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As one of the most fundamental problems in statistics, robust loca-
tion estimation has many prominent solutions, such as the symmetric
trimmed mean, symmetric Winsorized mean, Hodges–Lehmann es-
timator, Huber M-estimator, and median of means. Recent studies
suggest that their biases concerning the mean can be quite different
in asymmetric distributions, but the underlying mechanisms largely
remain unclear. This study exploited a semiparametric method to
classify distributions by the asymptotic orderliness of location esti-
mates with varying breakdown points, showing their interrelations
and connections to parametric distributions. Further deductions ex-
plain why the Winsorized mean typically has smaller biases compared
to the trimmed mean; two sequences of semiparametric robust mean
estimators emerge. Building on the γ-U -orderliness, the superiority
of the median Hodges–Lehmann mean is discussed.
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In 1823, Gauss (1) proved that for any unimodal distribution,1

|m − µ| ≤
√

3
4 ω and σ ≤ ω ≤ 2σ, where µ is the population2

mean, m is the population median, ω is the root mean square3

deviation from the mode, and σ is the population standard de-4

viation. This pioneering work revealed that, the potential bias5

of the median, the most fundamental robust location estimate,6

with respect to the mean is bounded in units of a scale parame-7

ter under certain assumptions. Bernard, Kazzi, and Vanduffel8

(2020) (2) further derived asymptotic bias bounds for any9

quantile in unimodal distributions with finite second moments.10

They showed that m has the smallest maximum distance to11

µ among all symmetric quantile averages (SQAϵ). Daniell,12

in 1920, (3) analyzed a class of estimators, linear combina-13

tions of order statistics, and identified that the ϵ-symmetric14

trimmed mean (STMϵ) belongs to this class. Another popular15

choice, the ϵ-symmetric Winsorized mean (SWMϵ), named16

after Winsor and introduced by Tukey (4) and Dixon (5) in17

1960, is also an L-estimator. Bieniek (2016) derived exact18

bias upper bounds of the Winsorized mean based on Danielak19

and Rychlik’s work (2003) on the trimmed mean for any dis-20

tribution with a finite second moment and confirmed that21

the former is smaller than the latter (6, 7). In 1963, Hodges22

and Lehmann (8) proposed a class of nonparametric location23

estimators based on rank tests and, from the Wilcoxon signed-24

rank statistic (9), deduced the median of pairwise means as a25

robust location estimator for a symmetric population. Both26

L-statistics and R-statistics achieve robustness essentially by27

removing a certain proportion of extreme values. In 1964,28

Huber (10) generalized maximum likelihood estimation to the29

minimization of the sum of a specific loss function, which mea-30

sures the residuals between the data points and the model’s31

parameters. Some L-estimators are also M -estimators, e.g.,32

the sample mean is an M -estimator with a squared error loss33

function, the sample median is an M -estimator with an ab-34

solute error loss function (10). The Huber M -estimator is35

obtained by applying the Huber loss function that combines36

elements of both squared error and absolute error to achieve 37

robustness against gross errors and high efficiency for contami- 38

nated Gaussian distributions (10). Sun, Zhou, and Fan (2020) 39

examined the concentration bounds of the Huber M -estimator 40

(11). Mathieu (2022) (12) further derived the concentration 41

bounds of M -estimators and demonstrated that, by selecting 42

the tuning parameter which depends on the variance, the 43

Huber M -estimator can also be a sub-Gaussian estimator. 44

The concept of the median of means (MoMk,b= n
k

,n) was first 45

introduced by Nemirovsky and Yudin (1983) in their work 46

on stochastic optimization (13). Given its good performance 47

even for distributions with infinite second moments, the MoM 48

has received increasing attention over the past decade (14– 49

17). Devroye, Lerasle, Lugosi, and Oliveira (2016) showed 50

that MoMk,b= n
k

,n nears the optimum of sub-Gaussian mean 51

estimation with regards to concentration bounds when the 52

distribution has a heavy tail (15). Laforgue, Clemencon, and 53

Bertail (2019) proposed the median of randomized means 54

(MoRMk,b,n) (16), wherein, rather than partitioning, an ar- 55

bitrary number, b, of blocks are built independently from 56

the sample, and showed that MoRMk,b,n has a better non- 57

asymptotic sub-Gaussian property compared to MoMk,b= n
k

,n. 58

In fact, asymptotically, the Hodges-Lehmann (H-L) estimator 59

is equivalent to MoMk=2,b= n
k

and MoRMk=2,b, and they can 60

be seen as the pairwise mean distribution is approximated 61

by the sampling without replacement and bootstrap, respec- 62

tively. When k ≪ n, the difference between sampling with 63

replacement and without replacement is negligible. For the 64

asymptotic validity, readers are referred to the foundational 65

works of Efron (1979) (18), Bickel and Freedman (1981, 1984) 66

(19, 20), and Helmers, Janssen, and Veraverbeke (1990) (21). 67
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Here, the ϵ,b-stratified mean is defined as

