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We reveal a wealth of nonlinear and recoil effects in the interaction between individual low-energy
electrons and samples comprising a discrete number of states. Adopting a quantum theoretical
description of combined free-electron and two-level systems, we find a maximum achievable excita-
tion probability of 100%, which requires specific conditions relating to the coupling strength and
the transition symmetry, as we illustrate through calculations for dipolar and quadrupolar modes.
Strong recoil effects are observed when the kinetic energy of the probe lies close to the transition
threshold, although the associated probability remains independent of the electron wave function
even when fully accounting for nonlinear interactions with arbitrarily complex multilevel samples.
Our work reveals the potential of free electrons to control localized excitations and delineates the
boundaries of such control.

I. INTRODUCTION

Free electron beams (e-beams) allow us to image ma-
terial nanostructures and their excitations with an un-
surpassed combination of space-energy resolution in the
subångstrom-meV domain thanks to a sustained series
of advances in electron microscope instrumentation over
the last decades [1–9]. In particular, electron energy-
loss spectroscopy (EELS) is widely used to identify local-
ized excitations and map their spatial distributions with
atomic precision [3, 6, 9–16], as exemplified by recent
studies of photon confinement in optical cavities [17–19],
atomic vibrations in thin layers [6, 9, 15] and molecules
[7, 20, 21], and collective excitations such as phonon po-
laritons [3, 4, 22, 23] and plasmons [8, 24–27].

At e-beam energies > 30 keV, typically employed in
transmission electron microscopes to perform EELS anal-
yses, the per-electron excitation probability of each indi-
vidual mode in the specimen lies several orders of mag-
nitude below unity. While such weak interaction is ben-
eficial to grant us clean access into the nanoscale optical
response over a wide spectral range (10−3 − 103 eV), a
low excitation probability also implies that we operate
in the linear regime, which is useless to track the ul-
trafast dynamics associated with a nonlinear behavior.
This situation can be mitigated by resorting to less en-
ergetic probes like those available in low-energy electron
microscopes [28, 29]. Indeed, individual . 100 eV elec-
trons are predicted to generate multiple excitations of a
single optical mode by appropriately adjusting the beam
energy [30], while the onset of anharmonic response in
this regime is expected to produce mode saturation and
spectral shifts [31]. In a different approach, femtosecond
resolution is achieved in ultrafast electron microscopy by
synchronizing laser and electron pulses in their arrival at
the sampled structure [17, 18, 32–36], a method that po-
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tentially enables the determination of nonlinear response
functions with nanoscale resolution [37].
Many of the aforementioned studies focus on bosonic

excitations (e.g., phonons [3, 4, 22, 23] and plasmons
[8, 24–27]), which exhibit the characteristic linear re-
sponse of harmonic oscillators, unless strong external
fields are introduced to drive them beyond the parabolic
potential region. In the opposite extreme, two- and few-
level (fermionic) systems display a paradigmatic nonlin-
ear behavior, whereby a given excitation can block sub-
sequent ones. As an example, the discreteness of en-
ergy levels in nanographenes permeates their optical re-
sponse and enables nonlinear interactions at the single-
free-electron level [31]. Nevertheless, fermionic excita-
tions in systems such as atoms, molecules, and defect
states in solids possess a weak transition strength that
is essentially limited by the f -sum rule [38] and, there-
fore, demands the use of low-energy electrons to yield
measurable inelastic scattering signals.
Nonlinear effects open fundamental questions, such as

whether an individual electron can produce a given ex-
citation with 100% probability, as well as the role of the
electron wave function in determining that probability.
In addition, we expect qualitatively different behavior
between excitations of bosonic and fermionic character
in the nonlinear regime. Because the probe energies re-
quired to reach a sizeable interaction strength are likely
comparable to the transition energies, recoil effects are
also anticipated to play an important role. These are
relevant problems of the yet poorly explored terrain of
nonlinear and recoil phenomena taking place during the
interaction of free electrons with localized excitations.
In this Letter, we show that a free electron can ex-

cite a two-level system with 100% probability, provided
the transition symmetry and interaction strength meet
specific conditions. Based on a quantum description of
free electrons and localized excitations that rigorously
incorporates nonlinear and recoil effects, we show that
the excitation probability is independent of the electron
wave function profile. Our calculations for bosonic and
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FIG. 1: Nonlinear effects in the excitation of two-level sys-
tems by a single free electron. We represent the probability
P1 as a function of the first-order (linear) probability P lin

1
for a lossless point-like two-level system with and without in-
clusion of backscattering. The P1 = P lin

1 probability for a
bosonic excitation is also shown for comparison. Many mul-
tiple uncorrelated electrons produce a probability of 1/2.

fermionic systems also demonstrate that recoil effects are
irrelevant unless the electron energy is only a few times
larger than the transition energy. Besides their funda-
mental interest, our results suggest a way to control lo-
calized excitations by means of free electrons, while es-
tablishing universal rules for the maximum achievable
probability depending on the symmetry of the excitation
and the electron-sample coupling strength.

II. NONPERTURBATIVE EXCITATION
PROBABILITY INCLUDING RECOIL

We consider a collimated e-beam focused down to a
small lateral size at the region of interaction with the
sampled structure, such that we can ignore its dynamics
in a plane perpendicular to the beam direction z. We
further assume a nonlossy specimen comprising a discrete
set of states |j〉 of energies ~ωj and initially placed in the
the ground state |0〉. The Hamiltonian of the combined
electron-sample system can be written

Ĥ =~
∫
dq εq |q〉〈q|+ ~

∑
j

ωj |j〉〈j|

+ ~
∫
dq

∫
dq′
∑
jj′

Gqj,q′j′ |qj〉〈q′j′|,

where the electron is represented by orthonormal mo-
mentum states |q〉 of energies ~εq, whereas Gqj,q′j′ are
electron-sample coupling coefficients. Expanding the
wave function of the combined system as

|Ψ(t)〉 =
∫
dq
∑
j

e−i(εq+ωj)tαqj(t) |qj〉,

inserting it into the Schrödinder equation Ĥ|Ψ(t)〉 =
i~|Ψ̇(t)〉, and adopting the initial conditions αqj(−∞) =
α0
q δj0 [i.e., with the specimen in the ground state j =

