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Abstract

Next generation dependable embedded systems are facing a dramatic increase of functionalities and software
complexity, requiring heterogeneous high-performance embedded computing devices. The increased software
and hardware complexity of such emerging systems, together with the novelty of the technology, poses serious
concerns regarding system’s safety certification. Moreover, driven by the increased connectivity features,
security has become a crucial aspect that shall be considered alongside safety. This article aims to define
a safety and security collaborative analysis framework for the systematic analysis of heterogeneous high-
performance embedded computing devices. In this direction, a safety and security collaborative analysis
methodology is proposed, which is implemented following an incremental top-down strategy. Following this
methodology, a generic safety-security model is built first, which is then tailored to a case study for the
Zynq UltraScale+ Multi-Processor System-on-Chip (MPSoC) device.
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1. Introduction

With the increasing digitization trend, depend-
able embedded systems are moving towards inte-
grated mixed-criticality architectures, where mul-
tiple system functions of different safety criticality
must co-exist with non-critical software on the same
device. Moreover, next generation mixed-criticality
systems, integrate advanced features that provide
the system with autonomy and higher levels of
interconnection. Emerging heterogeneous MPSoC
devices are appealing solutions for such systems,
providing a rich ecosystem of processing elements
that combine multi-cores with Graphics Process-
ing Units (GPUs) and/or Field Programmable Gate
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Array (FPGA)-based accelerators reaching an un-
precedented performance for embedded devices at
lower cost and power consumption. However, these
benefits come at a cost concerning system depend-
ability (Agirre et al., 2020).

Dependable embedded systems, in which safety
is a critical factor (for example an autonomous ve-
hicle), are subject to safety certification. Certifi-
cation, usually carried out by a third-party, is the
determination that a given system is suitable and
safe enough for its intended use, where safe enough
refers to the absence of unacceptable risks leading
to catastrophic consequences caused by the mal-
functioning of the embedded system. With the in-
creasing connectivity of embedded control systems,
security has become a crucial aspect that shall be
considered alongside safety, and security threats
shall also be addressed in order to support system
safety. However, from a certification point of view,
emerging complex MPSoC platform architectures
involve many open challenges (Agirre et al., 2020).

Therefore, this article presents a safety and secu-
rity collaborative analysis framework for heteroge-
neous high-performance embedded computing de-
vices. Through an incremental top-down safety and
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security co-analysis methodology, high level system
failures, security threats and their relationships are
identified. This analysis is complemented with the
definition of both safety and security countermea-
sures, first for a generic mixed-criticality solution
and then tailored to the Zynq UltraScale+ MPSoC
platform, where inter-dependencies between safety
and security are carefully considered. As a re-
sult, the main certification challenges for mixed-
criticality integration on high-performance hetero-
geneous platforms are identified.

The rest of this article is structured as follows.
Section 2 provides some background on safety and
security co-engineering and mixed-criticality sys-
tems. Section 3 provides an overview of safety-
security analysis methodologies and heterogeneous
high-performance computing platform certification
challenges. Section 4 describes the safety and se-
curity co-analysis method and an incremental top-
down strategy that guides this task. Section 5
describes the generic safety-security analysis for
mixed-criticality systems on heterogeneous high-
performance computing devices, which is tailored
to a case study for the Zynq UltraScale+ MPSoC
in Section 6. Finally, Section 7 provides a summary
of the article and highlights the conclusions.

2. Background

In this section we provide an overview of func-
tional safety and security standards and mixed-
criticality systems.

2.1. Safety & security co-engineering

Functional safety standards, such as, IEC 61508
(IEC, 2010a), ISO 26262 (ISO, 2018), EN 5012x
(EN, 2011), define the requirements for the devel-
opment of safety related electrical and/or electronic
systems with the purpose of avoiding unacceptable
risks in the system. IEC 61508 is considered the
reference safety standard, from which different do-
main specific standards have been conceived. The
assurance level (denoted usually as Safety Integrity
Level (SIL)) of the safety functions implemented
by the electrical and/or electronic components is
assigned based on their severity, frequency of ex-
posure and controllability of the hazardous events.
The higher the assurance level, more stringent are
the procedures, measures and requirements of func-
tional safety standards.

Several standards are already applied for the de-
sign, development, and certification of secure sys-
tems, for example the Common Criteria frame-
work (also known as ISO 15408) (Herrmann, 2002),
which is mainly focused on IT environments (Mu-
garza et al., 2017). Due to the increasing number
of cyber-attacks against industrial facilities, the In-
ternational Society of Automation (ISA) developed
an industrial cyber-security standard, the ISA/IEC
62443 (IEC, 2010b). Similar to the functional safety
IEC 61508 standard, the IEC 62443 introduces the
concept of Security Levels (SLs), addressing from
casual or coincidental violations to intentional will-
ful attacks using sophisticated means with extended
resources, industrial control systems specific skills
and high motivation.

Although functional safety and security have his-
torically been treated as two separate disciplines,
the International Electromechanical Commission
(IEC) has recently published the IEC TR 63069
(IEC, 2019a) and the IEC TR 63074 (IEC, 2019b)
technical reports, which provide guidance on the
combined application of the IEC 61508 and IEC
62443 standards for the development and mainte-
nance of safe and secure systems.

