
REVIEW
published: 06 June 2022

doi: 10.3389/fmed.2022.902155

Frontiers in Medicine | www.frontiersin.org 1 June 2022 | Volume 9 | Article 902155

Edited by:

Giorgio Treglia,

Ente Ospedaliero Cantonale

(EOC), Switzerland

Reviewed by:

Gaurav Malviya,

University of Glasgow,

United Kingdom

Lucia Leccisotti,

Agostino Gemelli University Polyclinic

(IRCCS), Italy

*Correspondence:

William F. Jiemy

w.f.jiemy@umcg.nl

Specialty section:

This article was submitted to

Nuclear Medicine,

a section of the journal

Frontiers in Medicine

Received: 22 March 2022

Accepted: 13 May 2022

Published: 06 June 2022

Citation:

van der Geest KSM, Sandovici M,

Nienhuis PH, Slart RHJA, Heeringa P,

Brouwer E and Jiemy WF (2022)

Novel PET Imaging of Inflammatory

Targets and Cells for the Diagnosis

and Monitoring of Giant Cell Arteritis

and Polymyalgia Rheumatica.

Front. Med. 9:902155.

doi: 10.3389/fmed.2022.902155

Novel PET Imaging of Inflammatory
Targets and Cells for the Diagnosis
and Monitoring of Giant Cell Arteritis
and Polymyalgia Rheumatica

Kornelis S. M. van der Geest 1, Maria Sandovici 1, Pieter H. Nienhuis 2,

Riemer H. J. A. Slart 2,3, Peter Heeringa 4, Elisabeth Brouwer 1 and William F. Jiemy 1*

1Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen,

Groningen, Netherlands, 2Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University

Medical Center Groningen, University of Groningen, Groningen, Netherlands, 3Department of Biomedical Photonic Imaging

Group, University of Twente, Enschede, Netherlands, 4Department of Pathology and Medical Biology, University of

Groningen, University Medical Center Groningen, Groningen, Netherlands

Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated

inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer

from granulomatous inflammation of medium- to large-sized arteries. This inflammation

can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and

aneurysm-related complications (such as aortic dissection). On the other hand, patients

suffering from PMR present with proximal stiffness and pain due to inflammation of the

shoulder and pelvic girdles. PMR is observed in 40–60% of patients with GCA, while up to

21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic

complications, GCA has to be promptly treated upon clinical suspicion. The treatment of

both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted

therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR.

While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to

be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such

as unspecific uptake in cells with high glucose metabolism, high background activity in

several non-target organs and a decrease of diagnostic accuracy already after a short

course of GC treatment. In recent years, our understanding of the immunopathogenesis

of GCA and, to some extent, PMR has advanced. In this review, we summarize the

current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR

and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell

profiles may be exploited as a source of novel targets for imaging. Finally, we discuss

prospective novel PET radiotracers that may be useful for the diagnosis and treatment

monitoring in GCA and PMR.

Keywords: PET/CT, giant cell arteritis (GCA), polymyalgia rheumatica (PMR), radiotracer, imaging, large-vessel

vasculitis (LVV)

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.902155
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.902155&domain=pdf&date_stamp=2022-06-06
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:w.f.jiemy@umcg.nl
https://doi.org/10.3389/fmed.2022.902155
https://www.frontiersin.org/articles/10.3389/fmed.2022.902155/full


van der Geest et al. Novel PET Imaging of GCA/PMR

INTRODUCTION

Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR)
are two related inflammatory diseases exclusively affecting adults
above the age of 50, with a peak incidence between 75 and
79 years of age (1). GCA is a vasculitis affecting medium- to
large-sized arteries which can be subclassified into a spectrum
that includes cranial GCA (C-GCA) and large-vessel GCA
(LV-GCA) (2). C-GCA mainly affects the cranial arteries and
leads to ischemic symptoms such as jaw claudication, vision
loss, and stroke (3, 4). LV-GCA mainly affects the aorta and
its main branches and may lead to aneurysm formation and
aortic dissection. Up to 83% of GCA patients present with
overlapping C-GCA and LV-GCA (5). PMR is a rheumatic
inflammatory disorder characterized by inflammation of bursae,
tendon sheaths, and joints primarily affecting the shoulder and
pelvic girdles (6). GCA and PMR commonly coexist; up to 60%
of GCA patients are diagnosed with PMR while up to 21%
of PMR patients present with overlapping GCA (7). To date,
glucocorticoid (GC) therapy remains the mainstream treatment
for the management of GCA and PMR (8). Although GC
treatment is effective in inducing and maintaining remission,
it can cause substantial toxicity in patients (9). Recently, IL-
6 receptor blocking therapy has shown positive results as
GC sparing therapy in GCA (10). Promising results with this
therapy have also been reported in PMR (11, 12). However,
tocilizumab monotherapy is not recommended for these diseases
and combination treatment with GC is still imperative, especially
in GCA.

Historically, the diagnosis of GCA solely relied on the
assessment of clinical signs and symptoms, laboratory
assessment of inflammatory markers such as elevated C-
reactive protein (CRP) and erythrocyte sedimentation rate
(ESR), and positive histological evidence of giant cell arteritis
in the temporal artery biopsy (TAB) (13). Similarly, diagnosis
of PMR also relies heavily on the assessment of clinical signs
and symptoms, and laboratory assessment of inflammatory
markers (14). More recently, imaging techniques such as
ultrasonography and [18F]fluorodeoxyglucose (FDG)-positron
emission tomography (PET) have gained importance as
diagnostic tools for GCA and PMR, whereas these imaging
techniques are also increasingly used for treatment monitoring
(11, 15–18). Previously, [18F]FDG-PET/CT was only utilized
for the detection of LV-GCA due to its limitation in resolution.
However, [18F]FDG-PET/CT employing new generation
scanners with improved resolution has been shown to be able
to detect C-GCA. Recent reports have shown that C-GCA can
be effectively detected by PET/CT (up to 83% sensitivity and
100% specificity) (19, 20). However, despite its utility, there are
several important clinical drawbacks posed by [18F]FDG-PET
as a diagnostic tool in the diagnosis of GCA and PMR. Firstly,
[18F]FDG uptake is non-specific and only indicates increased
glucose metabolism. Therefore, it may be present in the context
of neoplasia, inflammation, degenerative disease, and increased
muscle use (21). In the context of vascular inflammation,
[18F]FDG may also be taken up due to atherosclerotic activity
(21). In addition, [18F]FDG shows intense uptake in several

organs that may hamper its diagnostic accuracy. One example
is the high brain uptake of [18F]FDG that may result in a
low target-to-background ratio (TBR) in cranial vessels and
limit the diagnostic accuracy of C-GCA. Furthermore, the
diagnostic accuracy of [18F]FDG-PET in patients undergoing
GC treatment is significantly reduced as exemplified by one
study reporting that only 36% of LV-GCA patients showed a
positive [18F]FDG-PET scan after 10 days of GC treatment (22).
A reduction in diagnostic accuracy has also been shown in PMR
patients undergoing GC treatment albeit to a lesser extent as
compared to GCA (17). GC rapidly blocks glycolysis pathways
important for FDG uptake in inflammatory cells (23, 24). It is
imperative to start GC treatment upon suspicion of GCA while
postponing the GC treatment can be difficult in patients with
suspected PMR. Unfortunately, diagnostic imaging of these
patients is often not feasible within a narrow timeframe due to
limited hospital capacities. Therefore, there is a strong clinical
need to identify novel radiotracers that (1) have low background
radioactivity in non-target organs and blood pool, and (2) can
still accurately detect ongoing inflammation for a prolonged
period (e.g., up to weeks) after initiation of GC treatment. Such
radiotracers could potentially help to firmly rule in or rule out
GCA/PMR and would provide an important benefit to patients
in which the diagnosis remains uncertain despite routine clinical
evaluation. With the expanding knowledge regarding the cellular
heterogeneity at the site of inflammation in GCA and PMR,
novel radiotracers targeting these specific cell subsets may
prove to be useful for the diagnosis and eventually treatment
monitoring in GCA and PMR patients.

