Dispersion Interactions in Exciton-Localized States. Theory and Applications to $\pi - \pi^*$ and $n - n^*$ Excited States

Michał Hapka, Katarzyna Pernal

Quantum Chemistry Group Lodz University of Technology

08.06.2022

Dispersion Interactions in Exciton-Localized States

Outline

- Introduction
- Theory
 - ▶ dispersion energy for ES
- Results
 - energy decomposition
 - ▶ comparison of CASSCF-based approaches

R. M. Young, M. R. Wasilewski, Acc. Chem. Res. 53, 1957 (2020)

Interactions involving excited-state molecules

- understanding of charge/energy-transfer processes
- design of optoelectronic materials
 - ▶ organic LEDs, solar cells, molecular switches, ...
- solvent effects on absorption/emission bands

Effective fragment potential: A. DeFusco et al., J. Phys. Chem. Lett, 2, 2184 (2011)

Interactions involving excited-state molecules

- understanding of charge/energy-transfer processes
- design of optoelectronic materials
 - ▶ organic LEDs, solar cells, molecular switches, ...
- solvent effects on absorption/emission bands

Polarizable embedding: P. Reinholdt et al., J. Chem. Theory Comput., 16, 5999 (2020)

Interactions involving excited-state molecules

- understanding of charge/energy-transfer processes
- design of optoelectronic materials

 \blacktriangleright organic LEDs, solar cells, molecular switches, ...

• solvent effects on absorption/emission bands

M. Hubert et al. J. Chem. Theory Comput., 12, 2203 (2016)

Challenges for *ab initio* approaches

- multireference PT-based methods (CASPT2, NEVPT2)
 - ▶ size-inconsistency, intruder states
- coupled-cluster response (CC2, CC3)
 - limited to small- and medium-size systems
- time-dependent DFT
 - dispersion corrections designed for ground states

A. Fabrizio, C. Corminboeuf, J. Phys. Chem. Lett. 9 464 (2018)

Motivation

- direct calculations of London dispersion in electronically excited vdW complexes
- study of vdW complexes: low-lying π - π^* and n- π^* states

A. Fabrizio, C. Corminboeuf, J. Phys. Chem. Lett. 9 464 (2018)

Motivation

- direct calculations of London dispersion in electronically excited vdW complexes
- study of vdW complexes: low-lying π - π^* and n- π^* states
- excition localized on one of the monomers
 - ▶ no need for degenerate PT

Outline

- Introduction
- Theory
 - ▶ dispersion energy for ES
- Results
 - ▶ energy decomposition
 - comparison of CASSCF-based approaches

$$\lim_{R_{AB}\to\infty} |\Psi^{AB}\rangle = |\Psi^A_I \Psi^B_J\rangle, \quad \text{if } |\Psi^A_I \Psi^B_J\rangle \text{ nondegerate}$$

$$E_{\rm disp}^{(2)}(A_I B_J) = -\sum_{\mu \neq I, \nu \neq J} \frac{1}{\omega_{\mu}^{A_I} + \omega_{\nu}^{B_J}} \left(\int d\mathbf{r}_1 \int d\mathbf{r}_2 \frac{\rho_{\mu}^{A_I}(\mathbf{r}_1) \rho_{\nu}^{B_J}(\mathbf{r}_2)}{r_{12}} \right)^2 \,,$$

where $I \rightarrow \mu$ transition energies and density are

$$\omega_{\mu}^{A_{I}} = E_{\mu}^{A} - E_{I}^{A}$$
$$\rho_{\mu}^{A_{I}}(\mathbf{r}) = N_{A} \sum_{\sigma} \int \Psi_{I}^{A}(\mathbf{x}, \mathbf{x}_{2}, ...)^{*} \Psi_{\mu}^{A}(\mathbf{x}, \mathbf{x}_{2}, ...) \mathrm{d}\mathbf{x}_{2} ... \mathrm{d}\mathbf{x}_{N_{A}}$$

where

$$W^{A_{I}B_{J}}_{\mu\nu} = -\frac{1}{\omega^{A_{I}}_{\mu} + \omega^{B_{J}}_{\nu}} \left(\int \int \frac{\rho^{A_{I}}_{\mu}(\mathbf{r}_{1})\rho^{B_{J}}_{\nu}(\mathbf{r}_{2})}{r_{12}} \mathrm{d}\mathbf{r}_{1} \mathrm{d}\mathbf{r}_{2} \right)^{2}$$