SMϵ,b,n := b

n

 b−1
2bϵ∑
j=1

(2bj−b+1)nϵ
b−1∑

ij = (2bj−b−1)nϵ
b−1 +1

Xij

 ,

where X1 ≤ . . . ≤ Xn denote the order statistics of a sample68

of n independent and identically distributed random variables69

X1, . . ., Xn. b ∈ N, b ≥ 3. The definition was further refined to70

guarantee the continuity of the breakdown point by incorporat-71

ing an additional block in the center when ⌊ b−1
2bϵ

⌋ mod 2 = 0,72

or by adjusting the central block when ⌊ b−1
2bϵ

⌋ mod 2 = 1 (SI73

Text). If the subscript n is omitted, only the asymptotic74

behavior is considered. If b is omitted, b = 3 is assumed.75

SMϵ,b=3 is equivalent to STMϵ, when ϵ > 1
6 . When b−1

2ϵ
∈ N76

and b mod 2 = 1, the basic idea of the stratified mean is to dis-77

tribute the data into b−1
2ϵ

equal-sized non-overlapping blocks78

according to their order. Then, further sequentially group79

these blocks into b equal-sized strata and compute the mean80

of the middle stratum, which is the median of means of each81

stratum. In situations where i mod 1 ̸= 0, a potential solution82

is to generate multiple smaller samples that satisfy the equality83

by sampling without replacement, and subsequently calculate84

the mean of all estimations. The details of determining the85

smaller sample size and the number of sampling times are86

provided in the SI Text. Although the principle resembles that87

of the median of means, SMϵ,b,n is different from MoMk= n
b

,b,n88

as it does not include the random shift. Additionally, the89

stratified mean differs from the mean of the sample obtained90

through stratified sampling methods, introduced by Neyman91

(1934) (22) or ranked set sampling (23), introduced by McIn-92

tyre in 1952, as these sampling methods aim to obtain more93

representative samples or improve the efficiency of sample es-94

timates, but the sample means based on them are not robust.95

When b mod 2 = 1, the stratified mean can be regarded as96

replacing the other equal-sized strata with the middle stra-97

tum, which, in principle, is analogous to the Winsorized mean98

that replaces extreme values with less extreme percentiles.99

Furthermore, while the bounds confirm that the Winsorized100

mean and median of means outperform the trimmed mean101

(6, 7, 15) in worst-case performance, the complexity of bound102

analysis makes it difficult to achieve a complete and intuitive103

understanding of these results. Also, a clear explanation for104

the average performance of them remains elusive. The aim of105

this paper is to define a series of semiparametric models using106

the signs of derivatives, reveal their elegant interrelations and107

connections to parametric models, and show that by exploiting108

these models, a set of sophisticated mean estimators can be109

deduced, which exhibit strong robustness to departures from110

assumptions.111

Quantile Average and Weighted Average112

The symmetric trimmed mean, symmetric Winsorized mean,
and stratified mean are all L-estimators. More specifically,
they are symmetric weighted averages, which are defined as

SWAϵ,n :=
∑⌈ n

2 ⌉
i=1

Xi+Xn−i+1
2 wi∑⌈ n

2 ⌉
i=1 wi

,

where wis are the weights applied to the symmetric quantile113

averages according to the definition of the corresponding L-114

estimators. For example, for the ϵ-symmetric trimmed mean,115

wi =
{

0, i < nϵ
1, i ≥ nϵ

, when nϵ ∈ N. The mean and median are 116

indeed two special cases of the symmetric trimmed mean. 117

To extend the symmetric quantile average to the asymmet- 118

ric case, two definitions for the ϵ,γ-quantile average (QAϵ,γ,n) 119

are proposed. The first definition is: 120

1
2(Q̂n(γϵ) + Q̂n(1 − ϵ)), [1] 121

and the second definition is: 122

1
2(Q̂n(ϵ) + Q̂n(1 − γϵ)), [2] 123

where Q̂n(p) is the empirical quantile function; γ is used to 124

adjust the degree of asymmetry, γ ≥ 0; and 0 ≤ ϵ ≤ 1
1+γ

. For 125

trimming from both sides, [1] and [2] are essentially equivalent. 126

The first definition along with γ ≥ 0 and 0 ≤ ϵ ≤ 1
1+γ

are 127

assumed in the rest of this article unless otherwise specified, 128

since many common asymmetric distributions are right-skewed, 129

and [1] allows trimming only from the right side by setting 130

γ = 0. 131

Analogously, the weighted average can be defined as

WAϵ,γ,n :=
∫ 1

1+γ

0 QA (ϵ0, γ, n) w(ϵ0)dϵ0∫ 1
1+γ

0 w(ϵ0)dϵ0

.