IMMUNOPATHOLOGY OF GCA AND PMR

C-GCA
The immunopathology of GCA is characterized by leukocyte
infiltration at the site of inflammation. Although not yet
fully understood, decades of efforts in characterizing and
understanding the cellular heterogeneity in the inflamed GCA
vessels have led us to better understand the pathogenesis of
this disease. Based on these data, a pathogenic model has
been established in which the initiation of GCA is believed to
start with the activation of vascular dendritic cells (vasDCs)
through toll-like receptors (TLRs) stimulation by still unknown
triggers. Upon activation, these vasDCs adopt a phenotype
characterized by the expression of the activation marker CD83
and elevated expression of the costimulatory molecule CD86
(25). These activated vasDCs express the chemokines CCL19
and CCL21 while simultaneously expressing the receptor CCR7,
causing these activated vasDCs to be trapped in the vessel
wall. Moreover, these activated vasDCs produce CCL20 and
a range of proinflammatory cytokines (IL-1β, IL-6, IL-18,
IL-23, and IL-33) leading to the recruitment of CD4+ T
cells into the vessel-wall, their subsequent co-stimulation and
activation, and their polarization into Th1 and Th17 cells
(26–29). Although infiltrating T cells in the vessel wall show
expression of the inhibitory checkpoint molecule PD-1, vasDCs
exhibit low expression of the coinhibitory ligand PD-L1 resulting
in dampened negative regulation of T cell activation (30,
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31). Activated Th1 and Th17 cells produce high amounts
of IFNγ and IL-17, respectively, which in turn activate the
resident vascular smooth muscle cells (VSMCs) and endothelial
cells (ECs). Activated ECs express high levels of adhesion
molecules (VCAM-1, ICAM-1 and E-selectin) enabling leukocyte
adhesion and transmigration to the vessel wall (32). Activated
VSMCs produce several crucial chemokines such as CXCL9,
CXCL10, CXCL11, CXCL13, CCL2, and CX3CL1 augmenting
the infiltration of CXCR3+ CD8+ T cells, CXCR3+/CXCR5+ B
cells, and CCR2+/CX3CR1+ monocytes to the vessel wall (33–
37). Infiltrating CD20+ B cells organize themselves into tertiary
lymphoid organs (TLOs) where they produce proinflammatory
cytokines which perpetuate the inflammatory processes (38, 39).
Infiltrating CD8+ T cells start to produce cytokines such as IFN-
γ and IL-17 which triggers a positive feedback loop recruiting
more CD4+ and CD8+ T cells as well as monocytes to the vessel
wall (36). Notably, activated VSMCs, ECs, CD4+ and CD8+ T
cells also produce GM-CSF, a potent hematopoietic growth factor
that induces the differentiation and maturation of infiltrating
monocytes into proinflammatory CD206+ macrophages (40,
41). These CD206+macrophages express the collagenase matrix
metalloproteinase (MMP)-9 and proangiogenic factor YKL-
40 (42). These CD206+/YKL-40+/MMP-9+ macrophages are
mainly located in the media and media borders promoting
collagen degradation and neovessel formation, enabling more
invasion of T cells and monocytes into the vessel wall (42–
45). In addition, these CD206+macrophages express high levels
of the growth factor M-CSF, priming adjacent macrophages to
become FRβ+ macrophages (41). These M-CSF primed FRβ+

macrophages produce high levels of platelet-derived growth
factor (PDGF)-AA which promotes fibroblast migration and
proliferation. Furthermore, macrophages are incredibly plastic
cells that may change their phenotype in response to cues
from the microenvironment. Proinflammatory cytokines such
as IFNγ, IL-17, and IL-6 that are abundantly present in the
inflamed vessel wall may trigger the expression of a multitude
of macrophage markers (5). Notably, abundant numbers of
CD64+, CD86+, iNOS+ and CD163+ macrophages have
been reported in GCA-affected vessels (41, 46–48). Moreover,
these activated macrophages themselves produce a wide range
of proinflammatory cytokines (including IL-6, TNF-α, IL-1β,
GM-CSF) and growth factors (TGF-β, VEGF, PDGFs) (5).
Macrophage secreted proinflammatory cytokines contribute to
a positive feedback loop amplifying the inflammatory process.
Macrophage secreted growth factors promote fibroblasts and
VSMCs activation and differentiation into α-smooth muscle
actin (SMA)+ myofibroblasts and subsequently their migration
and proliferation in the intima layer which results in intimal
hyperplasia and ultimately vessel-wall occlusion (49, 50). Of note,
this pathogenic model has largely been constructed from studies
on TAB obtained from C-GCA patients.

LV-GCA
Our understanding of the pathogenesis of LV-GCA is derived
from studies with aortic specimens obtained during aortic
aneurysm surgery. Aortitis in GCA is characterized by
granulomatous inflammation largely occurring in the medial

layer of the aorta. This granulomatous inflammation leads
to medial necrosis which is responsible for aortic aneurysm
and may ultimately lead to aortic dissection. Although the
final consequences of LV-GCA may differ from C-GCA, the
cellular infiltrates are largely similar. Infiltrating leukocytes
in the inflamed aorta largely dominate the adventitia and the
media layer of the aorta. Infiltration of both activated CD4+
and CD8+ T cells has been reported in GCA affected aorta (51).
While the infiltration of T cells in adventitia and media of the
aorta has been described, infiltration of CD20+ B cells mainly
localizes in the adventitia where these cells are organized into
TLOs (38). Macrophages expressing CD64, CD86, CD206, and
FRβ are abundant in the adventitia and the media of GCA-
affected aortas (41). CD206+/MMP-9+/YKL-40+ macrophages
surround the necrotic areas in the media indicating a role
in medial destruction (41). Notably, a reduction of α-SMA+
cells has been reported in the media of GCA-affected aortas
due to medial necrosis which differs from the increase of
adventitial and intimal α-SMA+ myofibroblasts in temporal
arteries (52).