where

$$W^{A_{I}B_{J}}_{\mu\nu} = -\frac{1}{\omega^{A_{I}}_{\mu} + \omega^{B_{J}}_{\nu}} \left(\int \int \frac{\rho^{A_{I}}_{\mu}(\mathbf{r}_{1})\rho^{B_{J}}_{\nu}(\mathbf{r}_{2})}{r_{12}} \mathrm{d}\mathbf{r}_{1} \mathrm{d}\mathbf{r}_{2} \right)^{2}$$

where

$$W^{A_{I}B_{J}}_{\mu\nu} = -\frac{1}{\omega^{A_{I}}_{\mu} + \omega^{B_{J}}_{\nu}} \left(\int \int \frac{\rho^{A_{I}}_{\mu}(\mathbf{r}_{1})\rho^{B_{J}}_{\nu}(\mathbf{r}_{2})}{r_{12}} \mathrm{d}\mathbf{r}_{1} \mathrm{d}\mathbf{r}_{2} \right)^{2}$$

$E_{\rm disp}^{(2)}$ for excited states with SAPT(MC)

$$\underbrace{\left\{\boldsymbol{\gamma}, \Gamma\right\}}_{\text{ERPA}} \rightarrow \underbrace{\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{B} & \mathcal{A} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} \mathcal{N} & \mathbf{0} \\ \mathbf{0} & -\mathcal{N} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu} \end{pmatrix}}_{\text{ERPA}} \rightarrow \underbrace{\left\{\boldsymbol{\gamma}^{0\nu}, \Gamma^{0\nu}, \omega_{\nu}\right\}}_{\text{Eint}}$$

ERPA: K. Chatterjee, K. Pernal, J. Chem. Phys. 137 (2012)

$SAPT(MC) \equiv multiconfigurational SAPT$

- requires only one- and two-particle reduced density matrices (γ, Γ) of the monomers
- 2nd order based on response properties from extended random phase approximation (ERPA)
- may be applied with any MC wavefunction (CAS, DMRG, GVB-PP, CIPSI...)

$E_{\text{disp}}^{(2)} \text{ for excited states with SAPT(MC)}$ $\underbrace{\left\{\gamma, \Gamma\right\}}_{\text{ERPA}} \rightarrow \underbrace{\begin{pmatrix}\mathcal{A} & \mathcal{B} \\ \mathcal{B} & \mathcal{A}\end{pmatrix}\begin{pmatrix}\mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu}\end{pmatrix} = \omega_{\nu}\begin{pmatrix}\mathcal{N} & \mathbf{0} \\ \mathbf{0} & -\mathcal{N}\end{pmatrix}\begin{pmatrix}\mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu}\end{pmatrix}}_{\text{ERPA}} \rightarrow \underbrace{\left\{\gamma^{0\nu}, \Gamma^{0\nu}, \omega_{\nu}\right\}}_{\text{ExAPT}}$

M. Hapka, M. Przybytek, K. Pernal, JCTC, 15, 6712 (2019), 17, 5538 (2021)

$SAPT(MC) \equiv multiconfigurational SAPT$

$E_{\text{disp}}^{(2)} \text{ for excited states with SAPT(MC)}$ $\underbrace{\left\{\gamma, \Gamma\right\}}_{\text{ERPA}} \rightarrow \underbrace{\begin{pmatrix}\mathcal{A} & \mathcal{B} \\ \mathcal{B} & \mathcal{A}\end{pmatrix}\begin{pmatrix}\mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu}\end{pmatrix} = \omega_{\nu}\begin{pmatrix}\mathcal{N} & \mathbf{0} \\ \mathbf{0} & -\mathcal{N}\end{pmatrix}\begin{pmatrix}\mathbf{X}_{\nu} \\ \mathbf{Y}_{\nu}\end{pmatrix}}_{\text{ERPA}} \rightarrow \underbrace{\left\{\gamma^{0\nu}, \Gamma^{0\nu}, \omega_{\nu}\right\}}_{\text{Eist}}$

M. Hapka, M. Przybytek, K. Pernal, JCTC, 15, 6712 (2019), 17, 5538 (2021)

$SAPT(MC) \equiv multiconfigurational SAPT$

GAMMCOR, https://github.com/pernalk/GAMMCOR

$E_{\rm disp}^{(2)}$ for excited states with SAPT(MC)

• can $W^{A_I B_J}_{\mu\nu}$ terms be relevant?