For any weighted average, if γ is omitted, it is assumed to 132

be 1. The ϵ, γ-trimmed mean (TMϵ,γ,n) is a weighted aver- 133

age with a left trim size of nγϵ and a right trim size of nϵ, 134

where w(ϵ0) =
{

0, ϵ0 < ϵ
1, ϵ0 ≥ ϵ

. Using this definition, regard- 135

less of whether nγϵ /∈ N or nϵ /∈ N, the TM computation 136

remains the same, since this definition is based on the empir- 137

ical quantile function. However, in this article, considering 138

the computational cost in practice, non-asymptotic definitions 139

of various types of weighted averages are primarily based on 140

order statistics. Unless stated otherwise, the solution to their 141

decimal issue is the same as that in SM. 142

Furthermore, for weighted averages, separating the break- 143

down point into upper and lower parts is necessary. 144

Definition .1 (Upper/lower breakdown point). The upper 145

breakdown point is the breakdown point generalized in Davies 146

and Gather (2005)’s paper (? ). The finite-sample upper 147

breakdown point is the finite sample breakdown point defined 148

by Donoho and Huber (1983) (24) and also detailed in (? ). 149

The (finite-sample) lower breakdown point is replacing the 150

infinity symbol in these definitions with negative infinity. 151

Classifying Distributions by the Signs of Derivatives 152

Let PR denote the set of all continuous distributions over R
and PX denote the set of all discrete distributions over a count-
able set X. The default of this article will be on the class of
continuous distributions, PR. However, it’s worth noting that
most discussions and results can be extended to encompass
the discrete case, PX, unless explicitly specified otherwise. Be-
sides fully and smoothly parameterizing them by a Euclidean
parameter or merely assuming regularity conditions, there
exist additional methods for classifying distributions based
on their characteristics, such as their skewness, peakedness,
modality, and supported interval. In 1956, Stein initiated the
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study of estimating parameters in the presence of an infinite-
dimensional nuisance shape parameter (25) and proposed a
necessary condition for this type of problem, a contribution
later explicitly recognized as initiating the field of semipara-
metric statistics (26). In 1982, Bickel simplified Stein’s general
heuristic necessary condition (25), derived sufficient condi-
tions, and used them in formulating adaptive estimates (26).
A notable example discussed in these groundbreaking works
was the adaptive estimation of the center of symmetry for an
unknown symmetric distribution, which is a semiparametric
model. In 1993, Bickel, Klaassen, Ritov, and Wellner pub-
lished an influential semiparametrics textbook (27), which
categorized most common statistical models as semiparamet-
ric models, considering parametric and nonparametric models
as two special cases within this classification. Yet, there is
another old and commonly encountered class of distributions
that receives little attention in semiparametric literature: the
unimodal distribution. It is a very unique semiparametric
model because its definition is based on the signs of deriva-
tives, i.e., (f ′(x) > 0 for x ≤ M) ∧ (f ′(x) < 0 for x ≥ M),
where f(x) is the probability density function (pdf) of a ran-
dom variable X, M is the mode. Let PU denote the set of all
unimodal distributions. There was a widespread misbelief that
the median of an arbitrary unimodal distribution always lies
between its mean and mode until Runnenburg (1978) and van
Zwet (1979) (28, 29) endeavored to determine sufficient condi-
tions for the mean-median-mode inequality to hold, thereby
implying the possibility of its violation. The class of unimodal
distributions that satisfy the mean-median-mode inequality
constitutes a subclass of PU , denoted by PMMM ⊊ PU . To
further investigate the relations of location estimates within a
distribution, the γ-orderliness for a right-skewed distribution
is defined as

∀0 ≤ ϵ1 ≤ ϵ2 ≤ 1
1 + γ

, QA(ϵ1, γ) ≥ QA(ϵ2, γ).

The necessary and sufficient condition below hints at the153

relation between the mean-median-mode inequality and the154

γ-orderliness.155

Theorem .1. A distribution is γ-ordered if and only if its156

pdf satisfies the inequality f(Q(γϵ)) ≥ f(Q(1 − ϵ)) for all157

0 ≤ ϵ ≤ 1
1+γ

or f(Q(γϵ)) ≤ f(Q(1 − ϵ)) for all 0 ≤ ϵ ≤ 1
1+γ

.158

Proof. Without loss of generality, consider the case of right-159

skewed distribution. From the above definition of γ-orderliness,160

it is deduced that Q(γϵ−δ)+Q(1−ϵ+δ)
2 ≥ Q(γϵ)+Q(1−ϵ)

2 ⇔ Q(γϵ−161

δ) − Q(γϵ) ≥ Q(1 − ϵ) − Q(1 − ϵ + δ) ⇔ Q′(1 − ϵ) ≥ Q′(γϵ),162

where δ is an infinitesimal positive quantity. Observing that163

the quantile function is the inverse function of the cumulative164

distribution function (cdf), Q′(1−ϵ) ≥ Q′(γϵ) ⇔ F ′(Q(γϵ)) ≥165

F ′(Q(1−ϵ)), thereby completing the proof, since the derivative166

of cdf is pdf.167

According to Theorem .1, if a probability distribution is168

right-skewed and monotonic decreasing, it will always be γ-169

ordered. For a right-skewed unimodal distribution, if Q(γϵ) >170

M , then the inequality f(Q(γϵ)) ≥ f(Q(1 − ϵ)) holds. The171

principle is extendable to unimodal-like distributions. Suppose172

there is a right-skewed unimodal-like distribution with the173

first mode, denoted as M1, having the greatest probability174

density, while there are several smaller modes located towards175

the higher values of the distribution. Furthermore, assume176

that this distribution follows the mean-γ-median-first mode 177

inequality, amd the γ-median, Q( γ
1+γ

), falling within the first 178

dominant mode (i.e., if x > Q( γ
1+γ

), f(Q( γ
1+γ

)) ≥ f(x)). 179

Then, if Q(γϵ) > M1, the inequality f(Q(γϵ)) ≥ f(Q(1 − 180

ϵ)) also holds. In other words, even though a distribution 181

following the mean-γ-median-mode inequality may not be 182

strictly γ-ordered, the inequality defining the γ-orderliness 183

remains valid for most quantile averages. The mean-γ-median- 184

mode inequality can also indicate possible bounds for γ in 185

practice, e.g., for any distributions, when γ → ∞, the γ- 186

median will be greater than the mean and the mode, when 187

γ → 0, the γ-median will be smaller than the mean and 188

the mode, a reasonable γ should maintain the validity of the 189

mean-γ-median-mode inequality. 190

The definition above of γ-orderliness for a right-skewed
distribution implies a monotonic decreasing behavior of the
quantile average function with respect to the breakdown point.
Therefore, consider the sign of the partial derivative, it can
also be expressed as:

∀0 ≤ ϵ ≤ 1
1 + γ

,
∂QA

∂ϵ
≤ 0.

The left-skewed case can be obtained by reversing the inequal- 191

ity ∂QA
∂ϵ

≤ 0 to ∂QA
∂ϵ

≥ 0 and employing the second definition 192

of QA, as given in [2]. For simplicity, the left-skewed case will 193

be omitted in the following discussion. If γ = 1, the γ-ordered 194

distribution is referred to as ordered distribution. 195

Furthermore, many common right-skewed distributions,
such as the Weibull, gamma, lognormal, and Pareto distri-
butions, are partially bounded, indicating a convex behavior
of the QA function with respect to ϵ as ϵ approaches 0. By
further assuming convexity, the second γ-orderliness can be
defined for a right-skewed distribution as follows,

∀0 ≤ ϵ ≤ 1
1 + γ

,
∂2QA

∂ϵ2 ≥ 0 ∧ ∂QA
∂ϵ

≤ 0.