PMR
In contrast to GCA, not much is currently known regarding
the immunopathology of PMR. One of the first reports studying
synovial tissue biopsies of PMR patients was published in
1964 in which hyperplasia of synovial lining cells, increased
vascularity, and leukocyte infiltration mainly consisting of
lymphocytes and macrophages were described (53). In the 1990s,
immunohistological investigation on glenohumeral synovial
tissue of patients with PMR revealed that CD68+ macrophages
comprise the majority of the infiltrating cells followed by T
cells and a small percentage of neutrophils (54). The T cell
infiltrates were mainly comprised of CD45RO+ memory CD4+
T cells although small numbers of CD8+ T cells were also
detected. B cells were not detected in the synovial tissue.
In another report, the same group showed elevated VEGF
expression by both CD3+ T cells and CD68+ macrophages
in synovial biopsy tissues which correlated with vessel density
indicating that these cells are involved in vasa vasorum
formation and subsequently enhanced leukocyte infiltration in
the synovium of PMR patients (55). More recently, enrichment
of both CD4+ and CD8+ T cells in the synovial fluid of
PMR patients have been reported (56). These T cells show a
high IFNγ producing capacity pointing toward Th1 and Tc1
subsets. To date, no further cellular profiling has been done
in the synovial tissues of PMR patients. Taking clues from
other inflammatory diseases of the joint such as rheumatoid
arthritis (RA) and osteoarthritis (OA), infiltration of CD206+,
FRβ+, CD163+, MMP-9+ and iNOS+ macrophages has been
reported (57, 58). Whether or not these cells are also involved
in the immunopathology of PMR remains to be elucidated.
Therefore, it is warranted for future studies to focus on deeper
phenotyping of the cellular infiltrates in PMR synovial biopsies
to better understand their roles in the immunopathology of
PMR and subsequently target these cells for imaging and
therapeutic purposes.
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POTENTIAL NOVEL PET TRACERS FOR
DIAGNOSIS AND MONITORING OF GCA
AND PMR

The knowledge regarding the cellular heterogeneity in the
pathogenesis of GCA and PMR may allow us to target these
specific cells for imaging purposes. For a long time, [18F]FDG-
PET has dominated the imaging landscape in oncology and
inflammatory diseases alike. However, more recent efforts have
shifted the trend toward targeting a specific cellular population.
Targeting specific cell populations may provide the following
advantages compared to [18F]FDG-PET:

(1) Lower background activity, thereby increasing target-to-
background ratio and the imaging accuracy.

(2) Ability to evaluate specific cell populations as prognostic
markers for disease progression and treatment response, thereby
aiding the design of personalized treatment regimens, especially
with emerging novel immunotherapies.

(3) Better insight into treatment effects. Novel
immunotherapies often specifically target cellular pathways
which may alter specific cell populations at the site
of inflammation.

(4) Cellular infiltrates are unlikely to disappear immediately
upon initiation of treatments in patients with immune-mediated
inflammatory diseases including GCA and PMR (54, 59,
60), whereas especially glucocorticoid treatment may promptly
impact the glucose metabolism by infiltrating immune cells and
liver. Thus, the time interval of diagnostic scanning for cell-
specific PET tracers might potentially be longer.

As the efforts in developing PET radiotracers targeting specific
cell populations are increasing, these radiotracers may also
prove to be useful for the imaging of GCA and PMR which is
summarized below (Figure 1).

T Cell-Targeted Radiotracers
T cells are one of the most abundant infiltrating cell types in the
inflamed GCA vessels (61). In the synovium of PMR patients,
although not the most abundant cells, infiltration of T cells has
been documented as well (54). Several radiotracers targeting T
cells have been developed and are currently undergoing clinical
trials for imaging other diseases, primarily oncology (Table 1).
These radiotracers may also prove to be useful for the imaging
of GCA and PMR patients.

IL-2 is a pleiotropic cytokine highly secreted by activated
T cells which promotes T cell survival, expansion and
differentiation into effector cells (72). The IL-2 receptor consists
of three subunits including IL-2Rα (CD25), IL-2Rβ (CD122),
and IL-2Rγ (CD132). IL-2 signals through the intermediary
IL-2 receptor comprising the IL-2Rβ and IL-2Rγ chain. Upon
activation, T cells gain elevated expression of CD25, completing
the high-affinity receptor with the three subunits (72, 73).
As a crucial cytokine in T cell functions, IL-2 is rapidly
consumed by activated T cells making it an attractive cytokine
for targeted imaging of activated T cells. The IL-2 targeted SPECT
radiotracers, [99mTc]IL-2 and [99mTc]HYNIC-IL-2, have already
been applied successfully for the visualization of vulnerable

atherosclerotic plaques, transplant rejection and autoimmune
thyroid disease (74–76). Furthermore, visualization of Takayasu
arteritis has been reported in a case study utilizing [99mTc]IL-
2 scintigraphy (77), pointing toward the possible utility of
IL-2 based lymphocyte targeted imaging in the detection
of GCA.More recently, several PET radiotracers based on
radionuclide tagged IL-2 have been reported. The first-generation
IL-2 tracer, [18F]FB-IL-2, was reported to show high-affinity
binding to activated human peripheral blood mononuclear cells
(hPBMCs). The reports showed a high correlation of [18F]FB-
IL-2 uptake with the number of CD25+ cells in vitro and
in matrigel implants with activated hPBMCs (62–64). In a
recent study, [18F]FB-IL-2 imaging successfully detected tumor
lesions in metastatic melanoma patients (63). Biodistribution
data showed high uptake in secretion organs (liver and
kidneys), lymphoid organs (spleen and bone marrow) and
the blood pool (myocardial and aortic) but low uptake in
other non-target organs including the brain. The high blood
pool radioactivity, however, may mask the detection of arterial
inflammation in GCA. Recently, second-generation IL-2 based
tracers, [18F]AIF-RESCA-IL2 and [68Ga]Ga-NODAGA-IL2 have
been developed (65). Although yet to be tested in humans, both
radiotracers showed high specific uptake in lymphoid tissue
and hPBMC xenografts in a mouse model. In addition, both
second-generation radiotracers showed no brain uptake and
lower blood pool radioactivity compared to [18F]FB-IL-2 which
may be advantageous for the detection of aortic and arterial
inflammation in GCA. Furthermore, as T cell infiltration in
the synovium of PMR patients has been documented, these
radiotracers may also prove to be useful for PMR imaging.

Dominant CD4+ T cell infiltration over CD8+ T cells at the
site of inflammation has been reported for both GCA and PMR
(51, 54), making CD4+ T cells an attractive target for imaging of
these diseases. Two ImmunoPET tracers targeting human CD4T
cells have been recently reported. Nanobody-based [64Cu]CD4-
Nb1 showed specific uptake in organs with high numbers of
CD4+ T cells including lymph nodes, thymus, spleen, and liver
with rapid blood and lung clearance via renal elimination in a
human CD4 knock-in mouse model (66). Similarly, minibody
based [64Cu]NOTA-IAB41 showed specific uptake in CD4+
T cells infiltrated lungs, spleen, liver and kidney in hPBMC
injected humanized mice (67). Interestingly, the report also
showed successful visualization of CD4+ T cell infiltration in
a humanized brain tumor mouse model compared to no brain
uptake in the non-disease control group. Both radiotracers may
potentially be useful in imaging GCA and PMR patients.

Lower numbers of infiltrating CD8+ T cells compared to
CD4+ T cells have been reported in the inflamed vessels of GCA
patients. However, CD8 targeted imaging may still be valuable
for this disease since the presence of large arterial CD8T cell
infiltrates is associated with disease severity (51). A minibody
based CD8+ T cell-targeted radiotracer, [89Zr]Df-IAB22M2C,
has been developed and is currently actively investigated in
several clinical trials. Reports of CD8+ T cells imaging in patients
with solid tumors have shown successful visualization of tumor-
infiltrating CD8+ T cells and specific uptake in CD8+ rich
lymphoid organs (70, 71). Moreover, low blood pool radioactivity
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FIGURE 1 | Imaging targets that are potentially useful for the imaging of GCA and PMR (created with BioRender.com).

TABLE 1 | T cell targeted PET radiotracers.