2.2. Mixed-Criticality

Benefits such as a reduced number of subsys-
tems, devices and associated cabling and connec-
tors that jeopardize the reliability of the system
on the traditional federated paradigm, have driven
the industry towards the implementation and adop-
tion of integrated mixed-criticality systems where
multiple system functions of different criticality are
deployed on the same platform. To guarantee the
overall safety of mixed-criticality systems, accord-
ing to IEC 61508 independence shall be achieved
and demonstrated at least in the spatial (the data
used by a subsystems cannot be altered by another
subsystem) and temporal (no element causes an-
other one to miss a deadline due to interferences)
domains. Regarding security, in alignment with the
IEC 62443 standard, in order to enable the indepen-
dent security assessment and evaluation of security-
related components, a Multiple Independent Lev-
els of Security/Safety (MILS) based solution might
be adopted (Heinrich et al., 2019), which enables
the integration of components associated to differ-
ent level of security, using separation mechanisms,
such as physical separation or hypervisors.
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3. Related Work

Safety and security co-engineering has been an
active research area during the last decade resulting
in multiple safety and security co-analysis methods
that have been surveyed by Lisova et al. (2018);
Kriaa et al. (2015). Macher et al. (2015) com-
bines hazard and risk analysis from ISO 26262
(ISO, 2018) for the safety analysis and the STRIDE
method (Microsoft Corporation, 2005) for the se-
curity analysis. In a similar way, Cui and Sabali-
auskaite propose a safety and security co-analysis
method where safety and security requirements are
first specified and appropriate countermeasures are
then selected. The approaches proposed by Schmit-
tner et al. (2014); Steiner and Liggesmeyer (2013)
also address safety-security analysis using a Fail-
ure Mode and Effects Analysis (FMEA) model and
a state or event fault tree respectively to perform
a combined safety and security cause-effect anal-
ysis. Ponsard et al. (2016) present an integrated
safety-security analysis methodology that follows a
goal oriented approach to build a goal tree where
requirements are connected to related hazards or
vulnerabilities and classified as safety or security
related.

Besides the need for a safety and security co-
engineering, the integration of mixed-criticality sys-
tems on complex MPSoC platforms involves many
open challenges from a certification point of view.
Although cyber-security standards are usually more
focused on the software side, functional safety stan-
dards include hardware platform related require-
ments that are not always easily applicable to novel
architectures. The stringent and conservative re-
quirements posed by safety standards enforce the
application of best industrial safety practices, which
leads to relatively slow innovation cycles (Agirre
et al., 2017; Rushby, 2008; Martinez et al., 2018).
Nowadays a number of multicore safety devices are
available in the market, designed mainly for the
automotive domain, compliant with IEC 61508 or
ISO 26262 standards up to ASIL D, and potentially
applicable to other domains (Pérez et al., 2020).
However, when these devices are used to integrate
mixed-criticality applications, the certification of
systems with independence of execution and pre-
dictability are still open research challenges that
are aggravated with increasing platform complexity
(Hassan, 2018). For this reason, in the last decade
there have been extensive research in this direction
(Pérez et al., 2020; Martinez et al., 2018) and cer-

tification experts and standardization bodies have
started to include multicore architectures explic-
itly in standards and guidelines (e.g., automotive
domain specific standard ISO 26262 part 11, AU-
TOSAR’s guide for multicore systems (AUTOSAR,
2014; Hassan, 2018), Certification Authorities Soft-
ware Team (CAST)-32A position paper for mul-
ticore processors in avionics (CAST, 2016; Agirre
et al., 2017)).

4. Methodology

This section presents a collaborative analysis
framework for safety and security that will support
and endorse a systematic approach towards safety-
security analysis and conclusion extraction.

The proposed methodology is based on the work
presented by (Cui et al., 2019; Sabaliauskaite et al.,
2016), which is adapted to the objective of this
work: a safety-security analysis of mixed-criticality
systems running on heterogeneous devices. More-
over, an incremental strategy is proposed, that sets
a baseline Safety and Security (S&S) model to be
reused as reference in the analysis of different het-
erogeneous devices.

4.1. Method description

The proposed methodology takes as reference the
six step model defined in (Sabaliauskaite et al.,
2016), which has also been employed in the collabo-
rative safety and security framework defined in (Cui
et al., 2019). The main feature of the methodology
is the six-step S&S model (depicted in Figure 1)
that analyzes the safety and security of the system
through six hierarchies (i.e., functions, structure,
failures, attacks and associated safety and secu-
rity countermeasures) and connects them through
relationship matrices to analyze the dependencies
among the different elements. The degree of the
relationship between the elements at the different
hierarchies can be evaluated using different crite-
ria, which can be either qualitative or quantitative
(Brissaud et al., 2009). In this report, the qual-
itative approach, as suggested by the authors in
(Brissaud et al., 2009), is used for prior analyzes,
where the relationships are graded as very low, low,
medium and high impact or coverage. The ful-
filling of this analysis on early stages of the de-
velopment process helps guaranteeing consistency
between these six hierarchies (i.e., the effects of a
security attack on safety, the failures and attacks
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Figure 1: Integrated Safety and Security analysis model (Cui et al., 2019)

covered by each countermeasure, or even detect-
ing conflicting countermeasures) and understanding
the effects of failures and attacks on the system.

4.2. Incremental approach

In the work presented in this article, this method-
ology is implemented following an incremental ap-
proach, which is depicted in Figure 2 and composed
of the following 3 steps and S&S models:

1. Generic S&S model: it is based on a generic
platform and application patterns. Specifi-
cally, generic functions and a typical structure
that includes all common components in het-
erogeneous platforms are considered. In this
way, this model defines the key features that
shall be analyzed and particularized. The main
benefit of this generic S&S model template
is its reusability across different implementa-
tions, setting a common criteria for the analy-
sis of specific systems.