0 and an incident electron wave function ψ0(z, t) ∝∫
dq α0

q ei(qz−εqt)], we find the post-interaction solution
(see Appendix)

αqj(∞) = α0
q δj0 − 2πi

Mqq̃j ,j

vq̃j

α0
q̃j
, (1)

where the coefficients Mqq′,j are independent of the inci-
dent electron state and satisfy to the self-consistent Lipp-
mann–Schwinger [39] relation

Mqq′,j = Gqj,q′0 −
∫
dq′′

∑
j′

Gqj,q′′j′Mq′′q′,j′

εq′′q′ + ωj′0 − i0+ (2)

with εqq′ = εq−εq′ and ωjj′ = ωj−ωj′ . Here, vq = dεq/dq
is the group velocity of the q electron component, while
q̃j is implicitly defined by εq̃j

= εq+ωj0 with q̃j > 0 (i.e.,
α0
q̃j

only contains forward propagating components).
We are interested in the probability Pj for a sampled

system initially prepared in its ground state |0〉 to be
left in state |j〉 after the interaction has taken place. We
thus write Pj =

∫
dq
∣∣αqj(∞)

∣∣2, which upon insertion of
Eq. (1), leads to a decomposition of the probability in
incident-momentum components according to (see Ap-
pendix)

Pj =
∫ ∞
qj
min

dq
∣∣α0
q

∣∣2 Pq,j , (3)

where

Pq,j = 4π2

vqj
vq

(∣∣Mqj ,q,j

∣∣2 +
∣∣M−qj ,q,j

∣∣2) (4)

for excited states j 6= 0. Here, the final electron wave
vector qj > 0 is defined through εqj

= εq − ωj0, and
a minimun incident wave vector qjmin is imposed by the
threshold excitation condition εqj

min
= ωj0. The first and

second terms in Eq. (4) correspond to the contributions
of forward and backward electron scattering (i.e., final
wave vectors qj and −qj , respectively). This result re-
veals a trivial role of the incident electron wave function:
each initial wave vector component contributes to the ex-
citation probability in proportion to

∣∣α0
q

∣∣2 [see Eq. (A4)],
with no dependence on the phase of α0

q [i.e., on the pro-
file of the incident wave function ψ0(z, t)]. We remark
that this conclusion is derived from a nonperturbative
formalism that rigorously accounts for nonlinear and re-
coil effects.
Because the energy spread of the incident beam plays

a trivial role, we limit our discussion to monochromatic
electrons of energy ~εq0 with

∣∣α0
q

∣∣2 = δ(q − q0), so that
the excitation probability reduces to Pj = Pq0,j , sub-
ject to the condition q0 > qjmin. In addition, we focus on
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two-level systems, although the present formalism can be
readily applied to multilevel configurations. We thus con-
centrate on the excitation probability P1 and also con-
sider the linear probability P lin

1 for reference, obtained
from Eqs. (2) and (4) by neglecting the integral term in
the former (see Appendix).

III. POINT-LIKE INTERACTION LIMIT

As a first tutorial step, we obtain a closed-form solution
when the interaction is localized to just one point, so
that the coupling coefficients Gqj,q′j′ are independent of
q and q′. Then, the excitation probability reduces to (see
Appendix)

P1 = P lin
1(

1 + P lin
1 /2

)2 ,
which presents a single maximum P1 = 1/2 as a function
of the linear probability at P lin

1 = 2, as shown in Fig. 1.
Only for this case, we include backscattering in the linear
probability. This result already reveals that maximum
excitation is only achieved for a very specific value of the
coupling coefficient or, alternatively, P lin

1 . Interestingly,
the presence of two inelastic channels (forward and back-
ward scattering) limits the maximum probability to 50%.
Indeed, if we disregard backscattering, which should be
reasonable for energetic electrons, a similar analysis leads
to (see Appendix)

P1 = P lin
1(

1 + P lin
1 /4

)2 ,
whose maximum value is now P1 = 1, obtained at
P lin

1 = 4. For comparison, we show the P1 = P lin
1 line

corresponding to a bosonic mode, and obviously, all of
these results are in mutual agreement in the P lin

1 � 1
limit. Incidentally, the average population of the excited
state in a two-level system interacting with many multi-
ple uncorrelated electrons is 1/2 [16].

IV. NONLINEAR E-BEAM EXCITATION
WITHOUT RECOIL

As we show below, recoil effects can be neglected if
the electron energy exceeds several times the transition
energy. We can then linearize the electron energy differ-
ence as εqq′ ≈ (q − q′)v, where v is the electron velocity.
Considering a small sampled system, whose interaction
with low-energy electrons can be described through the
Coulomb potential, we find the associated coupling coef-
ficients to only depend on the wave vector difference q−q′
and take the form Gqj,0j′ ∝

(
sign{q}

)σ|q|lKm(|q|Re),
where Re is the beam-sample distance, (l,m) are the
angular momentum numbers associated with the exci-
tation symmetry, σ takes values of 0 or 1, and a con-
stant of proportionality depending on the details of the

system is taken to be absorbed in P lin
1 . In particu-

lar, we consider excitations of dipolar [px and pz, corre-
sponding to (l,m, σ) = (1, 1, 0) and (1, 0, 1), respectively]
and quadrupolar [dz2 , dxz, and dx2−y2 , corresponding to
(2, 0, 0), (2, 1, 1), and (2, 2, 0)] character, with a geomet-
rical configuration as shown in the inset of Fig. 2(a) (see
Appendix for details, and Fig. 2(b) for the associated
momentum-space coupling coefficients).