Target Target marker/ Radiotracer Class Clinical/ Active clinical References

cell pathway preclinical trials

Activated T cells IL-2R [18F]FB-IL-2 Cytokine Clinical NCT04163094

NCT02478099

(62–64)

IL-2R [18F]AIF-RESCA-IL2 Cytokine Preclinical – (65)

IL-2R [68Ga]Ga-NODAGA-IL2 Cytokine Preclinical – (65)

CD4+ T cells CD4 molecule [64Cu]CD4-Nb1 Nanobody Preclinical – (66)

[64Cu]NOTA-IAB41 Minibody Preclinical – (67)

CD8+ T cells CD8 molecule [89Zr]-Df-IAB22M2C Minibody Clinical NCT03802123

NCT04874818

NCT04826393

NCT05013099

NCT04606316

NCT04180215

NCT03533283

(68–71)

and no brain uptake were detected in these patients making it
suitable for imaging C-GCA and LV-GCA. The infiltration of
CD8+ T cells in the synovium of PMR patients is scarce and
therefore CD8+ T cell-targeted imaging may be less suitable
for PMR.

Although PD-1 expressing T cell infiltration has been reported
in GCA (30, 31), only two radiotracers targeting PD-1 based on
PD-1 antagonist nivolumab and pembrolizumab are currently
available (78). Since the development of both GCA and PMR
as consequences of PD-1/PD-L1 inhibition therapy of cancer
patients has been reported (79, 80), the use of these radiotracers

for the imaging of GCA and PMR may potentially worsen the
disease and is therefore not feasible. However, with the rise
of PD-1 agonists (81–84), future applications of these PD-1
agonist-based radiotracers may prove to be useful as a theranostic
approach in these diseases.

Macrophage Targeted Radiotracers
Macrophages play vital roles and are one of the most abundant
cell types infiltrating the inflamed vessels and synovial tissue
of GCA and PMR patients making them attractive targets for
cell-specific imaging (5, 54). As macrophages are incredibly
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plastic cells, not all tracers are suitable for the imaging of
macrophages in GCA and PMR patients. As our knowledge
regarding macrophage heterogeneity in the pathogenesis of GCA
has improved considerably, we will focus on a selected number
of radiotracers targeting macrophage phenotypes that have been
proven to be involved in the vasculopathy of GCA (Table 2).

Macrophage-targeted imaging of translocator protein
(TSPO; also known as PBR or peripheral benzodiazepine
receptor) was first developed for the targeted imaging of
microglia in neuroinflammation. It was later found that
TSPO targeted imaging could be utilized for the imaging
of non-neuronal inflammatory diseases such as rheumatoid
arthritis (RA), atherosclerosis, Takayasu arteritis (TAK),
systemic lupus erythematosus (SLE), and GCA (88, 94, 98–
100, 103, 106, 185, 190, 193). In 2010, Pugliese et al. successfully
showed the utility of [11C]PK11195, a first-generation TSPO
targeted radiotracer, in the detection of large-vessel vasculitis
including GCA (94). Shortly after, another study led by Lamare
et al. utilizing the radiotracer [11C]-(R)-PK11195 showed a
similar result in detecting vascular inflammation in patients
suffering from large-vessel vasculitis (106). Additionally, studies
have shown high uptake of a second-generation TSPO tracer,
[11C]DPA-713, in inflamed joints of RA patients pointing to the
potential in imaging PMR (185, 193). Although the utility has
been shown in imaging GCA, older generation TSPO targeted
radiotracers possess several disadvantages. The major drawback
of these radiotracers is the significantly lower binding capability
to TSPO in patients with a common TSPO gene polymorphism
(rs6971), which resulted in variability in the imaging signal
(324, 325). Furthermore, these older generation TSPO targeted
tracers are not very specific and show high background
radioactivity, which may hamper the imaging capability (326).
The third generation of TSPO targeted radiotracers, such as
[18F]FEBMP, [18F]ER176 and [18F]-(S)-GE387, are designed
to overcome these drawbacks. Notably, a recent study using
another second-generation tracer, [11C]PBR28, documented
no vascular uptake in patients suffering from large-vessel
vasculitis (Takayasu arteritis and GCA) (327). It is unclear
whether this discrepancy was caused by the unspecific binding
of the first-generation TSPO tracers in the inflamed tissues.
This discrepancy warrants a more detailed investigation into
the feasibility of new generation TSPO targeted tracers in
imaging GCA.

The mannose receptor (CD206) is a C-type lectin receptor
highly expressed by certain populations of macrophages. Several
CD206 targeted radiotracers have been developed and some
have been used in clinical applications (Table 2). Employing the
receptor-ligand binding approach, tracers based on mannose
derivatives, mannose coated liposome, andmannosylated protein
have shown reliable CD206 targeting. [18F]FDM based on
fluorodeoxy-mannose have been shown to have lower non-
specific brain uptake compared to [18F]FDG in patients with
brain infarction (241). Furthermore, this radiotracer has been
successfully used in preclinical imaging of atherosclerotic lesions
in a rabbit model supporting its potential in vascular imaging
(328). More recently, anti-CD206 nanobody-based radiotracers
have been developed which are more specific compared to

the mannose derivatives-based tracers. In animal models of
atherosclerosis and cancer, these radiotracers have shown rapid
blood clearance and low radioactivity in non-target organs
including the brain (243, 245, 246). The abundance of CD206+
macrophages responsible for expressing high levels of YKL-40
and MMP-9, a proangiogenic and tissue destructive collagenase,
respectively, has been documented in affected vessels of GCA
patients (41, 42). These macrophages are likely skewed by
GM-CSF in the microenvironment and are considered to
be responsible for media destruction in GCA. Given their
prominent roles, targeted imaging of CD206+macrophages may
be beneficial for the diagnosis and prognosis of GCA.

The interest in folate-based imaging started over two decades
ago when folate receptor-expressing tumors were discovered
(329). This led to the rapid development of numerous folate
receptor-targeted radiopharmaceuticals. Of note, some of these
radiotracers are tagged with highly radioactive nuclides or toxic
particles intended as radiotherapeutics for cancers (330–333).
More recently, it has been demonstrated that some macrophages
involved in autoimmune and inflammatory diseases, including
GCA, express high levels of folate receptor beta (FRβ) as
well. Interestingly, the degree of FRβ+ macrophage infiltration
in the intima of the GCA affected vessels has been linked
to intimal hyperplasia (41). Patients with intimal hyperplasia
in their biopsy may be more likely to develop ischemic
complications than those without (334). Imaging FRβ may
potentially reveal the degree of vessel wall occlusion in C-
GCA and may signal the need for the rapid induction of
high-dose GC therapy to lower the risk of vision loss in
these patients. Among the plethora of FR-targeted radiotracers,
[18F]fluoro-PEG-folate and [18F]AzaFol have been used in
clinical applications (259, 263). [18F]fluoro-PEG-folate was
assessed in patients with RA and showed specific uptake in
inflamed joints with low brain uptake. The infiltration of FRβ+

macrophages in the synovial tissue of RA patients has been
well-documented. On the other hand, the utility of [18F]AzaFol
was assessed in patients with FRα+ adenocarcinoma of the
lungs. These studies demonstrate the utility of these novel folate
receptor-targeted radiotracers in human subjects, but at the
same time revealed that folate receptor imaging may not be
very specific due to uptake by both FRα+ and FRβ+ cells.
Nevertheless, folate receptor imaging may still prove to be useful
in patients suffering from GCA especially in the detection of
patients at risk of developing ischemic events due to severe
intimal hyperplasia.

