑢 )
2

𝐻0𝑟

𝑢0
< 0, (127)

where 𝛼𝑢 , 𝛽𝑢 , and 𝐾2𝑚 fully determine all these moments. Simula-
tions suggest 𝛼𝑢 = 2 and 𝛽𝑢 = 3/2.
The limiting velocity of dark matter particles follows a 𝑋 distribu-

tion with a Gaussian core and exponential wing to maximize system
entropy (see Xu 2021c, Fig. 4), while the probability distribution of
pairwise velocity Δ𝑢𝐿 with 𝑟 → 0 can be different with kurtosis
𝐾2𝑚 analytically derived (see Xu 2022i, Section 5.2). The general-
ized stable clustering hypothesis (GSCH) from TBCM model shows
that on small scale with 𝑟 → 0, the odd moments of Δ𝑢𝐿 are always
proportional to r while the even order moments are independent of
the separation r. Especially, the second moment of pairwise velocity
(pairwise velocity dispersion) follows a two-thirds law 〈Δ𝑢2

𝐿
〉 ∝ 𝑟2/3

on small scale (Xu 2022i) that might be used to derive dark matter
particle mass and properties (Xu 2022j).

4.2 Connections with violent relaxation

The violent relaxation is originally proposed for the collisionless
system with a time-dependent potential to explain the absence of
tendency to segregate different masses during the relaxation (Lyn-
denbell 1967). The TBCM model can be considered as a special
example of violent relaxation involving only two masses. The evo-
lution of mean separation 𝑟𝑚 (𝑠) (Eq. (40)) do not involve particle
mass. Particle mass only affects the frequency term 𝜔𝑚 (𝑠) through
initial velocity 𝑣𝑖 (Eq. (41)). The characteristic time of relaxation (in
scale of s) is only dependent on 𝐻0, regardless of particle mass (see
energy evolution in Eqs. (92) to (97)). Two particles with unequal
masses collapse at the same rate with the same characteristic time of
relaxation such that this type of relaxation does not lead to mass seg-
regation. We may examine the energy transfer between two particles
during a two-body collapse. The initial ratio of kinetic and potential
energy between two particles are (from Eqs. (20) and (21))

𝐾𝑠𝑖1
𝐾𝑠𝑖2

=
𝑚1𝑣

2
1𝑖

𝑚2𝑣
2
2𝑖

=
𝑚1𝜇

2

𝑚2 (2 − 𝜇)2
=
𝑚2
𝑚1

,
𝑃𝑠𝑖1
𝑃𝑠𝑖2

= 1. (128)

The kinetic energy of two particles evolves during the two-body
collapse is (from Eq. (90)),

𝐾𝑠1 =
1
2
𝑚1

(
𝑣2
𝑥1 + 𝑣

2
𝑦1

)
=
1
2
𝑚1𝜇

2
[
¤𝑟2 + 𝑟2𝐹 (𝑠)−4

]
, (129)

and

𝐾𝑠2 =
1
2
𝑚2

(
𝑣2
𝑥2 + 𝑣

2
𝑦2

)
=
1
2
𝑚2 (2 − 𝜇)2

[
¤𝑟2 + 𝑟2𝐹 (𝑠)−4

]
. (130)

Obviously, the ratio of kinetic energy between two particles is
time-invariant and equals the initial ratio in Eq. (128). The potential
energy of two particles also evolves with a constant ratio of 1. There
is no energy transfer between two particles with unequalmass. There-
fore, the energy equipartition does not apply here for particles with
different masses. For comparison, during a collisional relaxation, the
relaxation time of massive particles is less than that of light particles
(inversely proportional to particle mass for a two-body relaxation
process (Leigh et al. 2013). The energy equipartition enables trans-
ferring of kinetic energy between different particles such thatmassive
and light particles share the same kinetic energy. Therefore massive
particles have small velocity and tend to fall to the center of structure
(Spitzer 1969).