Under these conditions, the wave function of the sys-
tem admits the form (see Appendix)

〈z|Ψ(t)〉 = ψ0(z, t)
∑
j

fj(z) e−iωj0(z/v−t) e−iωjt |j〉,

where the space-dependent functions fj(z) evolve as

d fj(z)
dz

= − i
v

∑
j′

Gjj′(z) eiωjj′z/v fj′(z), (5)

and we introduce real-space coupling coefficients
Gjj′(z) =

∫
dq Gqj,0j′ eiqz [see Fig. 2(a)]. Finally,

the excitation probability is simply given by Pj =∣∣fj(∞)
∣∣2, while the linear limit reduces to P lin

j =
(4π2/v2)

∣∣G0j,ωj0/v,0
∣∣2 for j 6= 0 (see Appendix).

We numerically integrate Eq. (5) for two-level systems
with the excitation symmetries noted above to obtain
the universal plots of P1 presented in Figs. 2(e)-2(i) as
a function of the dimensionless parameters ω10Re/v and
P lin

1 . Remarkably, P1 reaches a single maximum of 100%
at a specific (Re, P lin

1 ) point [white dots in Figs. 2(e)-
2(i)]. The position of this maximum occurs at values of
P lin

1 that are in the range of those obtained in the point-
interaction limit (Fig. 1), while the impact parameter Re
lies close to the stationary points of Gq1,00 as a function
of qRe for a wave vector transfer q = ω10/v determined
by the nonrecoil approximation [cf. the maxima of the
curves in Fig. 2(b) and the abscissas of the white dots
in Figs. 2(e)-2(i)]. Two of the studied symmetries have
this maximum at Re = 0, accompanied by a lack of any
zeros in the real-space profile of the corresponding cou-
pling coefficients [Fig. 2(a)], in contrast to the other ex-
citations under consideration. Incidentally, P1 presents
multiple maxima as we move along Re for fixed P lin

1 ,
the magnitudes of which decrease with increasing im-
pact parameter. This is the result of a complex evolution
of the position-dependent probability |f1(z)|2 along the
electron path, which exhibits oscillations before reaching
an asymptotic value of P1 at large z [see examples of this
dynamics in Figs. 2(c),2(d)].

V. EFFECT OF ELECTRON RECOIL

The solution of Eqs. (2) and (4) for a two-level sys-
tem produces an excitation probability that is substan-
tially reduced with respect to the nonrecoil limit when
the incident electron energy ~ε0 approaches the excita-
tion threshold ~ω10. We illustrate this effect in Fig. 3(a)
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FIG. 2: Excitation of two-level systems by a single free electron. We consider the configuration illustrated in the inset of panel
(a) and study the excitation probability for different transition symmetries. (a),(b) Electron-sample interaction coefficients
G10(z) and Gq1,00 in the real-space (a) and momentum-space (b) representations, respectively, for dipolar (px and pz) and
quadrupolar (dz2 , dxz, and dx2−y2) excitations with different angular symmetries. (c),(d) Evolution of the excited state
occupation as a function of position along the electron trajectory z and impact parameter Re for two selected dipolar and
quadrupolar excitation symmetries (see labels). (e)-(i) Dependence of the post-interaction excitation probability (at z → ∞)
as a function of impact parameter Re and linear probability P lin

1 for all nonvanishing dipolar and quadrupolar excitation
symmetries under the investigated beam-sample configuration. The probability reaches 100% at the positions indicated by the
white dots in (e)-(i). We take fixed values of P lin

1 = 2.5 and 1.5 in (c) and (d), respectively.
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FIG. 3: Recoil effects in near-edge excitation. (a) Excitation
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citation energy ~ω10) and linear excitation probability P lin

1 .
(b) Probability extracted from panel (a) for fixed P lin

1 = 1
(black curve) compared with the excitation probability for a
bosonic mode with the same 0 → 1 matrix element (green
curves, comprising a decomposition in the contributions Pn

of different Fock states |n〉, as well as the final average popula-
tion 〈n〉 =

∑∞
n=1 nPn). Dashed curves inticate the ε0 � ω10

nonrecoil limit. We consider dipolar excitations of px symme-
try and a normalized impact parameter ω10Re/v = 0.2 in all
cases.

for ω10Re/v = 0.2 and px transition symmetry over a
wide range of coupling strengths (vertical axis), but we
find that this conclusion is general upon extensive nu-
merical inspection of different Re values. The nonrecoil

result is however recovered when ε0 is just a few times
ω10. A similar effect of recoil is observed in the excitation
of a bosonic mode [Fig. 3(b)], although the interplay be-
tween different Fock states |n〉 leads to a more complex
evolution characterized by sharp oscillations in both the
total excitation probability and the partial contribution
coming from each |n〉 state. These oscillations are atten-
uated as ε0 increases, leading to a Poissonian distribution
[30, 40] (see also Appendix).

VI. CONCLUSIONS

In conclusion, a wealth of phenomena unfolds from the
interaction between free electrons and few-level systems.
In particular, we have shown that achieving complete ex-
citation of a single transition in a specimen by an individ-
ual free electron is not simply a matter of increasing the
interaction strength, but it also requires a specific balance
that depends on the symmetry of the excited mode. In
addition, the excitation probability is independent of the
electron wave function profile even when fully accounting
for nonlinear and recoil effects. Low-energy electrons in
the < 100 eV range are promising to explore these effects,
as they can generate multiple excitations of a single plas-
mon mode in atomically thin nanostructures [30]. Exci-
tons in two-dimensional materials [41] offer a potentially
practical candidate to study the iteration of free electrons
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with few-level systems, while defect states in those ma-
terials, already explored with tunneling microscopes [42],
are robust two-level systems that could be investigated
with low-energy electrons in a reflection configuration.
Free-electron interaction with diluted atomic or molecu-
lar gases could also serve as a platform to study the cou-
pling strength, while incipient electron microscopy stud-
ies on optical atomic lattices and condensates [43] could
be extended to measure inelastic scattering and explore
the physics portrayed in the present work.
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APPENDIX