Immunotherapy targeting T cell activation by blocking
CD80/86 on antigen-presenting cells (APCs) with a CTLA-
4Ig fusion protein (abatacept) is currently evaluated in GCA
(NCT04474847). An earlier phase II randomized control trial
of abatacept for the treatment of GCA showed promising
results with significant proportions of patients achieving relapse-
free survival rate at 12 months compared to placebo (48%
abatacept vs. 31% placebo; p = 0.049) (335). Separately, a case
report has shown the potential application of abatacept for the
treatment of PMR (336). Together, these encouraging results may
point toward the potential application of radionuclide tagged
[64Cu]NODAGA-abatacept in GCA and PMR.
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TABLE 2 | Macrophage targeted PET radiotracer.

Target marker/ Radiotracer Class Clinical/ Active clinical References

pathway preclinical trials

TSPO [11C]PK11195 TSPO antagonist Clinical NCT03368677 (85–94)

NCT04239820

NCT05111678

[11C]-(R)-PK11195 TSPO antagonist Clinical – (95–114)

[11C]DAA1106 TSPO agonist Clinical – (115–121)

[18F]DAA1106 TSPO agonist Preclinical – (122–124)

[18F]FEDAA1106 TSPO agonist Clinical – (125–130)

[18F]FMDAA1106 TSPO agonist Preclinical – (125)

[11C]PBR28 TSPO agonist Clinical NCT04274998

NCT05205291

NCT04230174

NCT03705715

NCT04490096

NCT02649985

NCT04236986

NCT04398719

NCT04811404

NCT04066244

NCT04233593

NCT03106740

NCT05066308

NCT04486118

NCT05183087

(131–145)

[18F]PBR06 TSPO agonist Clinical NCT04510220

NCT03983252

NCT04144257

NCT02649985

(146–150)

[11C]PBR06 TSPO agonist Preclinical – (147)

[11C]PBR01 TSPO agonist Preclinical – (151, 152)

[18F]FEPPA TSPO agonist Clinical NCT02945774

NCT04814355

NCT04307667

NCT04854785

(153–163)

[18F]PBR111 TSPO antagonist Clinical – (164–169)

[18F]PBR102 TSPO antagonist Preclinical – (166, 169, 170)

[11C]CB184 TSPO antagonist Clinical – (171–174)

[11C]CLINME TSPO ligand Preclinical – (167, 175, 176)

[18F]CB251 TSPO ligand Preclinical – (177–179)

[11C]AC-5216 TSPO agonist Preclinical – (180)

[11C]DAC TSPO agonist Preclinical – (181, 182)

[11C]DPA-713 TSPO agonist Clinical – (183–193)

[18F]DPA-714 TSPO agonist Clinical NCT03759522

NCT03754348

NCT03457493

NCT04362644

NCT03999164

NCT04364672

NCT04542603

NCT03230526

NCT03968445

NCT05238961

NCT04520802

NCT05147532

NCT03691077

NCT04171882

NCT03482115

NCT03314155

(193–195)

(Continued)
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TABLE 2 | Continued

Target marker/ Radiotracer Class Clinical/ Active clinical References

pathway preclinical trials

NCT05128903

NCT03435861

NCT05233605

NCT04785157

[18F]DPA-C5yne TSPO agonist Preclinical – (196)

[18F]FDPA TSPO agonist Preclinical – (197–200)

[18F]VUIIS1018A TSPO agonist Preclinical – (201, 202)

[18F]FEDAC TSPO ligand Preclinical – (203–205)

[11C]SSR180575 TSPO agonist Preclinical – (206)

[18F]SSR180575 TSPO agonist Preclinical – (207)

[18F]FEMPA TSPO ligand Clinical NCT05039268 (208–210)

[18F]FETEM TSPO ligand Preclinical – (211)

[18F]FEBMP TSPO ligand Preclinical – (212, 213)

[18F]GE180 TSPO ligand Clinical NCT04412187

NCT03702816

(214–223)

(R)-[18F]NEBIFQUINIDE TSPO ligand Preclinical - (224)

[11C]ER176 TSPO ligand Clinical NCT04762719

NCT04840979

NCT03705715

NCT04576793

NCT03958630

NCT03912428

NCT04510168

NCT04786548

(225–228)

[18F]ER176 analogs TSPO ligand Preclinical – (229, 230)

[18F]-(S)-GE387 TSPO ligand Preclinical – (223, 231)

[18F]LW223 TSPO ligand Preclinical – (232, 233)

[18F]BS224 TSPO ligand Preclinical – (234)

CD206 [64Cu]MAN-LIPs Mannose coated liposome Preclinical – (235)

[68Ga]NOTA-MSA Mannosylated protein Clinical – (236–239)

[18F]FDM Mannose derivative Clinical – (240, 241)

[68Ga]IRDye800-tilmanocept Mannose derivative Preclinical – (242)

[18F]FB-anti-MMR 3.49 sdAb Nanobody Preclinical – (243)

[68Ga]MMR Nanobody Preclinical – (244)

[68Ga]Ga-NOTA-anti-MMR-sdAb Nanobody Preclinical – (245)

[68Ga]Ga-NOTA-MMR Nb Nanobody Preclinical – (246)

[68Ga]Ga-NOTA-anti-MMR-VHH2 Nanobody Clinical NCT04168528

NCT04758650

–

FRβ [18F]α/γ-FBA-Folate Folate derivative Preclinical – (247)

[18F]click-folate Folate derivative Preclinical – (248)

[68Ga]DOTA-folate Folate derivative Preclinical – (249)

2’-[18F]fluorofolic acid Folate derivative Preclinical – (250)

[18F]fluorobenzene-folate Folate derivative Preclinical – (251)

[18F]pyridinecarbohydrazide-folate Folate derivative Preclinical – (251)

[18F]fluorodeoxy-glucose-folate Folate derivative Preclinical – (252–254)

[68Ga]NODAGA-folate Folate derivative Preclinical – (255)

[68Ga]DO3A-EA-Pte Pteroic acid derivative Preclinical – (256)

3
′

-aza-2
′

[18F]fluorofolicacid/[18F]AzaFol Folate derivative Clinical – (257–259)

[18F]fluoro-PEG-folate Folate derivative Clinical NCT05215496 (260–263)

4-[18F]-fluorophenylfolate Folate derivative Preclinical – (264)

[68Ga]NOTA-folate Folate derivative Preclinical – (265, 266)

α/β-click[18F]FDG-folate Folate derivative Preclinical – (267)

α/β-click[18F]FE-folate Folate derivative Preclinical – (267)

(Continued)
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TABLE 2 | Continued

Target marker/ Radiotracer Class Clinical/ Active clinical References

pathway preclinical trials

α/β-click[18F]FB-folate Folate derivative Preclinical – (267)

Folate-NOTA-Al[18F] Folate derivative Preclinical – (268)

[64Cu]rf42 Folate derivative Preclinical – (269)

[68Ga]rf42 Folate derivative Preclinical – (269)

[68Ga]DOTA-Lys-Pteroyl Pteroyl-Lys derivatives Preclinical – (270)

[68Ga]DOTA-DAV-Lys-Pteroyl Pteroyl-Lys derivatives Preclinical – (270)

[68Ga]NOTA-folic acid Folate derivative Preclinical – (271)

[89Zr]FA-DFO-liposome Folate coated liposome Preclinical – (272)

[68Ga]HCEF Folate derivative Preclinical – (273)