4.3 Connections with spherical collapse model (SCM)

The spherical collapse model (SCM) solves the motion of spherical
shells of matter surrounding an over-density, where many important
insights can be obtained for highly-nonlinear gravitationally col-
lapsing objects (Gunn & Gott 1972). This section will reveal some
fundamental connections between TBCM and SCM. The equation
of motion for a SCM model in physical coordinates reads

𝑑2𝑅

𝑑𝑡2
= −𝐺𝑀

𝑅2
, (131)

whereR is the radius of the spherical shell and𝑀 is themass enclosed
by that shell. The initial velocity of mass shell is assumed to be
Hubble flow,

𝑑𝑅

𝑑𝑡

����
𝑡=0

= 𝐻𝑖𝑅𝑖 = 𝐻0𝑥𝑖𝑎
−1/2
𝑖

(132)

where 𝑥𝑖 = 𝑥 (𝑡 = 0) is the initial radius in a comoving system.
Solution to Eq. (131) can be written in a parametric form,

𝑅 = 𝐴 (1 − cos 𝜃) and 𝑡 = 𝐵 (𝜃 − sin 𝜃) , (133)

where two constants A and B are related to the initial radius 𝑥𝑖 in
comoving coordinates,

𝑥𝑖 = 𝑥 (𝑡 = 0) = 𝐴 (12𝜋)2/3 /2 and 𝐴3 = 𝐺𝑀𝐵2. (134)

For a direct comparison, the SCMmodel (Eq. (131)) can be equiva-
lently expressed in the transformed systemwith comoving coordinate
x and transformed time scale s,

𝜕2𝑥

𝜕𝑠2
+ 𝐻0
2
𝜕𝑥

𝜕𝑠
+ 𝐺𝑀
𝑥2

=
𝐻20
2
𝑥. (135)

By setting 𝑥 = 2𝑟 (SCM models a spherical over-density with
uniform mass distribution), the SCM Eq. (135) can be rewritten as

𝜕2𝑟

𝜕𝑠2
+ 𝐻0
2
𝜕𝑟

𝜕𝑠
+ 𝐺𝑀

2 (2𝑟)2
=
𝐻20
2
𝑟︸︷︷︸
1

. (136)

The TBCM model presented in Section 3.1 (Eq. (30)) describes
a two-body system in an expanding background with uniform back-
ground density. The equation reads

𝜕2𝑟

𝜕𝑠2
+ 𝐻0
2
𝜕𝑟

𝜕𝑠
+ 𝐺𝑀

2 (2𝑟)2
=

(𝑟𝑖𝑣𝑖)2

𝑟3
exp (−𝐻0𝑠)︸                   ︷︷                   ︸
2

, (137)

where 𝑀 = 𝑚1 +𝑚2 is the total mass of two-body system. The SCM
model essentially describes a self-gravitating system in an otherwise
empty universe (Eq. (131)). The energy is conserved for SCMmodel
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in physical coordinates. By comparing the SCM Eq. (136) with the
TBCM Eq. (137), the original SCM model has an extra force term
on the RHS (term 1 in Eq. (136)) that is due to the absence of a
uniform background density. The TBCM model has a time-varying
frequency force due to the angular momentum (term 2 in Eq. (137)).
The original SCM can be considered to describe exactly a two-

body collapse in an otherwise empty universe, with one-dimensional
radial motion only and zero angular momentum. The initial con-
ditions for original SCM model (Eq. (136)) is an initial separation
𝑟𝑖 = 𝑥𝑖/2 (Eq. (134)) and a zero initial velocity in a transformed sys-
tem. The modified non-radial SCM model introduces an additional
constant centrifugal force to indirectly account for the effect of non-
radial motion White & Zaritsky (1992); Nusser (2001), while it still
models a self-gravitating system in an otherwise empty universe.
Equivalently, the proposed TBCM model in expanding back-

ground can be considered as a spherical non-radial collapse model
describing the gravitational collapse of a mass shell with a non-zero
angular momentum and non-radial orbits (non-radial spherical col-
lapse model). Both models predict a critical halo density ratio of
Δ𝑐 = 18𝜋2 to the background density. However, the original SCM
model cannot predict the existence of an equilibrium range (stable
clustering for 𝑛 = −1). In SCM model, the system is out of virial
equilibrium initially and reaching the virial equilibrium at the criti-
cal density, where effect of halo mass accretion cannot be explicitly
considered.
For comparison, the TBCMmodel allows the existence of an equi-

librium range for 𝛽𝑠 6 𝛽𝑠1, where the initial density is at least twice
the background density (Eqs. (78) and (87)). The TBCM model can
be considered as the elementary step for mass accretion/cascade. Ha-
los with an infinitesimal lifetime (due to the fast mass accretion) ap-
proach a critical density with a ratio ofΔ𝑐 = 18𝜋2 to the background,
where 𝛽𝑠 converges to the critical value 𝛽𝑠2 = 1/3𝜋 (Eqs. (82) and
(87)). The stable clustering hypothesis (SCH) can be demonstrated by
the TBCMmodel and generalized to high order moments of pairwise
velocity. Richer information on halo energy/momentum/structure can
be obtained from a TBCM model.