Example: Ar···C₂H₄ and C₂H₄($\pi \rightarrow \pi^*$)

M. Hapka, M. Przybytek, K. Pernal, J. Chem. Theory Comput., 17, 5538 (2021)

Example: Ar···C₂H₄ and C₂H₄($\pi \rightarrow \pi^*$)

M. Hapka, M. Przybytek, K. Pernal, J. Chem. Theory Comput., 17, 5538 (2021)

Dispersion Interactions in Exciton-Localized States

Outline

- Introduction
- Theory
 - ▶ dispersion energy for ES
 - supermolecular methods
- Results
 - energy decomposition
 - comparison of CASSCF-based approaches

S66: J. Řezáč et al., J. Chem. Theory Comput. 7, 2427 (2011)

- energy decomposition
 - ► SAPT(CAS)
- assessment of CASSCF-based approaches
 - ► CAS+dispersion
 - ▶ multireference adiabatic connection (AC) methods

	ground state			e	excited state		
	H_2O	MeOH	MeNH_2	H_2O	MeOH	MeNH_2	
$E_{\rm disp}^{(2)}$	-3.06	-4.89	-4.86	-2.88	-4.63	-4.62	
$E_{\rm elst}^{(1)}$	-2.74	-3.08	-2.22	-1.85	-2.10	-1.68	
$\operatorname{disp}/\operatorname{elst}$	1.1	1.6	2.2	1.6	2.2	2.8	

	ground state			excited state		
	H_2O	MeOH	MeNH_2	H_2O	MeOH	MeNH_2
$E_{\rm disp}^{(2)}$	-3.06	-4.89	-4.86	-2.88	-4.63	-4.62
$E_{\rm elst}^{(1)}$	-2.74	-3.08	-2.22	-1.85	-2.10	-1.68
$\operatorname{disp}/\operatorname{elst}$	1.1	1.6	2.2	1.6	2.2	2.8

	ground state			excited state		
	H_2O	MeOH	MeNH_2	H_2O	MeOH	MeNH_2
$E_{\rm disp}^{(2)}$	-3.06	-4.89	-4.86	-2.88	-4.63	-4.62
$E_{\rm elst}^{(1)}$	-2.74	-3.08	-2.22	-1.85	-2.10	-1.68
disp/elst	1.1	1.6	2.2	1.6	2.2	2.8

	ground state			excited state		
	H_2O	MeOH	MeNH_2	H_2O	MeOH	$MeNH_2$
$E_{\rm disp}^{(2)}$	-3.06	-4.89	-4.86	-2.88	-4.63	-4.62
$\varepsilon_{\rm disp}^{1\to 0}$				-0.04	-0.06	-0.02
disp/elst	1.1	1.6	2.2	1.6	2.2	2.8

 $\varepsilon_{disp}^{1\to0}$: non-CP terms; kcal/mol

		$E_{\rm es} - E_{\rm gs}$	
	H_2O	MeOH	MeNH_2
$\Delta E_{\rm elst}^{(1)}$	0.88	0.98	0.54
$\Delta E_{\rm exch}^{(1)}$	-0.35	-0.45	-0.25
$\Delta E_{\rm ind}^{(2)}$	0.11	0.15	0.08
$\Delta E_{\rm exch-ind}^{(2)}$	-0.05	-0.08	-0.03
$\Delta E_{\rm disp}^{(2)}$	0.17	0.24	0.22
$\Delta E_{\rm exch-disp}^{(2)}$	-0.05	-0.07	-0.05
$\Delta E_{\rm int}^{\rm SAPT}$	0.72	0.77	0.50
- stabilization	+ destab.	kcal/mol	

		$E_{\rm es} - E_{\rm gs}$	
	H_2O	MeOH	MeNH_2
$\Delta E_{\rm elst}^{(1)}$	0.88	0.98	0.54
$\Delta E_{\rm exch}^{(1)}$	-0.35	-0.45	-0.25
$\Delta E_{\rm ind}^{(2)}$	0.11	0.15	0.08
$\Delta E_{\rm exch-ind}^{(2)}$	-0.05	-0.08	-0.03
$\Delta E_{\rm disp}^{(2)}$	0.17	0.24	0.22
$\Delta E_{\rm exch-disp}^{(2)}$	-0.05	-0.07	-0.05
$\Delta E_{\rm int}^{\rm SAPT}$	0.72	0.77	0.50
- stabilization	+ destab.	kcal/mol	