Analogously, the νth γ-orderliness of a right-skewed distribu- 196

tion can be defined as (−1)ν ∂ν QA
∂ϵν ≥ 0 ∧ . . . ∧ − ∂QA

∂ϵ
≥ 0. If 197

γ = 1, the νth γ-orderliness is referred as to νth orderliness. 198

Let PO denote the set of all distributions that are ordered 199

and POν and PγOν represent the sets of all distributions that 200

are νth ordered and νth γ-ordered, respectively. When the 201

shape parameter of the Weibull distribution, α, is smaller than 202

3.258, it can be shown that the Weibull distribution belongs 203

to PU ∩ PO ∩ PO2 ∩ PO3 (SI Text). At α ≈ 3.602, the Weibull 204

distribution is symmetric, and as α → ∞, the skewness of the 205

Weibull distribution approaches 1. Therefore, the parameters 206

that prevent it from being included in the set correspond to 207

cases when it is near-symmetric, as shown in the SI Text. 208

Nevertheless, computing the derivatives of the QA function is 209

often intricate and, at times, challenging. The following theo- 210

rems establish the relationship between PO, POν , and PγOν , 211

and a wide range of other semi-parametric distributions. They 212

can be used to quickly identify some parametric distributions 213

in PO, POν , and PγOν . 214

Theorem .2. For any random variable X whose probability 215

distribution function belongs to a location-scale family, the dis- 216

tribution is νth γ-ordered if and only if the family of probability 217

distributions is νth γ-ordered. 218
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Proof. Let Q0 denote the quantile function of the standard219