We provide a self-contained derivation of the theory
used in the main text to describe the interaction between
a single collimated free electron and a system comprising
a discrete set of quantum states. The excitation prob-
abilities are shown to only depend on the spectral dis-
tribution of the incident electron, but not on the phase
and shape of its wave function, even when recoil, nonlin-
ear, and relativistic effects are accounted for in a rigor-
ous manner. We also present explicit expressions for the
coupling coefficients between the electron and selected
excitations with well-defined multipolar symmetry in the
nonrelativistic limit. A simpler solution to the interac-
tion problem is further elaborated within the nonrecoil
approximation. Finally, we offer details of a numeri-
cal implementation using nonrelativistic kinematics, but
fully incorporating recoil and nonlinear effects.

Appendix A: Free-electron interaction with a
discrete-level system beyond the linear nonrecoil

regime

We study the interaction between a collimated free
electron and a sample comprising a discrete set of states
|j〉 of energies ~ωj by adopting the following assumptions:

(i) — Longitudinal motion.—The electron is tightly fo-
cused in the transverse plane (perpendicular to
the propagation direction z) down to a small re-
gion in which the interaction with the sample
is approximately homogeneous [i.e., independent
of the transverse coordinates R = (x, y) across

the electron beam (e-beam)]. In addition, the
transverse electron wave function remains nearly
unchanged during the interaction time, so that
we can dismiss it as well as any change in the
transverse electron energy.

(ii) — Nonlossy specimen.—Inelastic decay of the ex-
cited sample states plays a negligible role during
the interaction time.

Item (i) allows us to describe the electron in terms of a
basis set of momentum states |q〉 of energies ~εq (with
εq = c

√
(mec/~)2 + q2 or εq = ~q2/2me within relativis-

tic or nonrelativistic kinematics, respectively) and wave
functions 〈z|q〉 = eiqz/

√
2π satisfying the orthonormal-

ization relation 〈q|q′〉 = δ(q − q′). In addition, point (ii)
permits describing the evolution of the system by solving
the Schrödinger equation with the total Hamiltonian

Ĥ = ~
∫
dq εq |q〉〈q|+ ~

∑
j

ωj |j〉〈j|

+ ~
∫
dq

∫
dq′
∑
jj′

Gqj,q′j′ |qj〉〈q′j′|, (A1)

where Gqj,q′j′ = ~−1〈qj|Ĥ|q′j′〉 are electron-sample cou-
pling coefficients.
We proceed by writing the wave function of the com-

bined electron-sample system as

|Ψ(t)〉 =
∫
dq
∑
j

e−i(εq+ωj)tαqj(t) |qj〉, (A2)

which, upon insertion into Ĥ|Ψ(t)〉 = i~|Ψ̇(t)〉, leads to
the equation of motion

α̇qj(t) = −i
∫
dq′
∑
j′

Gqj,q′j′ αq′j′(t) ei(εqq′ +ωjj′ )t (A3)

for the expansion coefficients in Eq. (A2), where we use
the compact notation εqq′ = εq− εq′ and ωjj′ = ωj −ωj′ .
Obviously, the Hamiltonian in Eq. (A1) is Hermitian, so
the normalization condition

∫
dq
∑
j |αqj |2 = 1 is main-

tained during time propagation.
We are interested in studying the probability

Pj =
∫
dq
∣∣αqj(∞)

∣∣2 (A4)

that a sample initially prepared in its ground state |0〉 is
left in a state |j〉 after the interaction has taken place.
Consequently, we set αqj(−∞) = α0

q δj0, where the coef-
ficients α0

q define the incident electron wave function

ψ0(z, t) =
∫
dq α0

q

ei(qz−εqt)
√

2π
, (A5)

whose normalization (
∫
dz
∣∣ψ0(z, t)

∣∣2 = 1) imposes the
condition

∫
dq
∣∣α0
q

∣∣2 = 1.
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At this point, we anticipate a solution of the form

αqj(t) = α0
q δj0 −

∫
dq′ Mqq′,j α

0
q′

ei(εqq′ +ωj0)t

εqq′ + ωj0 − i0+ ,

(A6)

which is suggested by iteratively integrating Eq. (A3) in
a perturbation-theory approach. Indeed, inserting Eq.
(A6) into Eq. (A3) and integrating over time, we find
the self-consistent Lippmann–Schwinger equation [39]

Mqq′,j = Gqj,q′0 −
∫
dq′′

∑
j′

Gqj,q′′j′Mq′′q′,j′

εq′′q′ + ωj′0 − i0+ (A7)

for the coefficients in Eq. (A6), which are independent of
the incident electron state. Now, applying the identity
exp(iθt)/(θ − i0+) −−−→

t→∞
2πiδ(θ) with θ = εqq′ + ωj0 to

Eq. (A6), we find the post-interaction solution

αqj(∞) = α0
q δj0 − 2πi

∫
dq′ Mqq′,j α

0
q′ δ(εqq′ + ωj0)

= α0
q δj0 − 2πi

Mqq̃j ,j

vq̃j

α0
q̃j
,

where vq = dεq/dq is the group velocity of the q elec-
tron component, and the rightmost expression is ob-
tained by manipulating the δ-function as δ(εqq′ +ωj0) =[
δ(q′ − q̃j) + δ(q′ + q̃j)

]
/vq̃j with q̃j implicitly defined

by εq̃j = εq + ωj0. Here, we consider an incident elec-
tron that only contains q̃j > 0 components in α0

q̃j
(i.e., it

moves toward increasing z), but the final state can receive
both q > 0 (forward scattering) and q < 0 (backscatter-
ing) contributions. Finally, inserting this result into Eq.
(A4), using the identity vq̃jdq̃j = vqdq, and changing the
variable of integration as q̃j → q, the post-interaction
occupation probability of level j reduces to