Folate-PEG12-NOTA-Al[18F] Folate derivative Preclinical – (274)

[64Cu]DOTA-FA-FI-G5·NHAc dendrimers Folate tagged dendrimers Preclinical – (275)

[18F]Ala-folate Folate derivative Preclinical – (276)

[18F]DBCO-folate Folate derivative Preclinical – (276)

[18F]FOL Folate derivative Preclinical – (277, 278)

[68Ga]NODAGA-FA Folate modified polymer Preclinical – (279)

[55Co]Co-cm10 Folate derivative Preclinical – (280)

[55Co]Co-rf42 Folate derivative Preclinical – (280)

[68Ga]Ga-FA-I Folate derivative Preclinical – (281)

[68Ga]Ga-FA-II Folate derivative Preclinical – (281)

[89Zr]SFT-1 Folate coated nanoparticle Preclinical – (282)

[68Ga]FOL Folate derivative Preclinical – (283)

[89Zr]FA-SMWs Folate coated micro-silica Preclinical – (284)

CD80/86 [64Cu]NODAGA-abatacept Biologic Preclinical – (285)

iNOS S-[11C]methylisothiourea iNOS inhibitor Preclinical – (286)

S-(2-[18F]fluoroethyl)-isothiourea iNOS inhibitor Preclinical – (286)

[18F]FFDI iNOS inhibitor Preclinical – (287)

[18F]6-(2-fluoropropyl)-4-methyl-

pyridin-2-amine

iNOS inhibitor Preclinical – (288)

[18F]NOS iNOS inhibitor Clinical NCT04062526 (289, 290)

[18F]FBAT iNOS inhibitor Preclinical – (291)

CCR2 [64Cu]DOTA-ECL1i Peptide Clinical NCT04217057

NCT03492762

NCT05107596

NCT04592991

NCT04537403

NCT03851237

NCT04586452

(292–300)

[64Cu]AuNCs-ECL1i Peptide Preclinical – (293)

[64Cu]Cu@CuOx Nanoparticle Preclinical – (301)

[18F]6b Chemical compound Preclinical – (302)

CX3CR1 [11C]methyl(2-amino-

5(benzylthio)thiazolo[4,5-d]pyrimidin-

7-yl)-d-leucinate

Chemical compound Preclinical – (303)

VEGF [124 I]HuMV833 Antibody Clinical – (304)

[124 I]iodinated-VG76e Antibody Preclinical – (305)

[89Zr]bevacizumab Antibody Clinical – (306–317)

[64Cu]DOTA-bevacizumab Antibody Preclinical – (318)

[89Zr]ranibizumab Antibody Preclinical – (319)

[64Cu] NOTA-Bev-800CW Antibody Preclinical – (320)

[124 I]aflibercept VEGF antagonist Preclinical – (321)

[64Cu]NOTA-bevacizumab Antibody Preclinical – (322)

[64Cu]L19K-FDNB Peptide Preclinical – (323)

Frontiers in Medicine | www.frontiersin.org 9 June 2022 | Volume 9 | Article 902155

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


van der Geest et al. Novel PET Imaging of GCA/PMR

Inducible nitric oxide synthase (iNOS) is a reactive oxygen
and nitrogen metabolite-metabolizing enzyme typically
expressed by activated proinflammatory macrophages. The
utility of [18F]NOS, iNOS targeted radiotracer based on iNOS
inhibitor has been reported in allograft rejection patients and
patients with acute lung inflammation (289, 290). The studies
also showed low brain radioactivity suitable for the imaging of
C-GCA. Intimal infiltrating iNOS+ macrophages have been
previously reported in GCA whereas in the adventitia of these
vessels iNOS+ macrophages were absent (48). Therefore, iNOS
imaging may be valuable as a tool to detect intimal macrophage
infiltration and potentially intimal hyperplasia.

The chemokine receptors CCR2 and CX3CR1 are responsible
for the trafficking of monocytes into the GCA affected vessel
wall where these cells will then mature into macrophages (33).
The radiotracer [64Cu]DOTA-ECL1i specifically targeting CCR2
may be useful for imaging infiltrating monocytes/macrophages
in GCA affected vessels. The utility of this radiotracer has
recently been investigated in patients with pulmonary fibrosis
(298). The study showed specific uptake in diseased lungs with
little uptake in healthy controls. Moreover, low non-specific
brain uptake and low blood radioactivity may be beneficial
for imaging both LV-GCA and C-GCA. On the other hand,
the radiotracer [11C]methyl(2-amino-5(benzylthio)thiazolo[4,5-
d]pyrimidin-7-yl)-d-leucinate designed to target CX3CR1, failed
to show specific binding to CX3CR1 and therefore is not
suitable for imaging GCA at the current state (303). As
CX3CR1+ monocyte infiltration was reported to be higher than
CCR2+ monocytes, future radiotracers targeting CX3CR1 may
be beneficial for the imaging of GCA.

The abundance of vascular endothelial growth factor (VEGF),
a potent pro-angiogenic growth factor, has been reported in
the synovium of PMR patients (55). Macrophages have been
implicated as the major source of VEGF as these cells are the
major cellular infiltrates in the inflamed synovium (55). The
antibody-based radiotracer [89Zr]bevacizumab targeting VEGF
has been successfully used to visualize VEGF expression in
multiple oncological conditions (308, 314–317). Additionally, the
utility of [89Zr]bevacizumab in detecting VEGF expression in
atherosclerotic plaques has been shown in ex vivo imaging studies
of human carotid endarterectomy (CEA) specimens (309). Since
the increased expression of VEGF has been reported in PMR,
[89Zr]bevacizumab imaging may be useful for imaging PMR
patients. Of note, although inflammatory macrophages are major
producers of VEGF in PMR, infiltrating T cells are also capable
of producing VEGF (55). Hence, VEGF-targeted imaging may
not be specific for macrophages. In GCA, heightened VEGF
expression has been documented especially in the adventitia of
GCA-affected vessels (337). However, whether macrophages or T
cells are the main producers of VEGF in GCA lesions remains to
be further explored. Nevertheless, VEGF imagingmay potentially
also be useful for imaging GCA.

Most of themacrophage-targeted radiotracers discussed above
may be suitable for imaging GCA. However, whether similar
macrophage phenotypes are involved in the pathogenesis of PMR
remains to be proven since, to our knowledge, no study to date
has explored macrophage heterogeneity in PMR.

B Cell-Targeted Radiotracers
B cell infiltration and organization into TLOs have been well-
documented in GCA (38, 338). However, B cell appear to be
absent in the synovial tissue of PMR patients (54). Therefore, B
cell-targeted imaging may only be suitable for GCA. Several B
cells targeted radiotracers have been developed (Table 3).

A case report has documented the resolution of vascular
inflammation in a GCA patient with rituximab B cell depletion
therapy (354). However, no further trials are currently
ongoing for rituximab therapy in GCA. Rituximab-based
radiotracer [89Zr]rituximab has been successfully used to
image B cells in lymphoma and RA patients (347, 348). The
radiotracer showed low background activity in the blood
pool which may support its suitability for application in
imaging GCA.