distribution without any shifts or scaling. After a location-220

scale transformation, the quantile function becomes Q(p) =221

λQ0(p)+µ, where λ is the scale parameter and µ is the location222

parameter. According to the definition of the νth γ-orderliness,223

the signs of derivatives of the QA function are invariant after224

this transformation. As the location-scale transformation is225

reversible, the proof is complete.226

Theorem .2 demonstrates that in the analytical proof of227

the νth γ-orderliness of a parametric distribution, both the228

location and scale parameters can be regarded as constants.229

It is also instrumental in proving other theorems.230

Theorem .3. Define a γ-symmetric distribution as one for231

which the quantile function satisfies Q(γϵ) = 2Q( γ
1+γ

)−Q(1−ϵ)232

for all 0 ≤ ϵ ≤ 1
1+γ

. Any γ-symmetric distribution is νth γ-233

ordered.234

Proof. The equality, Q(γϵ) = 2Q( γ
1+γ

) − Q(1 − ϵ), implies235

that ∂Q(γϵ)
∂ϵ

= γQ′(γϵ) = ∂(−Q(1−ϵ))
∂ϵ

= Q′(1 − ϵ). From the236

first definition of QA, the QA function of the γ-symmetric237

distribution is a horizontal line, since ∂QA
∂ϵ

= γQ′(γϵ) − Q′(1 −238

ϵ) = 0. So, the νth order derivative of QA is always zero.239

Theorem .4. A symmetric distribution is a special case of240

the γ-symmetric distribution when γ = 1, provided that the cdf241

is monotonic.242

Proof. A symmetric distribution is a probability distribution243

such that for all x, f(x) = f(2m − x). Its cdf satisfies F (x) =244

1 − F (2m − x). Let x = Q(p), then, F (Q(p)) = p = 1 −245

F (2m−Q(p)) and F (Q(1−p)) = 1−p ⇔ p = 1−F (Q(1−p)).246

Therefore, F (2m − Q(p)) = F (Q(1 − p)). Since the cdf is247

monotonic, 2m − Q(p) = Q(1 − p) ⇔ Q(p) = 2m − Q(1 − p).248

Choosing p = ϵ yields the desired result.249

Since the generalized Gaussian distribution is symmetric250

around the median, it is νth ordered, as a consequence of251

Theorem .3.252

Theorem .5. Any right-skewed distribution whose quan-253

tile function Q satisfies Q(ν) (p) ≥ 0 ∧ . . . Q(i) (p) ≥ 0 . . . ∧254

Q(2) (p) ≥ 0, i mod 2 = 0, is νth γ-ordered, provided that255

0 ≤ γ ≤ 1.256

Proof. Since (−1)i ∂iQA
∂ϵi = 1

2 ((−γ)iQi(γϵ)+Qi(1−ϵ)) and 1 ≤257

i ≤ ν, when i mod 2 = 0, (−1)i ∂iQA
∂ϵi ≥ 0 for all γ ≥ 0. When258

i mod 2 = 1, if further assuming 0 ≤ γ ≤ 1, (−1)i ∂iQA
∂ϵi ≥ 0,259

since Q(i+1) (p) ≥ 0.260

This result makes it straightforward to show that the Pareto261

distribution follows the νth γ-orderliness, provided that 0 ≤262

γ ≤ 1, since the quantile function of the Pareto distribution263

is Q (p) = xm(1 − p)− 1
α , where xm > 0, α > 0, and so264

Q(ν) (p) ≥ 0 for all ν ∈ N according to the chain rule.265

Theorem .6. A right-skewed distribution with a monotonic266

decreasing pdf is second γ-ordered.267

Proof. Given that a monotonic decreasing pdf implies f ′(x) = 268

F (2) (x) ≤ 0, let x = Q (F (x)), then by differentiating 269

both sides of the equation twice, one can obtain 0 = 270

Q(2) (F (x)) (F ′ (x))2 + Q′ (F (x)) F (2) (x) ⇒ Q(2) (F (x)) = 271

− Q′(F (x))F (2)(x)
(F ′(x))2 ≥ 0, since Q′ (p) ≥ 0. Theorem .1 already 272

established the γ-orderliness for all γ ≥ 0, which means 273

∀0 ≤ ϵ ≤ 1
1+γ

, ∂QA
∂ϵ

≤ 0. The desired result is then derived 274

from the proof of Theorem .5, since (−1)2 ∂2QA
∂ϵ2 ≥ 0 for all 275

γ ≥ 0. 276

Theorem .6 provides valuable insights into the relation be- 277

tween modality and second γ-orderliness. The conventional 278

definition states that a distribution with a monotonic pdf is 279

still considered unimodal. However, within its supported in- 280

terval, the mode number is zero. Theorem .1 implies that the 281

number of modes and their magnitudes within a distribution 282

are closely related to the likelihood of γ-orderliness being valid. 283

This is because, for a distribution satisfying the necessary and 284

sufficient condition in Theorem .1, it is already implied that the 285

probability density of the left-hand side of the γ-median is al- 286

ways greater than the corresponding probability density of the 287

right-hand side of the γ-median, so although counterexamples 288

can always be constructed for non-monotonic distributions, 289

the general shape of a γ-ordered distribution should have a 290

single dominant mode. It can be easily established that the 291

gamma distribution is second γ-ordered when α ≤ 1, as the 292

pdf of the gamma distribution is f (x) = λ−αxα−1e
− x

λ

Γ(α) , where 293

x ≥ 0, λ > 0, α > 0, and Γ represents the gamma function. 294

This pdf is a product of two monotonic decreasing functions 295

under constraints. For α > 1, analytical analysis becomes chal- 296

lenging. Numerical results show that orderliness is valid until 297

α > 00.000, the second orderliness is valid until α > 00.000, 298

and the third orderliness is valid until α > 00.000 (SI Text). 299

It is instructive to consider that when α → ∞, the gamma 300

distribution converges to a Gaussian distribution with mean 301

µ = αλ and variance σ = αλ2. The skewness of the gamma 302

distribution, α+2√
α(α+1)

, is monotonic with respect to α, since 303

∂µ̃3(α)
∂α

= −3α−2
2(α(α+1))3/2 < 0. When α = 00.000, µ̃3(α) = 1.027. 304

Theorefore, similar to the Weibull distribution, the param- 305

eters which make these distributions fail to be included in 306

PU ∩ PO ∩ PO2 ∩ PO3 also correspond to cases when it is 307

near-symmetric. 308

Theorem .7. Consider a γ-symmetric random variable X. 309

Let it be transformed using a function ϕ (x) such that ϕ(2) (x) ≥ 310

0 over the interval supported, the resulting convex transformed 311

distribution is γ-ordered. Moreover, if the quantile function of 312

X satifies Q(2) (p) ≤ 0, the convex transformed distribution is 313

second γ-ordered. 314

Proof. Let ϕQA(ϵ, γ) = 1
2 (ϕ(Q(γϵ)) + ϕ(Q(1 − 315

ϵ))). Then, for all 0 ≤ ϵ ≤ 1
1+γ

, ∂ϕQA
∂ϵ

= 316

1
2 (γϕ′ (Q (γϵ)) Q′ (γϵ) − ϕ′ (Q (1 − ϵ)) Q′ (1 − ϵ)) = 317
1
2 γQ′ (γϵ) (ϕ′ (Q (γϵ)) − ϕ′ (Q (1 − ϵ))) ≤ 0, since for a γ- 318

symmetric distribution, Q( 1
1+γ

)−Q (γϵ) = Q (1 − ϵ)−Q( 1
1+γ

), 319

differentiating both sides, −γQ′ (γϵ) = −Q′(1 − ϵ), where 320

Q′ (p) ≥ 0, ϕ(2) (x) ≥ 0. If further differentiating the 321

equality, γ2Q(2) (γϵ) = −Q(2)(1 − ϵ). Since ∂(2)ϕQA
∂ϵ(2) = 322

1
2

(
γ2ϕ2 (Q (γϵ)) (Q′ (γϵ))2 + ϕ2 (Q (1 − ϵ)) (Q′ (1 − ϵ))2) + 323

1
2

(
γ2ϕ′ (Q (γϵ))

(
Q2 (γϵ)

)
+ ϕ′ (Q (1 − ϵ))

(
Q2 (1 − ϵ)

))
= 324
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1
2

((
ϕ(2) (Q (γϵ)) + ϕ(2) (Q (1 − ϵ))

) (
γ2Q′ (γϵ)

)2
)

+325

1
2

(
(ϕ′ (Q (γϵ)) − ϕ′ (Q (1 − ϵ))) γ2Q(2) (γϵ)