Pj =
∫ ∞
qj
min

dq

vqj
vq

(A8)

×
[∣∣(δj0 vq − 2πiMqj ,q,j

)∣∣2 + 4π2 ∣∣M−qj ,q,j

∣∣2] ∣∣α0
q

∣∣2,
where qj depends on q and is now defined by εqj

=
εq − ωj0 (i.e., qj = (mec/~)

[(√
1 + (~q/mec)2 −

~ωj0/mec
2)2−1

]1/2 or qj =
√
q2 − 2meωj0/~ within rel-

ativisitic or nonrelativistic kinematics, respectively); a
wave vector threshold qjmin is imposed by the minimum
electron energy capable of exciting the j level in the sam-
ple (i.e., εqj

min
= ωj0); and the first and second terms

inside the square brackets account for forward and back-
ward electron scattering contributions with final electron
wave vectors qj and −qj , respectively. The result embod-
ied in Eq. (A8) is general within the approximations in
points (i) and (ii) above, and it shows a trivial depen-
dence on the incident electron wave function: the contri-
bution of each incident wave vector component q to the
excitation probability is weighted by its strength

∣∣α0
q

∣∣2,

so the phase in α0
q (i.e., the wave function profile) does

not play any role at all. We stress that the present deriva-
tion demonstrates that this conclusion is maintained even
when rigorously accounting for nonlinear electron-sample
interactions and recoil effects.

1. Solution for monochromatic electrons

Because the energy spread of the incident electron
plays a trivial role, we can limit our discussion to
monochromatic electrons of incident energy ~εq0 , char-
acterized by

∣∣α0
q

∣∣2 = δ(q − q0). Then, the excitation
probability reduces to

Pj =Θ(εq0 − ωj0)
vqj
vq0

(A9)

×
[∣∣δj0 vq0 − 2πiMqj ,j

∣∣2 + 4π2 ∣∣M−qj ,j

∣∣2] ,
where the coefficients Mqj ≡ Mqq0,j satisfy the self-
consistent equation

Mqj = Gqj,q00 −
∫
dq′
∑
j′

Gqj,q′j′Mq′j′

εq′q0 + ωj′0 − i0+ , (A10)

which we write directly from Eq. (A7). We remark again
that the first and second terms inside the square brackets
of Eq. (A9) correspond to forward and backward electron
scattering contributions, with associated final electron
wave vectors determined as illustrated in the following
sketch:

Obviously, backscattering is generally negligible, unless
the electron energy is close to the threshold ~ωj0. For
reference, we also consider the first-order (linear) excita-
tion probabilities

P lin
j = 4π2

vq0vqj

(∣∣Gqjj,q00
∣∣2 +

∣∣G−qjj,q00
∣∣2) , (A11)

derived from Eq. (A9) for j 6= 0 by neglecting the integral
term in Eq. (A10) (i.e., setting Mqj = Gqj,q00).

2. Point-like excitation limit with backscattering

Interestingly, exact solutions can be obtained when the
interaction is localized to just a single point at z = 0. In-
deed, a point-like interaction is characterized by coupling
coefficients Gqj,q′j′ ≡ Gjj′ that are independent of q and
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q′ [i.e., giving rise to a real-space interaction coefficients
of the form Gjj(z) ∝ δ(z) according to Eq. (C1) in Sec.
B below]. In this scenario, further adopting nonrelativis-
itc kinematics, so that εq is quadratic in q, we find that
Eq. (A10) reduces to Mj = Gj0 − 2πi

∑
j′ Gjj′ Mj′/vqj′

[44], whose solutions Mj ≡ Mqj are also independent of
q. In particular, for a two-level system comprising the
states j = 0 and 1, the only nonzero coupling elements
are G10 = G∗01, so combining the solution for M1 with
Eq. (A9), we find the excitation probability

P1 = P lin
1(

1 + P lin
1 /2

)2 .
We note that forward and backward scattering events
contribute identically to the linear probability under the
assumption of a q-independent coupling, which leads to
P lin

1 = 8π2
∣∣G10

∣∣2/vq0vq1 [see Eq. (A11)]. Then, a single
absolute maximum P1 = 1/2 is obtained for P lin

1 = 2.
Reassuringly, this approximation maintains the overall
probability P0 + P1 = 1.

3. Point-like excitation limit without
backscattering

When considering energetic electrons, a point-like scat-
terer is still described by q-independent coupling coeffi-
cients for relatively small changes in wave vector. How-
ever, backscattering (i.e., with q < 0 and q′ > 0) in-
volves large momentum transfers, for which Gqj,q′j′ be-
comes negligible at large incident electron energy. Then,
we obtain q-independent coefficients Mj ≡Mqj = Gj0 −
iπ
∑
j′ Gjj′ Mj′/vqj′ for q > 0 (notice the absence of a

factor of 2 with respect to the result including backscat-
tering), while Mqj = 0 for q < 0. Finally, we find the
solution

P1 = P lin
1(

1 + P lin
1 /4

)2

with P lin
1 = 4π2

∣∣G10
∣∣2/vq0vq1 [i.e., also neglecting

backscattering in Eq. (A11)], which now presents a single
absolute maximum P1 = 1 when P lin

1 = 4. In addition,
the condition P0 + P1 = 1 is also verified.