2. Platform-specific S&S model: taking the previ-
ous S&S model as a basis, the system structure
is complemented with the particularities of
specific heterogeneous platforms. As a result, a
platform specific model is obtained which can

be reused across different mixed-criticality im-
plementations on such platform.

3. System specific S&S model: the platform-
specific S&S model can be taken as a basis to
define the system specific S&S model where the
functions and their usage of the structure are
defined to meet the particular system needs.

This article presents the generic S&S model tem-
plate in Section 5 and its refinement into a platform
specific S&S models for the Zynq UltraScale+ use-
case in Section 6. The final step, the system specific
S&S model, is out of the scope of this article.

5. S&S Model Template for Mixed-
criticality Heterogeneous MPSoC

Based on the methodology described in Section 4,
this section builds the generic S&S model template.
In order to delimit the scope of the analysis and
ease its reusability, this section considers a set of
generic functions with different criticality, exem-
plary assets involved in the security analysis and
a typical high-level architecture for heterogeneous
high-performance platforms based on an MPSoC
(Figure 3). This architecture is taken as the base-
line to define high level system failures, attacks and
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Figure 2: Incremental Safety and Security model development strategy

safety and security countermeasures. In addition,
this section provides an analysis of the relationship
among these hierarchies with the ultimate goal of
evaluating safety and security inter-dependencies.

5.1. Step 1: Generic Functions (F)

Functions of different safety and security implica-
tions are considered, building an integrated mixed-
criticality system. For S&S model simplicity, a sin-
gle partition is considered in each category, as this is
enough to contemplate the different types of appli-
cations and their inter-dependencies. However, as
explained in step 3 of the incremental approach (see
Section 4.2), this generic S&S model can be then
tailored and complemented with the specific sys-
tem functions and services, which can include var-
ious safety partitions with different integrity levels
as well as multiple security partitions. Therefore,
the Functions matrix is comprised of three function
categories, although combinations of these function
categories (e.g., safety and security-critical applica-
tions, or safety-critical and compute-intensive ap-
plications) may also exist:

� F1: Safety-critical applications ranging from
SIL 1 to SIL 4. This application must follow
the corresponding certification process for the
applicable functional safety standard.

� F2: Compute-intensive applications such as,
computer vision, image processing, data
encryption/decryption or signal processing.
Some of these applications require the paral-
lel processing of large data sets. Depending
on the application, these functions can also be
considered as safety-critical (e.g., autonomous
driving) or security critical (e.g., encryption).

� F3: Security-critical applications ranging from
security level SL 1 to SL 4. These applications,
which should fulfill the security requirements of
the standard (e.g., IEC 62443) could include an
update manager, remote connection, intrusion
detection agent, firewall, etc.

5.2. Step 2: Structure (S)

The structure is built based on the components
of Figure 3, classified into hardware, hypervisor
and OS layers. The hardware considers typical
shared resources in modern MPSoC like memory,
bus and interconnect, timers, Input/Output (I/O)s,
and hardware mechanisms that enforce separation
(Pérez et al., 2020). The considered processing
units include various multicore Central Processing
Unit (CPU) clusters which may be of the same
or different architecture, accelerators used for high
performance computing workloads (e.g., GPUs or
FPGA-based accelerators) and dedicated proces-
sors for safety or security purposes. Regarding the
software layer, separation kernels with virtualiza-
tion features can be executed over the different pro-
cessing units. Given the asymmetric nature of the
hardware platform, different hypervisors may coex-
ist in the different processing units of the MPSoC.
Over this separation layer different Operating Sys-
tems (OSs) are considered, which may have real-
time features.

5.2.1. Relationship matrix (SF)

The relationship between structure and functions
is based on the resource allocation (Figure 4). As
the functions are defined as generic categories, an
hypothesis that they all make use of platform re-
sources such as hardware guards, memory, buses,
interconnect, timers or I/Os, is made. It is also as-
sumed that all functions depend on an hypervisor
or OS. In addition, for the processing units, the
following assumptions are made:

� Safety-critical functions run on the multicore
CPUs and make use of all platform resources
except accelerators.

� Compute intensive functions take advantage of
accelerators (e.g., GPU, FPGA) together with
one or various CPUs.

� Security-critical functions are allocated to mul-
ticore CPUs or security specific modules. They

5



Figure 3: Generic mixed-criticality system on heterogeneous platform

Figure 4: Generic Structure (functions (SF)) and Failures
(structure (BS) and functions (BF)) relationship matrices.

could also take advantage of accelerators to of-
fload the CPUs from cryptographic operations.

5.3. Step 3: Failures (B)

The failure modes of an MPSoC could be very
extensive. The survey in (Pérez et al., 2020) gives
a detailed overview of possible failures and exist-
ing mitigation techniques at nanoscale, component

and device level. In this section, most relevant de-
vice level failures affecting the correct execution
of the different software partitions, and hence af-
fecting the mixed-criticality integration on MPSoC
platforms, are identified. For this purpose, different
component level failures from (Pérez et al., 2020)
are taken into account. As a result, eight high-level
failure modes are identified (see Figure 4).