)
. If Q(2) (p) ≤ 0,326

for all 0 ≤ ϵ ≤ 1
1+γ

, ∂(2)ϕQA
∂ϵ(2) ≥ 0.327

An application of Theorem .7 is that the lognormal328

distribution is ordered as it is exponentially transformed329

from the Gaussian distribution. The quantile function of330

the Gaussian distribution meets the condition Q(2) (p) =331

−2
√

2πσe2erfc−1(2p)2
erfc−1(2p) ≤ 0, where σ is the standard332

deviation of the Gaussian distribution and erfc denotes the333

complementary error function. Thus, the lognormal distribu-334

tion is second ordered. Numerical results suggest that it is335

also third ordered, although analytically proving this result is336

challenging.337

Theorem .7 also reveals a relation between convex transfor-338

mation and orderliness, since ϕ is the non-decreasing convex339

function in van Zwet’s trailblazing work Convex transforma-340

tions of random variables (30) if adding an additional con-341

straint that ϕ′ (x) ≥ 0. Consider a near-symmetric distribution342

S, such that the SQA(ϵ) as a function of ϵ fluctuates from 0343

to 1
2 . By definition, S is not ordered. Let s be the pdf of S.344

Applying the transformation ϕ (x) to S decreases s(QS(ϵ)),345

and the decrease rate, due to the order, is much smaller for346

s(QS(1 − ϵ)). As a consequence, as ϕ(2) (x) increases, even-347

tually, after a point, for all 0 ≤ ϵ ≤ 1
1+γ

, s(QS(ϵ)) becomes348

greater than s(QS(1 − ϵ)) even if it was not previously. Thus,349

the SQA(ϵ) function becomes monotonically decreasing, and S350

becomes ordered. Accordingly, in a family of distributions that351

differ by a skewness-increasing transformation in van Zwet’s352

sense, violations of orderliness typically occur only when the353

distribution is near-symmetric.354

Pearson proposed using the 3 times standardized mean-355

median difference, 3(µ−m)
σ

, as a measure of skewness in 1895356

(31). Bowley (1926) proposed a measure of skewness based on357

the SQAϵ= 1
4

-median difference SQAϵ= 1
4

−m (32). Groeneveld358

and Meeden (1984) (33) generalized these measures of skewness359

based on van Zwet’s convex transformation (30) while explor-360

ing their properties. A distribution is called monotonically361

right-skewed if and only if ∀0 ≤ ϵ1 ≤ ϵ2 ≤ 1
2 , SQAϵ1 − m ≥362

SQAϵ2 − m. Since m is a constant, the monotonic skewness363

is equivalent to the orderliness. For a nonordered distribu-364

tion, the signs of SQAϵ − m with different breakdown points365

might be different, implying that some skewness measures366

indicate left-skewed distribution, while others suggest right-367

skewed distribution. Although it seems reasonable that such a368

distribution is likely be generally near-symmetric, counterex-369

amples can be constructed. For example, first consider the370

Weibull distribution, when α > 1
1−ln(2) , it is near-symmetric371

and nonordered, the non-monotonicity of the SQA function372

arises when ϵ is close to 1
2 , but if then replacing the third quar-373

tile with one from a right-skewed heavy-tailed distribution374

leads to a right-skewed, heavy-tailed, and nonordered distri-375

bution. Therefore, the validity of robust measures of skewness376

based on the SQA-median difference is closely related to the377

orderliness of the distribution.378

Remarkably, in 2018, Li, Shao, Wang, Yang (34) proved the379

bias bound of any quantile for arbitrary continuous distribu-380

tions with finite second moments. Here, let Pµ,σ denotes the381

set of continuous distributions whose mean is µ and standard382

deviation is σ. The bias upper bound of the quantile average383

for P ∈ Pµ=0,σ=1 is given in the following theorem. 384

Theorem .8. The bias upper bound of the quantile average for
any continuous distribution whose mean is zero and standard
deviation is one is

sup
P ∈Pµ=0,σ=1

QA(ϵ, γ) = 1
2

(√
γϵ

1 − γϵ
+
√

1 − ϵ

ϵ

)
,

where 0 ≤ ϵ ≤ 1
1+γ

. 385

Proof. Since supP ∈Pµ=0,σ=1
1
2 (Q(γϵ) + Q(1 − ϵ)) ≤ 386

1
2 (supP ∈Pµ=0,σ=1 Q(γϵ) + supP ∈Pµ=0,σ=1 Q(1 − ϵ)), the 387

assertion follows directly from the Lemma 2.6 in (34). 388

In 2020, Bernard et al. (2) further refined these bounds
for unimodal distributions and derived the bias bound of the
symmetric quantile average. Here, the bias upper bound of
the quantile average, 0 ≤ γ < 5, for P ∈ PU ∩ Pµ=0,σ=1 is
given as

sup
P ∈PU ∩Pµ=0,σ=1

QA(ϵ, γ) =


1
2

(√
4
9ϵ

− 1 +
√

3γϵ
4−3γϵ

)
0 ≤ ϵ ≤ 1

6

1
2

(√
3(1−ϵ)

4−3(1−ϵ) +
√

3γϵ
4−3γϵ

)
1
6 < ϵ ≤ 1

1+γ
.

The proof based on the bias bounds of any quantile (2) and 389

the γ ≥ 5 case are given in the SI Text. Subsequent theorems 390

reveal the safeguarding role these bounds play in defining 391

estimators based on νth γ-orderliness. The proof of Theorem 392

.9 is provided in the SI Text. 393

Theorem .9. supP ∈Pµ=0,σ=1 QA(ϵ, γ) is monotonic decreas- 394

ing with respect to ϵ over [0, 1
1+γ

], provided that 0 ≤ γ ≤ 1. 395

Theorem .10. supP ∈PU ∩Pµ=0,σ=1 QA(ϵ, γ) is a nonincreasing 396

function with respect to ϵ on the interval [0, 1
1+γ

], provided 397

that 0 ≤ γ ≤ 1. 398

Proof. When 0 ≤ ϵ ≤ 1
6 , ∂ sup QA

∂ϵ
= γ√

ϵγ
12−9ϵγ

(4−3ϵγ)2
− 399

1
3
√

4
ϵ

−9ϵ2 =
√

γ√
ϵ

12−9ϵγ
(4−3ϵγ)2 − 1

3
√

4
ϵ

−9ϵ2 . If γ = 0 400

and ϵ → 0+, ∂ sup QA
∂ϵ

= − 1
3
√

4
ϵ

−9ϵ2 < 0. If 401

ϵ → 0+, limϵ→0+

(
γ

(4−3γϵ)2
√

ϵγ
12−9γϵ

− 1
3
√

4
ϵ

−9ϵ2

)
= 402

limϵ→0+

( √
3γ√
43ϵ

− 1
6

√
ϵ3

)
→ −∞, for all 0 ≤ γ ≤ 1, 403

so, ∂ sup QA
∂ϵ

< 0. When 0 < ϵ ≤ 1
6 and 404

0 < γ ≤ 1, to prove ∂ sup QA
∂ϵ

≤ 0, it is equivalent 405

to showing
√

ϵγ
12−9ϵγ

(4−3ϵγ)2

γ
≥ 3

√
4
ϵ

− 9ϵ2. Define 406

L(ϵ, γ) =
√

ϵγ
12−9ϵγ

(4−3ϵγ)2

γ
, R(ϵ, γ) = 3

√
4
ϵ

− 9ϵ2. 407

L(ϵ,γ)
ϵ2 =

√
ϵγ

12−9ϵγ
(4−3ϵγ)2

γϵ2 = 1
γ

(
4
ϵ

− 3γ
)2√ 1

12
ϵγ

−9 , 408

R(ϵ,γ)
ϵ2 = 3

√
4
ϵ

− 9. Then, the above inequality is 409

equivalent to L(ϵ,γ)
ϵ2 ≥ R(ϵ,γ)