Appendix B: Numerical implementation

The coupling coefficients Gqj,q′j′ are generally smooth
functions of q and q′, so we can solve Eq. (A10) by dis-
cretizing q through a set of 2N+1 points pl = q0+lh, each
of them representing an interval pl − h/2 < q < pl + h/2
labeled by l = −N, · · · , N . Consecutive points are sepa-
rated by a constant spacing h = ∆/(2N+1), and together
they cover a finite range of size ∆ centered at the incident
electron wave vector q0. We can then recast Eq. (A10)
into the finite matrix equation

Mj = gj −
∑
j′

Sjj′ ·Mj′ , (B1)

where Mj and gj denote vectors of 2N + 1 components
Mj,l ≡ Mqlj and gj,l ≡ Gplj,q00, respectively, whereas
Sjj′ = Gjj′ ·∆j′ are (2N + 1) × (2N + 1) square matri-
ces defined in terms of the coupling matrices Gjj′,ll′ ≡
Gplj,pl′ j′ and the diagonal matrix

∆j,ll′ = δll′

∫ pl+h/2

pl−h/2

dq

εqq0 + ωj0 − i0+ .

In practice, a strong electron-sample interaction is likely
involving relatively small electron velocities, and there-
fore, we can work in the nonrelativistic limit and write
εq = ~q2/2me and vq = ~q/me. The matrix elements of
∆j are then given by the closed-form expressions

∆j,ll′ = δll′
me

~|qj |
×

 log
∣∣[p2

l − (|qj | − h/2)2]/[p2
l − (|qj |+ h/2)2]∣∣+ iπ θjl, εq0 > ωj0,

2
(
tan−1 [(pl + h/2)/|qj |

]
− tan−1 [(pl − h/2)/|qj |

])
, εq0 < ωj0,

where |qj | =
√
|q2

0 − 2meωj0/~|, θjl = 1 if either pl −
h/2 < |qj | < pl +h/2 or pl−h/2 < −|qj | < pl +h/2, and
θjl = 0 otherwise. In addition, we use the explicit expres-
sions offered in Sec. D for the coupling coefficients Gqj,q′j′

associated with selected excitations of well-defined multi-
polar symmetries. Incidentally, ∆j,ll′ may diverge in the
unlikely event that qj 6=0 coincides with pl ± h/2 for any

l, a problem that we avoid by slightly changing N .
We apply this procedure to study two different types

of samples in the main text, for which the evaluation of
the coupling matrices Gjj′ and the numerical solution of
Eq. (B1) are simplified by the following considerations:

• Two-level sample. For a system comprising two
states j = 0 and 1, we have G10 = G†01 and G00 =
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G11 = 0. The solution of Eq. (B1) for the excited
state vector isM1 =

(
1−S10 ·S01

)−1·g1 and requires
performing one matrix inversion and one product
between square matrices, each of them involving
∼ N3 complex-number multiplications.

• Single-boson sample. Coupling to a bosonic mode
of frequency ωb can also be described using the
present formalism. The bosonic Fock states |j〉 ap-
pear at equally spaced frequencies given by ωj0 =
jωb, whereas the coupling matrix elements only
connect consecutive states, and consequently, we
have

Gjj′ =


0, |j − j′| 6= 1,√

j G10, j′ = j − 1,√
j + 1G†10, j′ = j + 1.

(B2)

These matrices are expressed in terms ofG10, which
describes 0 → 1 transitions. Then, Eq. (B1) be-
comes a block-tridiagonal system, which we solve
following the standard forward-sweep, backward-
substitution method, requiring a total of ∼ (n +
1)×N3 complex-number multiplications when the
boson ladder is cut at j = n.

Incidentally, for these two types of samples, assuming the
system to be initially prepared in the ground state j = 0
and considering a given final state j = j1, all of the terms
in the scattering series obtained from Eq. (B1) by Taylor
expanding the self-consistent equation M = (1 + S)−1 ·
g = g − S · g + S2 · g + · · · present the same difference
between the net number of up (j → j + 1) and down
(j → j − 1) jumps, so the overall probabilities are left
unchanged when G10 is multiplied by an arbitrary phase
factor eiϕ (i.e., Gjj′ introduces a factor e−iϕ or eiϕ for up
or down jumps, respectively, and the final amplitude is
modified by an overall amplitude e−ij1ϕ).
Using the methods discussed above, we find convergent

results within the scale of the plots in the main text us-
ing 2N + 1 ∼ 500 discretization points and a wave vector
range ∆ of a few times q0

(
1 −

√
1− ω10/εq0

)
. In ad-

dition, for sufficiently large electron energy εq0 � ω10,
this procedure produces results in excellent quantitative
agreement with the solution found in the nonrecoil ap-
proximation [see Eq. (C2) in Sec. C below].

Appendix C: Nonrecoil approximation

A simpler solution is obtained if the energy spread of
the incident e-beam and the sample excitation energies
are both small compared with the average electron en-
ergy. We can then approximate εq − εq′ ≈ (q − q′)v,
where v =

∑
q vq
∣∣α0
q

∣∣2 is the average electron velocity.
In addition, we use the fact that the coefficients Gqj,q′j′

only depend on the difference of wave vectors q− q′ [45].

Applying these considerations to Eq. (A2), we can write

〈z|Ψ(t)〉 = eiq̄z−iεq̄t

√
2π

∑
j

ϕj(z, t) e−iωjz/v |j〉,

where q̄ is the average wave vector, and we define the
electron wave function

ϕj(z, t) =
∫
dq ei(q−q̄+ωj/v)(z−vt)αqj(t)

associated with the each sample state j. Likewise, mul-
tiplying both sides of Eq. (A3) by ei(q−q̄+ωj/v)(z−vt) and
integrating over q, we obtain

(∂t + v∂z)ϕj(z, t) = −i
∑
j′

Gjj′(z) eiωjj′z/v ϕj′(z, t),

where the coupling coefficient

Gjj′(z) =
∫
dq Gqj,0j′ eiqz (C1)

is expressed in the real-space representation.
These equations admit a solution of the form ϕj(z, t) =

φ0(z − vt) eiω0(z/v−t) fj(z), consisting of an overall fac-
tor than only depends on z − vt, accompanied by space-
dependent functions fj(z) that satify

d fj(z)
dz

= − i
v

∑
j′

Gjj′(z) eiωjj′z/v fj′(z). (C2)