Activated Fibroblast Targeted Radiotracers
Remodeling of the arterial wall secondary to inflammation
may cause vessel occlusion and hence, be responsible for
the ischemic events in GCA. Fibroblast activation, migration,
and proliferation in the intima have been reported as one
of the causes of intimal hyperplasia (50). Currently, the
targeted imaging of fibroblast activation protein alpha (FAP),
a serine protease expressed mainly by activated fibroblast, is
gaining tremendous interest in cancer and inflammatory diseases
(355). The interest in FAP targeted imaging started with the
development of radiolabeled FAP inhibitor [125I]MIP-1232 for
single-photon emission computed tomography (SPECT) imaging
of atherosclerosis (356). However, ex vivo, the radiotracer showed
uptake in normal arteries as well hampering its utility for
atherosclerotic imaging. Since then, more specific FAP inhibitors
(FAPIs) have been rapidly developed and radiolabeled as PET
radiotracers (Table 4).

From these FAPI based radiotracers, [68Ga]FAPI-04 has been
rapidly implemented in clinical trials and has shown superiority
compared to the long-time gold standard [18F]FDG for imaging
cancer and inflammation as recently summarized by Li et al.
(355). These reports showed high and specific uptake in tumors
as well as at sites of fibrosis and inflammation while displaying
negligible blood pool and brain radioactivity supporting its
potential application for imaging both C-GCA and LV-GCA.
Although FAP expression has not yet been investigated in the
context of GCA and PMR, a case report has shown successful
visualization of aortic and arterial inflammation in a patient
suffering from GCA using [68Ga]FAPI-04 (368). Interestingly
[68Ga]FAPI-04 imaging showed negligible radioactivity in non-
target organs including the brain, background tissue, and in the
blood pool, which may allow accurate detection of C-GCA. This
case report demonstrates the potential of FAP targeted imaging
for visualization of vascular inflammation in GCA warranting
further investigation especially in comparison with the current
gold standard [18F]FDG-PET. No reports have shown the utility
of FAP targeted imaging in PMR patients to date. Yet, successful
FAP targeted imaging has been demonstrated in RA patients
which may point to its potential to image inflammation in PMR
patients as well (369).
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TABLE 3 | B cell targeted PET radiotracers.

Target marker/ Radiotracer Class Clinical/ Active clinical References

pathway preclinical trials

CD20 [64Cu]DOTA-minibody (based on rituximab) Minibody Preclinical – (339)

[124 I]anti-CD20-Cys-Db (based on rituximab) Diabody Preclinical – (340)

[124 I]rituximab Antibody Clinical – (341, 342)

[89Zr]rituximab Antibody Clinical – (343–348)

[64Cu]DOTA-rituximab Antibody Preclinical – (349, 350)

[64Cu]FN3(CD20) Protein Preclinical – (351)

[18F]FB-GAcDb (based on obinutuzumab) Diabody Preclinical – (352)

[89Zr]GacDb (based on obinutuzumab) Diabody Preclinical – (353)

[89Zr]GacMb (based on obinutuzumab) Minibody Preclinical – (353)

TABLE 4 | Fibroblast activation protein alpha (FAP) targeted PET radiotracers.

Radiotracer Class Clinical/preclinical Active clinical trials References

[68Ga]FAPI-02 FAP inhibitor Preclinical – (357)

[68Ga]DOTA.SA.FAPI FAP inhibitor Clinical – (358, 359)

[68Ga]FAPI-04/[68Ga]DOTA-FAPI-04 FAP inhibitor Clinical NCT05003427

NCT04504110

NCT04533828

NCT04441606

NCT04499365

NCT04831034

NCT04416165

NCT05121779

NCT05140746

(357)

[68Ga]NOTA-FAPI-04 FAP inhibitor Clinical NCT04499365

NCT04367948

NCT04750772

NCT05004961

(360)

[68Ga]FAPI-21 FAP inhibitor Clinical – (361)

[68Ga]FAPI-46 FAP inhibitor Clinical NCT05160051

NCT04941872

NCT04457258

NCT04457232

NCT04459273

NCT04147494

NCT05172310

(361)

[68Ga]TEFAPI-06 FAP inhibitor Preclinical – (362)

[68Ga]TEFAPI-07 FAP inhibitor Preclinical – (362)

[68Ga]FAPI-C12 FAP inhibitor Preclinical – (363)

[68Ga]FAPI-C16 FAP inhibitor Preclinical – (363)

[68Ga]FAPtp FAP inhibitor Preclinical – (364)

[68Ga]Aib-FAPtp-01 FAP inhibitor Preclinical – (364)

[68Ga]DOTA-2P(FAPI)2 FAP inhibitor Clinical NCT04941872 (365)

[18F]FGlc-FAPI FAP inhibitor Preclinical – (366)

Al[18F]NOTA-FAPI FAP inhibitor Clinical (367)

[18F]NOTA-FAPI-04 FAP inhibitor Clinical NCT04367948

NCT04750772

NCT05004961

–

Endothelial Cell-Targeted Radiotracers
Neoangiogenesis is one of the crucial pathogenic features of GCA
and PMR. Increased vascularity in the vessel wall and synovium
of GCA and PMR patients further enables the invasion of

leukocytes thereby fueling the inflammatory process (32, 54, 55).
In uninflamed vessels, the luminal endothelium does not express
the inducible adhesion molecules VCAM-1. In inflamed GCA-
affected vessels, the intense expression of VCAM-1 has been
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reported on neovessel endothelial cells making this adhesion
molecule suitable for targeted imaging (32). Several radiotracers
targeting VCAM-1 have been developed (Table 5) which may be
useful for imaging GCA.

An alternative approach to image angiogenesis is to target
the integrin αvβ3 and specific radiotracers for this integrin
have already been applied in clinical practice for imaging
tumor metastasis (374–376). However, whether this approach
is suitable for imaging GCA is uncertain since the αvβ3
integrin is constitutively expressed on the luminal endothelium
(377). Nevertheless, studies have demonstrated the enhanced
uptake of αvβ3 integrin-targeted tracers in atherosclerotic
plaques corresponding to neo-vessel formation indicating its
potential utility in GCA (374, 378). Furthermore, imaging
integrin αvβ3 may be of interest for PMR as increased
vascularization has been reported in the synovial tissues from
PMR patients. Of note, integrin αvβ3 imaging is not specific
for angiogenesis as infiltrating leukocytes can also express this
adhesion molecule (379).

FUTURE PERSPECTIVES: TOWARD
DISEASE STRATIFICATION AND BETTER
TREATMENT MONITORING

The molecular PET imaging technique targeting specific markers
has made valuable contributions to clinical practice ranging from
diagnosis, staging, and prognosis to treatment monitoring. There
are clear examples in other fields of medicine, mainly from
the field of oncology, supporting the use of targeted imaging
in patient stratification for targeted therapy. For example, anti-
human epidermal growth factor receptor 2 (HER2) targeted
therapy is only effective in HER2+ breast cancer accounting for
only up to 30% of newly diagnosed breast cancer patient which
can be visualized by HER2 targeted PET imaging (380–383). In
another study, HER2+ PET imaging using [89Zr]trastuzumab
in combination with [18F]FDG resulted in a negative and
positive predictive value of 100% for discriminating between
patients with a time to treatment failure of 2.8 and 15
months (384). A recent preclinical study in a cancer mouse
model, in vivo imaging of different receptor tyrosine kinases
(RTKs) demonstrated a decrease in receptor expression levels
after their respective targeted therapy (385). Beyond oncology,
[18F]FDOPA PET imaging of striatal dopaminergic system has
been shown to effectively stratify responders and non-responders
of antipsychotic treatment in schizophrenic patients (386).
Collectively, these studies support the utility of targeted PET
imaging in aiding patient stratification for specific treatment
strategies, prognosis and precisionmonitoring of treatment effect
in inflammatory diseases including GCA and PMR.