5.3.1. Relationship matrices (BS, BF)

The following matrices relate identified high level
failures with the platform structure and generic
functions. Note that this relationship is based on
how system components or functions are affected
by a given failure, i.e., the effects that a failure
can have on the different elements of the structure
(and not in the elements involved in the potential
cause of failure). For functions, the matrix exposes
the severity of the effects in functions, as the tem-
plate is based on generic functions, the impact of
failures cannot be determined. As a result, this
phase assumes a high impact for all safety or se-
curity critical function categories and a low impact
for compute intensive functions that are considered
not to be critical and therefore the severity of the
consequences of failures should be low. It is then
necessary to refine this relationship matrix in the
system specific S&S model where the real functions
are known.
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Figure 5: Generic Safety Countermeasure relationship matrices (failures (XB), structure (XS) and functions (XF)) and generic
Attack relationship matrices (safety countermeasures (AX), failures (AB), structure (AS) and functions (AF))

5.4. Step 4: Safety Countermeasures (X)

Based on the identified failures, a number of
safety countermeasures are added to the model, in
such a way that each failure is covered by at least
one countermeasure. These countermeasures are
also defined as device level mechanisms based on
previous work for mixed-criticality integration on
multicore platforms (Pérez et al., 2020; Larrucea
et al., 2015b,a; Martinez et al., 2018).

5.4.1. Relationship matrices (XB, XS, XF)

Following the methodology, three relationship
matrices (see Figure 5) are added to the model:

� XB matrix relates safety countermeasures
with failures. The matrix specifies the de-
gree of coverage that each countermeasure pro-
vides for each failure, with a black symbol for
high, gray for medium and white for low. The
criteria used for defining the coverage degree
is based on the potential failure causes that

are covered by the countermeasure. Note that
each failure is managed by the combination of
various countermeasures. For instance, wrong
temporal behavior shall be handled by an ap-
propriate system configuration (X2), temporal
independence (X3.2) and safe inter-partition
communication (X3.3) implemented with aid
of a safe separation layer (X3.4) and diagnos-
tic mechanisms (X4) to achieve the target level
of diagnostic coverage according to standards.

� XS matrix shows how safety countermeasures
affect the components of the system structure.
On the one hand, circles specify the compo-
nents that are protected by countermeasures
with a high, medium, or low impact. On the
other hand, a triangle is depicted on those com-
ponents that are necessary or helpful for the
implementation of the safety countermeasure.
For example, spatial independence has an im-
pact on the processing units, OS, memory and
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I/Os as it encapsulates the resources that can
be used by the software and it is supported by
HW guards, such as the Memory Management
Unit (MMU), and the hypervisor that are used
to enforce that independence.

� XF matrix shows the system functions that
are affected by the countermeasures. In general
terms, safety-critical functions are expected
to be impacted by all countermeasures and
all functions are impacted by the countermea-
sures that guarantee independence of execution
(X3.n) among them. Instead, safety related di-
agnostics only apply to the safety function.

5.5. Step 5: Attacks (A)

This subsection identifies the security threats
that may compromise the software updating and
monitoring services or the safe operation of the sys-
tem using the Magerit risk analysis methodology
(Crespo et al., 2006). The analysis is focused on
both intentional and deliberate attacks (see Fig-
ure 5).

5.5.1. Relationship matrices (AX, AB, AS, AF)

Considering the identified Attacks, four relation-
ship matrices (see Figure 5) are added to the model,
as follows:

� AX matrix defines which attacks could be
covered by safety countermeasures defined in
Section 5.4, since some safety countermea-
sures could be useful to detect possible attacks.
For instance, appropriate diagnostic measures
could be implemented to detect any casual or
coincidental modification in the configuration
or the software. Similarly, a watchdog timer or
equivalent mechanisms could monitor if a par-
tition has sufficient resources to complete its
functions on time, detecting possible denial of
service attacks. Additionally, the mechanisms
used to guarantee independence of execution
could also aid in encapsulating the safety crit-
ical partitions against cyber-security attacks.
However, as most safety mechanisms are not
designed for dealing with intentional and delib-
erate security attacks, the coverage is generally
set as low or medium. Accordingly, this cov-
erage will be complemented with the security
countermeasures defined in next section.

� AB matrix specifies which of the failures
could be caused by a security attack. To aid in

the definition of this relationship the potential
causes of failures are evaluated.

� AS matrix identifies structure elements that
could be affected by attacks. In general terms,
most attacks associated with services or soft-
ware could have an impact on the processing
units, separation kernel, hypervisor and/or on
the OS. Those associated to data or infor-
mation could also impact the processing units,
memory and I/Os. Finally, the attacks related
to the communication networks have a higher
impact on the bus or interconnect and I/Os.

� AF matrix shows the severity of attacks on
the different functions. While all attacks are
critical from a security point of view, it is as-
sumed that the effect on compute intensive
software, considered to be low critical, is low or
very low. Safety-critical function instead can
be affected with medium to high impact, ex-
cept for those attacks that only affect informa-
tion or data confidentiality properties and do
not have a direct impact on system behavior.

5.6. Step 6: Security Countermeasures (Z)

Aligned with the IEC 62443-4-2 (IEC, 2010b)
standard, a set of countermeasures is proposed (see
Figures 6 and 7) to mitigate the security threats
identified in Section 5.5 (see Figure 5).

5.6.1. Relationship matrices (ZA, ZX, ZB, ZS, ZF)

With the definition of security countermeasures,
five new relationship matrices are added to the
model (see Figure 6 and Figure 7). From these
matrices, the ZX matrix shows one of the most im-
portant relationships that should be carefully ana-
lyzed to guarantee the alignment and consistency
between safety and security.