	ground state		excited state	
	H_2O	MeNH_2	H_2O	MeNH_2
$E_{\rm disp}^{(2)}$	-2.93	-5.70	-2.93	-5.80
$E_{\rm elst}^{(1)}$	-6.71	-10.55	-5.99	-9.84
disp/elst	0.4	0.5	0.5	0.6

	grou	nd state	excit	excited state		
	H_2O	$MeNH_2$	H_2O	$MeNH_2$		
$E_{\rm disp}^{(2)}$	-2.93	-5.70	-2.93	-5.80		
$E_{\rm elst}^{(1)}$	-6.71	-10.55	-5.99	-9.84		
disp/elst	0.4	0.5	0.5	0.6		

	groun	d state	excite	excited state		
	H_2O	MeNH_2	H_2O	MeNH_2		
$E_{\rm disp}^{(2)}$	-2.93	-5.70	-2.93	-5.80		
$E_{\rm elst}^{(1)}$	-6.71	-10.55	-5.99	-9.84		
disp/elst	0.4	0.5	0.5	0.6		

	groun	ld state	excite	d state
	H_2O	MeNH_2	H_2O	MeNH_2
$E_{\rm disp}^{(2)}$	-2.93	-5.70	-2.93	-5.80
$\varepsilon_{\rm disp}^{1\to 0}$			0.00	0.00
disp/elst	0.4	0.5	0.5	0.6
1 : 0				

 $\varepsilon_{\rm disp}^{1\rightarrow 0}:$ non-CP terms; kcal/mol

$\frac{\text{HB}}{\text{PeptideWater}}$	Pepti	$\frac{1}{n-\pi^*}$
	$E_{\rm es}$ -	$-E_{\rm gs}$
	H_2O	$MeNH_2$
$\Delta E_{\rm elst}^{(1)}$	0.71	0.71
$\Delta E_{\rm exch}^{(1)}$	-0.03	0.05
$\Delta E_{\rm ind}^{(2)}$	0.12	-0.12
$\Delta E_{\rm exch-ind}^{(2)}$	-0.03	0.32
$\Delta E_{\rm disp}^{(2)}$	-0.01	-0.10
$\Delta E_{\rm exch-disp}^{(2)^{\rm r}}$	0.01	0.05
$\Delta E_{\rm int}^{\rm SAPT}$	0.77	0.91
- stabilization	+ destab.	kcal/mol

HB PeptideWater $[n-\pi^*]$	Pepti	$\frac{1}{n-\pi^*}$
	E _{es} -	$-E_{\rm gs}$
	H_2O	$MeNH_2$
$\Delta E_{\rm elst}^{(1)}$	0.71	0.71
$\Delta E_{\rm exch}^{(1)}$	-0.03	0.05
$\Delta E_{\rm ind}^{(2)}$	0.12	-0.12
$\Delta E_{\rm exch-ind}^{(2)}$	-0.03	0.32
$\Delta E_{\rm disp}^{(2)}$	-0.01	-0.10
$\Delta E_{\rm exch-disp}^{(2)^{r}}$	0.01	0.05
$\Delta E_{\rm int}^{\rm SAPT}$	0.77	0.91
- stabilization	+ destab.	kcal/mol

$\frac{\text{HB}}{\text{PeptideWater}}$	Pepti	$\frac{1}{n-\pi^*}$
	$E_{\rm es}$ -	$-E_{\rm gs}$
	H_2O	MeNH_2
$\Delta E_{\rm elst}^{(1)}$	0.71	0.71
$\Delta E_{\rm exch}^{(1)}$	-0.03	0.05
$\Delta E_{\rm ind}^{(2)}$	0.12	-0.12
$\Delta E_{\rm exch-ind}^{(2)}$	-0.03	0.32
$\Delta E_{\rm disp}^{(2)}$	-0.01	-0.10
$\Delta E_{\rm exch-disp}^{(2)^{\rm r}}$	0.01	0.05
$\Delta E_{\rm int}^{\rm SAPT}$	0.77	0.91
- stabilization	+ destab.	kcal/mol

	ground state				excited state		
	H_2O	MeOH	MeNH_2	H_2O	MeOH	$MeNH_2$	
$E_{\rm disp}^{(2)}$	-4.09	-5.00	-5.17	-4.05	-4.95	-5.01	
$E_{\rm elst}^{(1)}$	-11.2	-11.8	-4.1	-11.2	-11.8	-3.9	
disp/elst	0.4	0.4	1.3	0.4	0.4	1.3	