ϵ2 ⇔ 1
γ

√
1

12
ϵγ

−9

(
4
ϵ

− 3γ
)2 ≥ 410

3
√

4
ϵ

− 9 ⇔ 1
γ

(
4
ϵ

− 3γ
)2 ≥ 3

√
12
ϵγ

− 9
√

4
ϵ

− 9 ⇔ 411

1
γ2

(
4
ϵ

− 3γ
)4 ≥ 9

(
12
ϵγ

− 9
) (

4
ϵ

− 9
)
. Let LmR

(
1
ϵ

)
= 412

1
γ2

(
4
ϵ

− 3γ
)4 − 9

(
12
ϵγ

− 9
) (

4
ϵ

− 9
)
. ∂LmR(1/ϵ)

∂(1/ϵ) = 16( 4
ϵ

−3γ)3

γ2 − 413
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36
(

12
ϵγ

− 9
)

− 108(4 4
ϵ

−9)
γ

= 4(4( 4
ϵ

−3γ)3−27γ( 4
ϵ

−3γ)+27(9− 4
ϵ

)γ)
γ2 =414

4(256 1
ϵ

3−576 1
ϵ

2
γ+432 1

ϵ
γ2−216 1

ϵ
γ−108γ3+81γ2+243γ)

γ2 . Since415

256 1
ϵ

3 − 576 1
ϵ

2
γ + 432 1

ϵ
γ2 − 216 1

ϵ
γ − 108γ3 + 81γ2 + 243γ ≥416

1536 1
ϵ

2 − 576 1
ϵ

2 + 432 1
ϵ
γ2 − 216 1

ϵ
γ − 108γ3 + 81γ2 + 243γ ≥417

924 1
ϵ

2 + 36 1
ϵ

2 − 216 1
ϵ

+ 432 1
ϵ
γ2 − 108γ3 + 81γ2 + 243γ ≥418

924 1
ϵ

2 + 36 1
ϵ

2 − 216 1
ϵ

+ 513γ2 − 108γ3 + 243γ > 0,419

∂LmR(1/ϵ)
∂(1/ϵ) > 0. Also, LmR (6) = 81(γ−8)((γ−8)3+15γ)

γ2 >420

0 ⇐⇒ γ4 − 32γ3 + 399γ2 − 2168γ + 4096 > 0. If 0 < γ ≤ 1,421

then 32γ3 < 256. Also, γ4 > 0. So, it suffices to prove that422

399γ2 − 2168γ + 4096 > 256. Applying the quadratic formula423

demonstrates the validity of LmR (6) > 0, if 0 < γ ≤ 1.424

Hence, LmR
(

1
ϵ

)
≥ 0 for ϵ ∈ (0, 1

6 ], if 0 < γ ≤ 1. The first425

part is finished.426

When 1
6 < ϵ ≤ 1

1+γ
, ∂ sup QA

∂ϵ
=427

√
3
(

γ
√

γϵ(4−3γϵ)
3
2

− 1
√

1−ϵ(3ϵ+1)
3
2

)
. If γ = 0, γ

√
γϵ(4−3γϵ)

3
2

=428

√
γ

√
ϵ(4−3γϵ)

3
2

= 0, so ∂ sup QA
∂ϵ

=
√

3
(

− 1
√

1−ϵ(3ϵ+1)
3
2

)
< 0,429

for all 1
6 < ϵ ≤ 1

1+γ
. If γ > 0, to determine whether430

∂ sup QA
∂ϵ

≤ 0, when 1
6 < ϵ ≤ 1

1+γ
, since

√
1 − ϵ (3ϵ + 1)

3
2 > 0431

and √
γϵ (4 − 3γϵ)

3
2 > 0, showing

√
γϵ(4−3γϵ)

3
2

γ
≥432

√
1 − ϵ (3ϵ + 1)

3
2 ⇔ γϵ(4−3γϵ)3

γ2 ≥ (1 − ϵ) (3ϵ + 1)3 ⇔433

−27γ2ϵ4 +108γϵ3 + 64ϵ
γ

+27ϵ4 −162ϵ2 −8ϵ−1 ≥ 0 is sufficient.434

When 0 < γ ≤ 1, the inequality can be further simplified to435

108γϵ3 + 64ϵ
γ

− 162ϵ2 − 8ϵ − 1 ≥ 0. Since ϵ ≤ 1
1+γ

, γ ≤ 1
ϵ

− 1.436

Also, as 0 < γ ≤ 1, 0 < γ ≤ min(1, 1
ϵ

− 1). When 1
6 < ϵ ≤ 1

2 ,437
1
ϵ

− 1 > 1, so 0 < γ ≤ 1. When 1
2 ≤ ϵ < 1, 0 < γ ≤ 1

ϵ
− 1. Let438

h(γ) = 108γϵ3 + 64ϵ
γ

, ∂h(γ)
∂γ

= 108ϵ3 − 64ϵ
γ2 . When γ ≤

√
64ϵ

18ϵ3 ,439

∂h(γ)
∂γ

≥ 0, when γ ≥
√

64ϵ
18ϵ3 , ∂h(γ)