Incidentally, we have explicitly indicated a factor
eiω0(z/v−t) in ϕj(z, t) to simplify the initial condition for
a sample prepared in the |0〉 state (see below). Also, we
can set φ0(z−vt) =

∫
dq α0

q ei(q−q̄)(z−vt), as suggested by
the incident electron wave function in Eq. (A5), which
takes the form ψ0(z, t) =

(
eiq̄z−iεq̄t/

√
2π
)
φ0(z − vt) in

the nonrecoil approximation. Therefore, the combined
electron-sample wave function reduces to

〈z|Ψ(t)〉 = ψ0(z, t)
∑
j

fj(z) e−iωj0(z/v−t) e−iωjt |j〉,

(C3)

which is a superposition of time-dependent states
e−iωjt |j〉, each of them accompanied by an electron wave
function ψ0(z, t) e−iωj0(z/v−t) that reflects the associated
change in electron momentum by −~ωj0/v. Once fj(z)
is obtained by solving Eq. (C2) with the initial condi-
tions fj(−∞) = δj0 (i.e., the sample in the |0〉 state),
the post-interaction probabilities are finally given by
Pj =

∣∣fj(∞)
∣∣2.

This analysis can be readily applied to any initial pure
state |ji〉 by simply substituting ω0 by ωji

in these expres-
sions, and also extended to start with a coherent super-
position of sample states

∑
ji
aji

e−iωji
t|ji〉 by separately

propagating each initial state |ji〉 and then weighting the
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resulting fj(z) with the coefficients aji
, so that we obtain

the wave function

〈z|Ψ(t)〉 = ψ0(z, t)
∑
jji

Fjji
(z) aji

e−iωjji
(z/v−t) e−iωjt |j〉,

where Fjji
(z) is given by the coefficient fj(z) obtained

from Eq. (C2) with the initial conditions fj(−∞) =
δjji

. For incident nonochromatic electrons, the proba-
bility of finding the sample in state j after the interac-
tion has taken place becomes Pj =

∑
ji

∣∣Fjji
(∞) aji

∣∣2,
whereas the electron energy-loss probability reduces to
ΓEELS(ω) =

∑
jji

∣∣Fjji
(∞) aji

∣∣2δ(ω − ωjji
), which in

practice needs to be convoluted with the zero-loss peak
of the microscope.

Again, we corroborate the trivial role played by the
incident electron wave function: in the nonrecoil approx-
imation, the final total wave function is the incident elec-
tron wave function multiplied by factor [the j sum in Eq.
(C3)] that only depends on the incident electron state
through the velocity v. From a quantum-optics perspec-
tive [40], this result reflects the fact that the electron
acts on the sample as a classical source [i.e., regarding
Eq. (C2) as the optical Bloch equations of the system]
if its velocity is taken to be constant (i.e., in the non-
recoil approximation), so that starting with j = 0, and
in virtue of energy conservation, the interaction simply
causes the electron wave function to undergo rigid shifts
≈ −~ωj0/v in momentum when the sample is excited to
a state j 6= 0.
For reference, the linear probability for j 6= 0 now

corresponds to the solution of Eq. (C2) obtained by re-
placing fj′(z) by δj′0 in the right-hand side, and conse-
quently, we find fj(∞) = (−i/v)

∫
dz Gj0(z) eiωj0z/v =

(−2πi/v)Gqjj,q00 with qj = q0 − ωj0/v [i.e., the inverse
Fourier transform of Eq. (C1)], which leads to P lin

j =
(4π2/v2)

∣∣Gqjj,q00
∣∣2 = (4π2/v2)

∣∣G0j,ωj0/v,0
∣∣2. This result

agrees with Eq. (A11) when neglecting the backscattering
term ∝

∣∣G−qjj,q00
∣∣2 and setting vq ≈ v.

1. Interaction with a bosonic mode

The solution to Eq. (C2) becomes analytical for a sam-
ple hosting a single boson mode of frequency ωb, which
comprises an infinite number of discrete Fock states |j〉 of
frequencies jωb with j = 0, 1, . . . , coupled by coefficients
Gjj′(z) that satisfy Eq. (B2). Indeed, for such bosonic
system, Eq. (C2) reduces to

d fj(z)
dz

=
√
j u∗(z) fj−1(z)−

√
j + 1u(z) fj+1(z)

with u(z) = (i/v)G∗10(z)e−iωbz/v, so it admits the closed-
form solution [40] fj(z) = eiχ(z)e−|β0(z)|2/2[β∗0(z)

]j
/
√
j!,

where χ(z) =
∫ z
−∞ dz′

∫ z′

−∞ dz′′ Im{u∗(z′)u(z′′)} is a
global phase and β0(z) =

∫ z
−∞ dz′ u(z′). The boson is

then evolving as a coherent state of varying amplitude
β0(z), featuring a Possonian distribution of occupation
numbers Pj(z) = |fj(z)|2 = e−|β0(z)|2

∣∣β0(z)
∣∣2j/j! and av-

erage population
∑∞
j=1 j Pj(z) = |β0(z)|2 that leads to

the post-interaction value

〈j〉 =
∞∑
j=0

j Pj = |β0(∞)|2

= 1
v2

∣∣∣∣∫ dz G10(z)eiωbz/v

∣∣∣∣2
= 4π2

v2

∣∣G01,ωb/v,0
∣∣2 = P lin

1 ,

where the integral is again identified with the inverse
Fourier transform connecting G10(z) to Gq1,00 = G01,−q,0
[see Eq. (C1)].