	ground state				excited state		
	H_2O	MeOH	$MeNH_2$	H_2O	MeOH	MeNH_2	
$E_{\rm disp}^{(2)}$	-4.09	-5.00	-5.17	-4.05	-4.95	-5.01	
$E_{\rm elst}^{(1)}$	-11.2	-11.8	-4.1	-11.2	-11.8	-3.9	
disp/elst	0.4	0.4	1.3	0.4	0.4	1.3	

	ground state				excited state		
	H_2O	MeOH	MeNH_2	H_{2}	$_{2}O$	MeOH	MeNH_2
$E_{\rm disp}^{(2)}$	-4.09	-5.00	-5.17	-4	.05	-4.95	-5.01
$E_{\rm elst}^{(1)}$	-11.2	-11.8	-4.1	-1	1.2	-11.8	-3.9
disp/elst	0.4	0.4	1.3	(0.4	0.4	1.3

	ground state				excited state		
	H_2O	MeOH	MeNH_2	H_2O	MeOH	MeNH_2	
$E_{\rm disp}^{(2)}$	-4.09	-5.00	-5.17	-4.05	-4.95	-5.01	
$\varepsilon_{\rm disp}^{1\to 0}$				-0.07	-0.08	-0.08	
disp/elst	0.4	0.4	1.3	0.4	0.4	1.3	

 $\varepsilon_{\rm disp}^{1\rightarrow 0}\colon$ non-CP terms; kcal/mol

Pyridine \cdots H₂O, \cdots MeOH, \cdots MeNH₂

HB	HB		Sec. mix
PyridineWater	PyridineMe	OH Pyri	dineMeNH ₂
$ \pi - \pi^* $	$\pi - \pi^*$		$\pi - \pi^*$
		D D	
		$E_{\rm es} - E_{\rm gs}$	5
	H_2O	MeOH	$MeNH_2$
$\Delta E_{\rm elst}^{(1)}$	0.04	0.03	0.17
$\Delta E_{\rm exch}^{(1)}$	0.02	0.02	-0.15
$\Delta E_{\rm ind}^{(2)}$	0.02	0.02	0.04
$\Delta E_{\rm exch-ind}^{(2)}$	0.01	0.01	-0.04
$\Delta E_{\rm disp}^{(2)}$	0.02	0.04	0.15
$\Delta E_{\rm exch-disp}^{(2)}$	0.00	0.00	-0.03
$\Delta E_{\rm int}^{\rm SAPT}$	0.03	0.04	0.14
- stabilization	+ destab.	kcal/mol	

 $Pyridine \cdots H_2O, \cdots MeOH, \cdots MeNH_2$

Outline

- Introduction
- Theory
 - ▶ dispersion energy for ES
- Results
 - ▶ energy decomposition
 - comparison of CASSCF-based approaches

Interaction energies: mean absolute % errors

• SAPT > CAS + DISP > CASPT2

Conclusions

$E_{\rm disp}^{(2)}$ for excited states

- generalized Casimir-Polder formula
 - ▶ involves "de-excitation" terms
- can be obtained in SAPT(MC)

Numerical demonstration: $\pi \to \pi^*, n \to \pi^*$

- SAPT(CAS) useful for E_{int}^{ES} decomposition
- $\Delta E_{\text{disp}}^{(2)}$ cannot be neglected

Conclusions

$E_{\rm disp}^{(2)}$ for excited states

- generalized Casimir-Polder formula
 - ▶ involves "de-excitation" terms
- can be obtained in SAPT(MC)

Numerical demonstration: $\pi \to \pi^*, n \to \pi^*$

- SAPT(CAS) useful for E_{int}^{ES} decomposition
- $\Delta E_{\text{disp}}^{(2)}$ cannot be neglected

M. R. Jangrouei et al., J. Chem. Theory Comput., 10.1021/acs.jctc.2c00221 GAMMCOR, https://github.com/pernalk/GAMMCOR

Acknowledgements

- dr Agnieszka Krzemińska
- dr Ewa Pastorczak
- Mohammad Reza Jangrouei
- prof. dr hab. Katarzyna Pernal

European Centre of Excellence in Exascale Computing TREX Targeting Real Chemical Accuracy at the Exascale Grant No. 952165

National Science Centre of Poland Grant No. 2016/23/B/ST4/02848

• dr Michał Przybytek

Thank you for your attention!