� ZA matrix defines the attacks mitigated by
the security countermeasures (see Figure 6).

� ZX matrix captures inter-dependencies be-
tween safety and security countermeasures. To
this end, the three types of relationship defined
in (Cui et al., 2019) are used: complement,
conflict and independence. In Figure 7 it can
be seen how most countermeasures are inde-
pendent or reinforce the safety of the system.
In fact, some security countermeasures could
be combined with safety countermeasures to
protect against both failures and attacks:
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Figure 6: Generic security countermeasure to attack relationship matrix (ZA)

- Authorization and access control (Z2) could
be supported with the different privilege lev-
els and restricted read/write permissions es-
tablished by spatial independence (X3.1).

- The secure communication scheme (Z4)
would provide an additional protection layer to
all safety-related communications (X3.4) and
complement safety diagnostics (X4), ensur-
ing the integrity, confidentiality and authen-
ticity against misuses and intentional or willful
cyber-attacks.

- Spatial partitioning (X3.1) can prevent an
attacker from installing malicious software
(Z6) in other partitions, avoiding propagation.

- The safety diagnostic mechanisms (X4) im-
plemented to detect any independence viola-
tion (both in the spatial and temporal domain)
might provide additional security continuous
monitoring data (Z8).

- Resource management (Z9) is complemen-
tary to the mechanisms used to guarantee spa-
tial (X3.1) and temporal independence (X3.2).
It also may prevent (or mitigate the effects) of
a (distributed) DoS attack.

- The authenticated secure boot (Z11) could
be implemented in combination with safe sys-
tem initialization strategies (X1), by comple-
menting each other.

On the contrary, if special care is not taken,
other countermeasures could conflict with each
other. For instance:

- The installation of software updates (Z7)
could require a reconfiguration of the platform
(e.g., the resources required by the latest soft-
ware patch could be different to the previous
software version). This re-configuration may
go against the static configuration approach
used to guarantee safety (X2).

- Configuration (X2) may be modified also
when recovery and reconstitution capabilities
(Z10) set the device back into a secure state.
In this case, the enforced configuration shall
also taken into account safety properties.

� ZB matrix identifies those failures that could
be mitigated by the security countermeasures.
As in the case of attacks handled by safety
countermeasures (AX matrix), in most cases
the coverage is set as low or medium because
security countermeasures have not been orig-
inally conceived to deal with these failures.
However, as identified in the AB matrix, most
failures could be the consequence of an attack
(see Figure 5) and therefore, security counter-
measures also serve to reduce the probability of
such failures. Security countermeasures might
also provide an additional system diagnostics
capability, mainly focused on software and se-
curity (systematic faults). Consequently, the
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Figure 7: Generic security countermeasure relationship matrices (safety countermeasures (ZX), failures (ZB), structure (ZS)
and functions (ZF))

ZB matrix is the resulting combination of fail-
ures that could be deliberately caused by an
attack (AB matrix) and attacks mitigated by
security countermeasures (ZA matrix).

� ZS matrix shows if the system structure may
be affected by security countermeasures. In ad-
dition, it uses a white triangle to identify the
system structure elements that could be used
to support the implementation of the secu-
rity countermeasures. For instance, identifica-
tion and authentication countermeasure could
be supported by a Hardware Security Module
to generate, manage, and store secure crypto-
graphic keys. However, most security coun-
termeasures are usually implemented and en-
forced at the operating system level and sup-
ported by specialized security modules. Some
hypervisors, especially those designed for secu-
rity applications also provide some of the secu-
rity countermeasures such as access control.

� ZF matrix shows how system functions are af-
fected by security countermeasures. Generally,
security-critical functions are the responsible of
implementing these countermeasures and the
ones that show higher impact. However, the
implementation of some of the security coun-
termeasures may affect any function like the
secure communications or the installation of
software updates among others.

6. Case Study: Zynq UltraScale+ MPSoC

Based on the Generic S&S model defined in Sec-
tion 5, this section presents a platform specific
model for the Xilinx Zynq Ultrascale+ MPSoC
platform (Xilinx, 2019). The Zynq UltraScale+
platform specific S&S model intends to identify
the main safety and security properties (failures,
threats and countermeasures) of the MPSoC.

6.1. Structure (S)

Figure 8 defines an example implementation pat-
tern for a mixed-criticality system on the Zynq Ul-
traScale+. The MPSoC consists of a Processing
System (PS) and a user Programmable Logic (PL)
section in two isolated power domains within the
same device. Within the PS, regions are also de-
fined by individually isolated power domains.

The PS includes two multicore processing units:
a Cortex-A53 Application Processing Unit (APU),
that according to the chosen family device can ei-
ther be a quad-core or dual-core MPCore, and
a Cortex-R5 Real-time Processing Unit (RPU), a
dual-core real-time processing unit that can oper-
ate both cores in lockstep mode.

The Zynq UltraScale+ integrates also accelera-
tors such as Mali-400 MP2 GPU, a graphics pro-
cessing unit within the PS (not available in the
Zynq UltraScale+ CG family), and Xilinx Deep
Learning Processing Unit (DPU), a programmable
engine dedicated for convolutional neural network
that can be integrated in the PL.
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Figure 8: Mixed-criticality system on Zynq UltraScale+ MPSoC

For safety-security purposes, the PS integrates
the Platform Management Unit (PMU), a fault-
tolerant triple redundant processor that takes care
of system initialization, power management and
system error handling, and a Configuration Security
Unit (CSU), a triple redundant MicroBlaze pro-
cessor that manages secure boot, on-chip security
and temperature monitoring, and supports crypto-
graphic hardware acceleration.