5 CONCLUSIONS

A transformed system for equation of motion is proposed by intro-
ducing a different time scale s for the motion of collisionless particles
in expanding background (Eq. (5)). The equivalence with the orig-
inal comoving systems is established. A two-body collapse model
(TBCM) for gravity with an arbitrary exponent n is formulated in
the transformed system (Eq. (11)). Results obtained can be readily
translated back to the original system. A complete analysis of TBCM
model is provided with governing equations for radius function (Eq.
(30)) or frequency function (Eq. (34)). The original five model pa-
rameters, i.e. the potential exponent n, Hubble constant 𝐻0, initial
size 𝑟𝑖 and velocity 𝑣𝑖 , and system mass 𝑀 = 𝑚1 + 𝑚2, can be
grouped into three dimensionless parameters n, 𝛽𝑠 = 𝐻0𝑟𝑖/𝑣𝑖 , and
𝛾𝑠 = (𝑣𝑟𝑖/𝑣𝑖)2 (Eqs. (60), (61)). Here 𝑣𝑟𝑖 is the circling velocity
for a given 𝑟𝑖 and 𝑀 , and n in static background without damping.
The competition between gravitational force, expanding background
(damping), and angular momentum classifies the two-body collapse
into two regimes (Fig. 5): 1) a free fall collapse without oscillatory
motion for weak angular momentum; and 2) an equilibrium collapse
with oscillations for weak damping, when 𝛽𝑠 � 1, −2 < 𝑛 < 0 and
𝛾𝑠 ∼ 1. Two regimes are studied as follows.
For free fall collapse, the free fall time 𝑡𝑐 in an expanding back-

ground can be analytically derived as a function of the free fall time

𝑠𝑐𝑒 in static background and the beginning time 𝑡𝑖 of free fall (Fig.
6 and Eq. (57)). The two-body collapse can have a greater free fall
time 𝑡𝑐 if two-body system begins to collapse at an earlier time 𝑡𝑖
due to larger Hubble parameter (or damping) 𝐻.
For an equilibrium collapse, solutions identify three distinct

regimes (transitional, equilibrium, and final collapse in Fig. 5). An
exponential evolution of two-body system size, energy and momen-
tum can be obtained in transformed system (Fig. 4, Eqs. (76), (92),
(93), (94), (99) and (100)), or equivalently a power-law evolution in
the original comoving system. A critical value of 𝛽𝑠 6 𝛽𝑠1 (Eq. (78))
is required for the existence of an equilibrium range. Equivalently, a
maximum system size or a minimum initial velocity can be identified
(Eq. (79)).
The second critical value of 𝛽𝑠 = 𝛽𝑠2 (Eq. (82)) can be identified

for large halos with an infinitesimal lifetime (due to fast mass accre-
tion). Large halos tend to be synchronized and generated at the same
time with small dispersion in their properties. Conversely, small ha-
los tend to have longer lifetime with more diversified properties at
a given redshift. The two-body angular velocity (Eq. (103)), typical
orbital period (Eq. (85)), the angle of incidence (ratio between ra-
dial and circular velocity) (Eq. (104)), and the critical density ratio of
18𝜋2 (Eq. (89)) can all be derived from the TBCMmodel. Isothermal
density profile is also a direct result of an infinitesimal lifetime.
Finally, the TBCM model demonstrates the stable clustering hy-

pothesis (SCH) for an equilibrium collapse, where mean pairwise
velocity is proportional to separation (Eqs. (114) and (117)). A gen-
eralized stable clustering hypothesis (GSCH) is also developed for
higher odd and even order moments that are related bymean pairwise
velocity (Eqs. (121), (122), (123) and Figs. 7 and 8). The two-body
collapse in expanding background is independent of particle masses,
where the energy equipartition does not apply. Compared to the
original spherical collapse model (SCM), the TBCM model can be
naturally considered as a spherical non-radial collapse model with
non-zero angular momentum (Eqs. (136) and (137)). Both models
predict the same critical halo density ratio of 18𝜋2, while the origi-
nal SCMmodel cannot predict a stable clustering. The TBCMmodel
also suggests a power-law energy evolution on large scale that will
be further investigated (Xu 2022h).

DATA AVAILABILITY

Two datasets underlying this article, i.e. a halo-based and correlation-
based statistics of dark matter flow, are available on Zenodo (Xu
2022a,b), along with the accompanying presentation slides "A com-
parative study of darkmatter flow&hydrodynamic turbulence and its
applications" (Xu 2022c). All data files are also available on GitHub
(Xu 2022d).
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