Appendix D: Nonretarded coupling coefficients for
small samples

In the nonretarded limit, the electron-sample interac-
tion is mediated by the Coulomb potential, so the corre-
sponding matrix elements in Eq. (A1) read

Gqj,q′j′ = 1
~
〈qj|Ĥ|q′j′〉

= − e

2π~

∫
dze ei(q′−q)ze

∫
d3r 〈j|ρ̂(r)|j′〉

|re − r|

= − e

π~

∫
d3r 〈j|ρ̂(r)|j′〉 (D1)

×K0(|q − q′||Re −R|) ei(q′−q)z,

where ρ̂(r) =
∑
i qi δ(r − ri) is the charge density op-

erator, expressed as a sum over electrons and ions of
charges qi and positions ri in the specimen, and Re is
the e-beam impact parameter, set to a fixed value in ac-
cordance with assumption (i) in Sec. A. As anticipated
in Sec. C, Gqj,q′j′ only depends on the wave vector differ-
ence q − q′. Incidentally, we neglect coupling terms with
j = j′, although one could conceivably imagine a system
in which the time-dependent energy shifts produced by
the presence of the electron in the states j could affect
the excitation dynamics, as recently investigated for the
nonlinear interaction between low-energy free electrons
and nanographenes [31].
For a small sample compared with the impact param-

eter Re, the coupling coefficients in Eq. (D1) can be ap-
proximated by only retaining the first nonvanishing con-
tribution to the Taylor expansion of K0(|q − q′||Re −
R|)ei(q′−q)z around r = 0. The zeroth-order term can-
cels for a neutral sample (i.e,

∫
d3r ρ̂(r) =

∑
i qi = 0),
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while the linear term yields

Gqj,q′j′ = − e

π~
pjj′ ·

[
|q − q′|K1(|q − q′|Re) R̂e (D2)

+ i(q′ − q)K0(|q − q′|Re) ẑ
]
,

where pjj′ =
∫
d3r 〈j|ρ̂(r)|j′〉 r is the transition dipole.

Inserting this result in Eq. (C1) to obtain the space-
dependent interaction in the nonrecoil approximation, we
find the expected dipole potential Gjj′(z) = −(e/~) pjj′ ·
(Re + z ẑ)/(R2

e + z2)3/2.
A more general treatment that is suitable for dealing

with multipolar excitations can be followed by expand-
ing the Coulomb potential in Eq. (D1) using spherical
harmonics as [46]

1
|re − r| =

∞∑
l=0

l∑
m=−l

4π
2l + 1 (rl/rl+1

e )Ylm(r̂e)Y ∗lm(r̂)

under the assumption that re > r (i.e., provided the sam-
ple can be inscribed in a sphere that is not intersected
by the e-beam). Inserting this expansion into Eq. (D1)
and using the analytical expression for the ze integral of
ei(q′−q)zeYlm(r̂e)/rl+1

e derived in Ref. [47], we obtain

Gqj,q′j′ = − e

π~

∞∑
l=1

l∑
m=−l

Qlm,jj′
(−i)l+m eimϕRe√
(l −m)!(l +m)!

(q − q′)lKm(|q − q′|Re)×
{

1, q − q′ > 0,
(−1)m, q − q′ < 0, (D3)

where

Qlm,jj′ =
√

4π
2l + 1

∫
d3r 〈j|ρ̂(r)|j′〉 rlY ∗lm(r̂),

ϕRe
is the azimuthal angle of Re, and we eliminate the

l = 0 term because it vanishes due to charge neutrality
in the sample. Incidentally, we follow the notation of
Ref. [39] for the spherical harmonics Ylm(r̂), which dif-
fers by a factor (−1)m from that in Ref. [48]. Detailed
inspection shows that the l = 1 term in this expression
reproduces the result in Eq. (D2), with Q1m,jj′ reducing
to the components of the transition dipole.

Beyond dipoles, we also explore quadrupolar excita-
tions characterized by charge densities 〈j|ρ̂(r)|j′〉 with a
spatial angular dependence given by Y20 ∝ (3z2/r2 − 1),
(Y2,−1 − Y21) ∝ xz/r2, and (Y2,−2 + Y22) ∝ (x2 − y2)/r2,
as found, for example, in transitions from a hydrogenic s
orbital to dz2 , dxz, and dx2−y2 states. We take ϕRe

= 0
(i.e., the e-beam crosses the x axis), so that the other two
possible quadrupolar excitations (dxy and dyz) do not
couple to the electron because of symmetry mismatch.
In Table I, we summarize the associated coupling coeffi-
cients in both momentum and real-space representations
[Gqj,0j′ and Gjj′(z), respectively] for the nonzero dipolar
and quadrupolar transitions under the noted conditions.

In this work, we use Gqj,0j′ in combination with Eq.
(B1) to produce numerical nonlinear results including re-
coil effects, while numerical integration of Eq. (C2) with
Gjj′(z) as input allows us to compute excitation proba-
bilities in the nonrecoil approximation. We remark that
the normalization constants gjj′ in Table I encapsulate all
the factors that accompany the (q−q′)lKm(|q−q′|Re) de-
pendence for each angular symmetry in Eq. (D3), and in
particular, they are proportional to the multipolar tran-
sition strength Qlm,jj′ .
In the main text, rather than specifying gjj′ , we ex-

press our results as a function of the first-order (linear)
excitation probability P lin

1 given by Eq. (A11), so we take

|gjj′ | = 2π
√
|gjj′Gqjj,q00|2 + |gjj′G−qjj,q00|2

vq0vqj
P lin
j

(D4)

with gjj′G±qjj,q00 ≡ gjj′G±qj−q0,j,00 explicitly given by
the rightmost column of Table I with q = ±qj − q0. This
prescription needs to be modified in the nonrecoil approx-
imation, as we argue in Sec. C, so we calculate |gjj′ | af-
ter eliminating the backscattering term |gjj′G−qjj,q00|2 in
Eq. (D4) to write |gjj′ | = (2π/v)|gjj′Gqjj,q00|

/(
P lin
j

)1/2.
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Gjj′ (z) is obtained from Gqj,0j′ (z) by using Eq. (C1). The two remaining quadrupolar transitions dxy and dyz do not couple
to the electron with the specified trajectory.
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