The Zynq UltraScale+ MPSoC offers also multi-
ple hardware guards that provide means to achieve
the independence required among partitions, such
as Xilinx Memory Protection Unit (XMPU) and
Xilinx Peripheral Protection Unit (XPPU), Sys-
tem MMU (SMMU), Advanced eXtensible Inter-
face (AXI) Timeout Block (ATB) and AXI Isola-
tion Block (AIB) and ARM TrustZone technology.

The MPSoC integrates also other elements such
as system memory, timers, buses or I/O ports.
Regarding system memory, the Zynq UltraScael+
consists of a DDR Memory and On-Chip Memory
(OCM) module. Moreover, a Block Random Ac-
cess Memory (BRAM) can also be integrated into
the PL as an IP block. The Interconnect uses AXI
protocol to connect the various system resources
within the MPSoC. The Zynq UltraScale+ inte-
grates many different types of timers and counters,
such as the Triple-Timer Counter (TTC) units in
the PS and the various system watchdog timers in
the interconnect. It offers also a wide variety of I/O
ports such as a variety of communication networks,
General Purpose I/Os (GPIOs) and safety critical
I/O ports.

6.2. Failures (B)

As stated in Section 5.3 the focus of failure anal-
ysis is set at device level failures. In this context,
shared hardware resources are a potential source
of interference and unpredictability, and therefore,
also a potential cause of failures. Considering plat-
form specific details and shared resources, the po-

tential cause of some of the generic failures is iden-
tified in Table 1. In addition, the effect of those
failures is briefly described, focusing on their im-
pact on system structure (marked with a circle in
the BS matrix of Figure 9).

6.2.1. Relationship matrix (BS)

The BS matrix in Figure 9 depicts how the
Zynq UltraScale+ platform structure components
described in Section 6.1 are affected by a given fail-
ure. Given that the platform specific S&S model
sets the focus on the hardware structure, the BS
matrix does not refine the relationship between high
level failures and particular separation kernel, hy-
pervisor or OS solutions. Instead, it is considered
that the failures could have a high impact in any of
them regardless of the chosen solution.

6.3. Safety Countermeasures (X)

The Zynq UltraScale+ MPSoC offers multiple
mechanisms (McNeil et al., 2019) that provide
means to achieve the independence required be-
tween different applications of mixed-criticality.
Most generic countermeasures identified in Sec-
tion 5.4, are applicable to the Zynq UltraScale+
MPSoC, but for X4 the diagnostic particular mech-
anisms provided by the platform have been identi-
fied (see the safety countermeasure matrices in Fig-
ure 9).

6.3.1. Relationship matrices (XB, XS)

Considering the platform specific safety counter-
measures, two additional relationship matrices (see
Figure 9) are added to the model: XB and XS.

The following analyzes the coverage of some of
the safety countermeasures (marked in the XB ma-
trix of Figure 9 with a black or gray diamond) and
describes how the multiple Zynq UltraScale+ isola-
tion mechanisms, the hypervisor and the OS could
assist on the implementation of those safety coun-
termeasures, in other words, it describes the safety
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Table 1: Simplified Failure Mode and Effects and Analysis (FMEA) for mixed-criticality partition on Zynq Ultrascale+

Figure 9: Zynq UltraScale+ failures (structure (BS)) and safety countermeasure relationship matrices (failures (XB) and
structure (XS))

countermeasurestructure relationship marked with
a triangle in the XS matrix of Figure 9.

X1 Safe system initialization and shutdown & X2
System configuration. A safe system initialization
and shutdown covers a wrong boot or invalid con-
figuration failure among others, whereas the system
configuration prevents, an invalid configuration, a

wrong temporal behavior and a wrong communica-
tion. The boot-up and configuration process sup-
ported by the PMU, CSU and hypervisor is highly
customizable and can be made secure using ARM
TrustZone technology to ensure that boot code runs
in the Secure World. In the pre-configuration stage
and after a power-on reset, the PMU is responsi-
ble for starting the boot process and handling the
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primary pre-boot tasks (e.g., initialize system mon-
itors, clear PMU Random Access Memory (RAM)),
then it releases the CSU from reset. At the configu-
ration stage, the CSU initializes OCM, determines
the boot mode through the corresponding regis-
ter and loads the First Stage Boot Loader (FSBL)
code into OCM in both secure and non-secure boot
modes. The processing unit that runs the FSBL
is configurable, so either the Cortex-A53 APU or
Cortex-R5 RPU, can run the FSBL. It is the FSBL
that sets-up the user defined isolation configuration
and although it is possible to reconfigure at runtime
the defined isolation registers, although this is not
recommended for safe and secure systems. There-
fore, to protect XMPU and XPPU configuration
preventing errant or untrusted software from modi-
fying these settings and compromising the intended
isolation, the device permits blocking XPPU at run-
time and assigning XMPU to the PMU.