In imaging GCA and PMR, radiotracers targeting specific
cell populations may potentially be superior compared to the
current gold standard [18F]FDG. The majority of the novel
PET radiotracers listed above have shown low non-target organ
uptake, especially in the brain, which could increase the TBR
and may translate into improved detection of cranial artery
inflammation in patients suffering from C-GCA. Additionally,

several novel radiotracers show low blood pool radioactivity
assuring optimal TBR and visualization of aortic and arterial
inflammation in LV-GCA.

Since persistent T cell and macrophage infiltration has been
reported in TAB of patients undergoing glucocorticoid treatment
(59, 60), imaging T cell and macrophage subsets could, in
theory, be superior to [18F]FDG in the diagnostic imaging of
GCA. Similarly, these radiotracers could also be useful for the
diagnostic imaging of PMR as persistent T cell and macrophage
infiltration has also been shown in PMR patients undergoing GC
treatment (54).

Imaging specific leukocyte populations may have prognostic
value andmay help in designing personalized treatment regimens
for GCA and PMR (387). The utility of immune cell targeted
imaging has indeed been reported in the context of oncology and
in autoimmune inflammatory diseases. An example of this was
reported in a study conducted using [99mTC]IL-2 scintigraphy
in melanoma patients. The study showed successful visualization
of tumor infiltrating lymphocytes which enables the selection
of patient whom may benefit from IL-2 immunotherapy (388).
Another example was reported in patients with rheumatoid
arthritis (RA) using B cell targeted [89Zr]rituximab (348). The
study showed that patients who responded to B cells depletion
therapy had higher baseline imaging signal. In the context of
GCA, the higher intensity of CD8+ T cell infiltration in the
vessel wall of GCA patients has been proposed as a risk factor
for visual impairment and a longer GC treatment dependency.
This suggests that CD8+ T cell imaging in GCA may confer
prognostic value (35). In the B cell compartment, CD20-based
imaging could prove to be useful as a theranostic approach to
identify GCA patients that may benefit from rituximab treatment
followed by a therapeutic dose of rituximab after imaging
confirmation (354). In another example, we have previously
reported the prognostic value of serum levels of YKL-40 in
patients suffering from GCA (389). Higher levels of serum YKL-
40 at baseline predicted a longer duration of GC treatment. In
the GCA-affected vessel wall, YKL-40 is highly expressed by GM-
CSF skewed CD206+ macrophages (42). Therefore, imaging the
extent of CD206+ infiltration in the vessels may also predict
the GC dependency of these patients. Recently, a phase II
clinical trial with a GM-CSF receptor blocker (mavrlimumab)
demonstrated GM-CSF receptor blockade to be efficacious in the
treatment of GCA (390). Furthermore, ex vivo treatment of GCA-
affected vessels with mavrilimumab documented a reduction of
CD206 expression (40). Based on these studies, imaging CD206
in GCA patients may potentially identify patients that could
benefit from mavrilimumab treatment. Along similar lines, the
cytokine IL-6 has been reported to elevate the expression of
CD163 on macrophages (5). Hence, the detection of CD163+
macrophages may reveal GCA patients that could benefit from
the IL-6 receptor blocker, tocilizumab. Although no report has
shown infiltration of CD163+ macrophages in PMR, IL-6 is
a major cytokine involved in the pathogenesis of this disease
denoting the possibility of CD163+ macrophage infiltration
in the synovium of PMR patients. Unfortunately, the only
CD163 targeted radiotracer currently reported was developed for
preclinical imaging in rat models but does not cross-react with
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TABLE 5 | Adhesion molecule VCAM-1 targeted PET radiotracers.

Target marker/ Radiotracer Class Clinical/ Active clinical References

pathway preclinical trials

VCAM-1 [18F]4V Peptide Preclinical – (370)

[18F]-FB-anti-VCAM-1 Nb Nanobody Preclinical – (371)

[68Ga]NOTA-VCAM-1scFv Antibody fragment Preclinical – (372)

[68Ga]MacroP Peptide Preclinical – (373)

NAMP–avidin–[68Ga]–BisDOTA Peptide Preclinical – (373)

human CD163 (391). Future development of CD163 targeted
tracers may be beneficial for the imaging of GCA patients and
potentially PMR patients.

The novel radiotracers discussed in this review may also be
used for monitoring treatment efficacy. Reduced numbers of T
cells and macrophages at the site of inflammation have been
reported (54, 59, 60). This may translate to a gradual decrease
in imaging signal during treatment which could be useful
for monitoring ongoing inflammation during GC treatment.
Furthermore, the reduced expression of endothelial adhesion
molecules VCAM-1 and E-selectin has been reported in the
vessels of GCA patients undergoing GC treatment (32). In
addition, targeted imaging of specific cell populations could also
be used for monitoring the efficacy of novel immunotherapies.
Reduced CD206 expression and neovascularization have been
reported in ex vivo cultured temporal artery explants of GCA
patients treated with mavrilimumab (40). Therefore, tracking
the dynamics of these cellular markers by imaging may be
useful for treatment effect monitoring in patients undergoing
mavrilimumab treatment.

Although these novel radiotracers may be useful for imaging
GCA and PMR, several considerations have to be taken into
account before these tracers can be applied in clinical practice.
Firstly, some of these novel tracers are tagged with radionuclides
with high radiation doses such as 89Zr (392). Nuclides with high
radioactivity are necessary for tracers based on large molecules
with low tissue penetration rates such as antibodies. The long
half-life of 89Zr (3.3 days) allows a longer period of time for
effective tissue penetration and blood clearance to ensure that
the signal can be imaged after a prolonged time frame after
injection. This higher radiation dose is permissible in imaging
oncology patients but is not recommended for patients with
autoimmune and inflammatory diseases such as GCA and PMR.
Therefore, it is important to develop radiotracers with better
tissue penetration rates and tagged with radionuclides with
lower radiation burdens such as 18F. The current emerging
technology employing camelid-based nanobody is promising in
this regard (393). Secondly, these novel radiotracers are not
readily available due to the production complexity and cost
compared to [18F]FDG (394, 395). Future research into an
improved methodology for the economical and rapid production
of these novel tracers is imperative to bring these into clinical
practice. Finally, although theoretically the novel radiotracers
mentioned in this review may be useful for the imaging
of GCA and PMR, clinical trials are needed to evaluate

and confirm their utility in the diagnosis and monitoring of
GCA and PMR.

SUMMARY AND CONCLUSION

Due to progress in our understanding of the immunopathology
of GCA/PMR and the development of novel, highly specific
tracers, direct imaging of immune cells/mediators by PET is
now within reach. Such novel PET imaging strategies targeting
a specific subset of inflammatory cells and activation markers of
resident cells could be valuable diagnostic tools in GCA/PMR.
Furthermore, direct imaging of infiltrating immune cells and
inflammatory mediators might be useful for the treatment
monitoring of GCA and PMR patients. Eventually, these novel
radiotracers may also hold promise for disease stratification in
GCA/PMR, since these tracers could help to select patients that
may benefit from particular treatment regimens. The majority
of these novel radiotracers are still mainly used as research
tools in academic centers. Efforts are needed to evaluate these
radiotracers in larger clinical trials to validate their utility in
clinical practice. The introduction and implementation of such
novel tracers will require close collaboration between patients,
clinicians (e.g., rheumatologists, internists), nuclear medicine
specialists and immunologists.
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