X3.1 Spatial independence. The spatial indepen-
dence helps avoiding a wrong instruction or data
failure. To this end, using XMPU, Double Data
Rate (DDR) memory and OCM can be partitioned
into multiple regions that can be used for commu-
nication purposes between the RPU, PMU, and
APU subsystems. Regarding peripherals, XPPU
uses an ID list to define the processing units that
have permission to access each peripheral (i.e., pe-
ripherals, message buffers, Inter-Processor Inter-
rupts (IPI), communications, Quad Serial Periph-
eral Interface (SPI) flash memory). Moreover, the
interconnect integrates multiple AIBs that can be
configured to achieve independence between the In-
tellectual Property (IP) blocks in the PL and the
various subsystems (i.e. processing units, memory
regions, peripherals) in the PS. The interconnect
also supports ARM TrustZone isolation, that tags
the security level of each AXI transaction.

The Cortex-A53 APU and the Cortex-R5 RPU
have a MMU and a Memory Protection Unit
(MPU) respectively, which provide means for addi-
tional memory access control within each processing
unit. The Cortex-R5 MPU supports access protec-
tion in L1 cache and external memory. The MMU
capability in the Cortex-A53 is extended through
the SMMU to Direct Memory Access (DMA) ca-
pable devices in the system. Using the hardware
virtualization extensions to isolate memory and in-
terrupts as well as the SMMU to isolate DMA capa-
ble devices, a hypervisor can set-up multiple virtual
environments. The hypervisor can make use of soft-

ware techniques such as cache coloring to partition
the L2 cache shared between the Cortex-A53 CPU
cores. The APU also supports four exception levels,
providing means for additional access control.

Concerning the FPGA, different spatial isolation
mechanisms are supported, such as the route and
placement of redundant channels in different sili-
con die blocks and the definition of isolation fences
using specialized qualified tools (see Section 6.3.1).

X3.2 Temporal independence. In order to achieve
temporal independence between the various system
resources within the MPSoC and avoid a wrong
temporal behavior failure, the ATB in the PS in-
terconnect, prevents a master from hanging forever
while waiting for the slave response.

Within the Cortex-A53 APU and the Cortex-R5
RPU, it is the responsibility of the system archi-
tect to implement a suitable scheduling at software
level, which shall take into account possible interfer-
ences cause by multicore contention and guarantee
that deadlines are met through Worst-Case Execu-
tion Time (WCET) analysis. The hypervisor and
real-time OS, respectively, shall implement a cyclic
scheduling of functional units and ensure that time
slots are assigned as statically configured. How-
ever, completely mitigating temporal interferences
between the different partitions running in paral-
lel and competing for the same shared resources is
still an open challenge (Pérez et al., 2020). For this
reason, the scheduling table shall be supported by
WCET analysis that upper-bounds possible tempo-
ral interferences.

X3.3 Safe inter-partition communication. A safe
inter-partition communication mechanism prevents
from a wrong communication and a wrong tempo-
ral behavior among others. To this end, the hyper-
visors supported by the APU include mechanisms
that allow safe data exchange between the vari-
ous virtual environments. Moreover, the MPSoC
supports inter-processor communication using both
an IPI interrupt structure and memory buffers to
exchange short interrupt-driven messages, with a
prearranged communication protocol, between pro-
cessing units in the system. This is a safe and secure
method for two isolated subsystems to exchange in-
formation with each other without jeopardizing in-
dependence. Access to interrupt registers and mes-
sage buffers is restricted by XPPU.

X4 Reliability and Diagnostic mechanisms. The
RPU can operate both cores in lockstep with physi-
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cal and temporal diversity and has redundant criti-
cal control logic such as lockstep checkers. In order
to achieve on chip redundancy with Hardware Fault
Tolerance (HFT) 1, it is possible to integrate in
the PL an IP of a dual-lockstep MicroBlaze (MB),
which executes the same code in strict synchroniza-
tion. Similarly, the Cortex-R5 RPU together with
the dual-lockstep MB processor can be configured
to form an on-chip redundant dual-lockstep archi-
tecture, which could provide the same fault-tolerant
properties as a Triple-Modular Redundant (TMR)
solution. Both fail-silent channels can be arranged
in lockstep mode, which provides masking capabil-
ities of faults in the CPU as in the TMR approach.
Otherwise, they can be used as two parallel fail-
silent channels offering double performance capa-
bilities.

Since power domains are physically separated
from each other, functional isolation is provided
preventing the propagation of failures from one do-
main to the other. Moreover, design diversity (in
hardware) acts as a defense against common-cause
development errors. The system monitoring units
provide power supply and temperature monitoring
capabilities to the MPSoC. Regarding system re-
set, the PMU provides a flexible reset management,
allowing independent reset for the different power
domains. Finally, the isolation region or fence de-
fined using Xilinx Isolation Design Flow (IDF) is
a structure that fulfills the requirements defined in
the Part 2 Annex E Table E.2 of the IEC 61508 and
can be implemented to isolate and decouple physi-
cal locations within the PL.

Regarding diagnostic, the Zynq UltraScale+ im-
plements particular diagnostic techniques:

� Error-Correction Code (ECC) protection for
memory units (e.g., OCM, PMU-RAM, CSU-
RAM, and RPU cache and Tightly-Coupled
Memory (TCM)), providing a medium cover-
age against a wrong instruction or data failure.

� PMU and CSU provide high coverage for
wrong instruction or data and wrong temporal
behavior faults by using TMR processor cores
with physical diversity as well as redundant
flip-flops for critical control bits (e.g., security
state).

� RPU supports running in lockstep mode with
physical and temporal diversity and has redun-
dant logic (e.g., redundant lockstep checkers),
which provides a high coverage against wrong

instruction or data and wrong temporal behav-
ior faults.

� XMPU and XPPU protect memory space from
unauthorized system master access.

� Provides multiple watchdog timers in the dif-
ferent power domains to detect systematic and
random failures causing program flow errors.

� Provides means for power supply, tempera-
ture, and clock frequency monitoring, which
might be required in safety applications to
cover wrong boot, invalid configuration and
wrong temporal behavior failures.

� PMU takes care of system error management
and reporting through the system error con-
troller and monitors the activation of common
cause failures, providing a medium coverage
against every identified failure.

� Includes Built-In Self-Test (BIST), compris-
ing logic BIST for XMPU, lockstep and ECC
checkers and memory BIST, to detect hard-
ware faults that may be caused due to a per-
manent failure.

� The functional safety software test library pro-
vides the capability to run tests and evalu-
ate the functionality and status of memory
units, Corte-R5 RPU lockstep, PMU, XMPU,
XPPU, clocks, voltage and temperature.

6.4. Security Countermeasures (Z)

Security countermeasures are commonly imple-
mented and enforced at the OS-level, although sup-
port from specific hardware modules, such as cryp-
tographic engines, is desirable.

6.4.1. Relationship matrix (ZS)

As stated by Xilinx, the Zynq UltraScale+ plat-
form provides fundamental security capabilities for
enabling and accelerating the requirements compli-
ance of the industrial cybersecurity standard IEC
62443-4-2 (IEC, 2010b). This section, describes
the relationship between the security countermea-
sures previously identified in Section 5.6 (see Fig-
ures 6 and 7) and the Zynq UltraScale+ architec-
ture, matching security hardware modules to the
generic security countermeasures.

Z1 Identification and authentication, Z4 Secure
communications, Z5 Encrypted update and meta-
data at rest, Z6 Protection from malicious code in-
stallation and execution, Z7 Authenticated software
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updates. The CSU offers an interface block to the
internal cryptographic module, providing a rich va-
riety of symmetric and asymmetric cryptographic
algorithms (Xilinx, 2019; Peterson, 2018). The
cryptographic engine supports the security coun-
termeasures in which cryptographic operations are
needed. For instance, the symmetric and asymmet-
ric cryptographic algorithms might be used for the
authentication of human users, software processes
or other devices. The authenticity of software up-
dates might also be verified through these schemes.
On the contrary, as far as the confidentiality and
integrity of sensitive data is concerned, the CSU
will speed up the data and messages encryption and
signing processes required for the secure communi-
cations and encrypted data at rest. The provided
support can also be used for the protection from
malicious code installation and execution. Sym-
metric and asymmetric key management features
are also available, which use battery-backed RAM
and electronic FUSEs one-time programming tech-
nologies. Optionally, the key loading and storage
process can be obfuscated. Key management shall
be handled by the software application running on
the PS. Moreover, the ARM v8 cryptography ex-
tension adds new A32, A64 and T32 instructions
for cryptographic acceleration.

Z11 Authenticated secure boot. The CSU provides a
secure boot feature (Xilinx, 2019; Peterson, 2018),
that verifies the validity of the bitstream and the
software image to be executed in the platform.
Specifically, the secure boot ensures both the in-
tegrity (the software artifacts have not been mod-
ified and/or tampered by an attacker) and the au-
thenticity (the software artifacts have been created
and released by a trusted party) properties. In ad-
dition, the platform offers bitstream and software
image confidentiality. This secure boot capability
is complementary to the safe system initialization
safety countermeasure.

7. Summary and Conclusions

This research work defines a safety and security
co-engineering methodology for a systematic safety-
security analysis of mixed-criticality systems run-
ning on heterogeneous high-performance embedded
computing devices. This method enables a compre-
hensive co-analysis of the system at six hierarchies:
functions, its architecture (structure), failures, at-
tacks and associated safety and security counter-

measures (Cui et al., 2019; Sabaliauskaite et al.,
2016). The defined methodology is implemented
following an incremental top-down approach. To
this end, the focus is set on high-level system fail-
ures and threads and their corresponding coun-
termeasures. First, based on a generic platform
and application patterns, a generic model has been
built, which has then been tailored to the Xilinx
Zynq Ultrascale+ MPSoC platform.

The main benefit of the platform specific model
that results form this analysis is its reusability
across different implementations, setting a common
criteria for the analysis of specific system. More-
over, the fulfilling of this analysis on early stages
of the development process helps guaranteeing con-
sistency between hierarchies (i.e., the effects of a
security attacks on safety, the failures and attacks
covered by each countermeasure, or even detecting
conflicting countermeasures). The analysis helps
also understanding the effects that failures and at-
tacks may have on the system to select appropri-
ate safety and security countermeasures and ana-
lyzing safety and security inter-dependencies. An-
other relevant aspect of the proposed methodology
is related to software updates, since its hierarchical
implementation eases the safe and secure integra-
tion of software updates during system life-cycle.

This analysis is the first fundamental step in the
design of mixed-criticality systems on the selected
platform, providing a systematic approach for the
development of safety and security concepts. Fu-
ture work considers refining the defined safety and
security countermeasures for specific system imple-
mentations, which will also highly depend on the
software stack. One of the crucial points will be the
mitigation of interference by an in-depth analysis of
the architecture not only from manuals, which of-
ten contain limited public information, but also by
experimentation on the platform.
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