∂γ
≤ 0, therefore, the mini-440

mum of h(γ) must be when γ is equal to the boundary point441

of the domain. When 1
6 < ϵ ≤ 1

2 , 0 < γ ≤ 1, since h(0) → ∞,442

h(1) = 108ϵ3 +64ϵ, the minimum occurs at the boundary point443

γ = 1, 108γϵ3 + 64ϵ
γ

− 162ϵ2 − 8ϵ − 1 > 108ϵ3 + 56ϵ − 162ϵ2 − 1.444

Let g(ϵ) = 108ϵ3 + 56ϵ − 162ϵ2 − 1. g′(ϵ) = 324ϵ2 − 324ϵ + 56,445

when ϵ ≤ 2
9 , g′(ϵ) ≥ 0, when 2

9 ≤ ϵ ≤ 1
2 , g′(ϵ) ≤ 0, since446

g( 1
6 ) = 13

3 , g( 1
2 ) = 0, so g(ϵ) ≥ 0, the simplified inequality447

is satisfied. When 1
2 ≤ ϵ < 1, 0 < γ ≤ 1

ϵ
− 1. Since448

h( 1
ϵ

−1) = 108( 1
ϵ

−1)ϵ3 + 64ϵ
1
ϵ

−1 , 108γϵ3 + 64ϵ
γ

−162ϵ2 −8ϵ−1 >449

108
(

1
ϵ

− 1
)

ϵ3 + 64ϵ
1
ϵ

−1 −162ϵ2 −8ϵ−1 = −108ϵ4+54ϵ3−18ϵ2+7ϵ+1
ϵ−1 .450

Let nu(ϵ) = −108ϵ4 + 54ϵ3 − 18ϵ2 + 7ϵ + 1, then nu′(ϵ) =451

−432ϵ3 + 162ϵ2 − 36ϵ + 7, nu′′(ϵ) = −1296ϵ2 + 324ϵ − 36 < 0.452

Since nu′(ϵ = 1
2 ) = − 49

2 < 0, nu′(ϵ) < 0. Also, nu(ϵ = 1
2 ) = 0,453

so nu(ϵ) ≤ 0, the simplified inequality is also satisfied. As454

a result, the simplified inequality is also valid within the455

range of 1
6 < ϵ ≤ 1

1+γ
, when 0 < γ ≤ 1. Then, it validates456

∂ sup QA
∂ϵ

≤ 0 for the same range of ϵ and γ.457

The first and second formulae, when ϵ = 1
6 , are all equal458

to 1
2

√ γ

4− γ
2

√
2 +

√
5
3

. It follows that sup QA(ϵ, γ) is contin-459

uous over [0, 1
1+γ

]. Hence, ∂ sup QA
∂ϵ

≤ 0 holds for the entire460

range 0 ≤ ϵ ≤ 1
1+γ

, when 0 ≤ γ ≤ 1, which leads to the461

assertion of this theorem.462

Let Pk
Υ denote the set of all continuous distributions whose 463

moments, from the first to the kth, are all finite. For a 464

right-skewed distribution, it suffices to consider the upper 465

bound. The monotonicity of supP ∈P2
Υ

QA with respect to ϵ 466

implies that the extent of any violations of the γ-orderliness, 467

if 0 ≤ γ ≤ 1, is bounded for any distribution with a fi- 468

nite second moment, e.g., for a right-skewed distribution 469

in P2
Υ, if ∃0 ≤ ϵ1 ≤ ϵ2 ≤ ϵ3 ≤ 1

1+γ
, then QAϵ2,γ ≥ 470

QAϵ3,γ ≥ QAϵ1,γ , QAϵ2,γ will not be too far away from QAϵ1,γ , 471

since supP ∈P2
Υ

QAϵ1,γ > supP ∈P2
Υ

QAϵ2,γ > supP ∈P2
Υ

QAϵ3,γ . 472

Moreover, a stricter bound can be established for unimodal dis- 473

tributions. The violation of νth γ-orderliness, when ν ≥ 2, is 474

also bounded as it corresponds to the higher-order derivatives 475

of the QA function with respect to ϵ. 476

Robust Mean Estimators 477

Analogous to the γ-orderliness, the γ-trimming inequality for 478

a right-skewed distribution is defined as ∀0 ≤ ϵ1 ≤ ϵ2 ≤ 479
1

1+γ
, TMϵ1,γ ≥ TMϵ2,γ . γ-orderliness is a sufficient condition 480

for the γ-trimming inequality, as proven in the SI Text. The 481

next theorem shows a relation between the ϵ,γ-quantile average 482

and the ϵ,γ-trimmed mean under the γ-trimming inequality, 483

suggesting the γ-orderliness is not a necessary condition for 484

the γ-trimming inequality. 485

Theorem .11. For a distribution that is right-skewed and 486

follows the γ-trimming inequality, it is asymptotically true 487

that the quantile average is always greater or equal to the 488

corresponding trimmed mean with the same ϵ and γ, for all 489

0 ≤ ϵ ≤ 1
1+γ

. 490

Proof. According to the definition of the γ-trimming in- 491

equality: ∀0 ≤ ϵ ≤ 1
1+γ

, 1
1−ϵ−γϵ+2δ

∫ 1−ϵ+δ

γϵ−δ
Q (u) du ≥ 492

1
1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du, where δ is an infinitesimal posi- 493

tive quantity. Subsequently, rewriting the inequality 494

gives
∫ 1−ϵ+δ

γϵ−δ
Q (u) du − 1−ϵ−γϵ+2δ

1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du ≥ 0 ⇔ 495∫ 1−ϵ+δ

1−ϵ
Q (u) du +

∫ γϵ

γϵ−δ
Q (u) du − 2δ

1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du ≥ 496

0. Since δ → 0+, 1
2δ

(∫ 1−ϵ+δ

1−ϵ
Q (u) du +

∫ γϵ

γϵ−δ
Q (u) du

)
= 497

Q(γϵ)+Q(1−ϵ)
2 ≥ 1

1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du, the proof is com- 498

plete. 499

An analogous result about the relation between the ϵ,γ- 500

trimmed mean and the ϵ,γ-Winsorized mean can be obtained 501

in the following theorem. 502

Theorem .12. For a right-skewed distribution following the 503

γ-trimming inequality, asymptotically, the Winsorized mean 504

is always greater or equal to the corresponding trimmed mean 505

with the same ϵ and γ, for all 0 ≤ ϵ ≤ 1
1+γ

, provided that 506

0 ≤ γ ≤ 1. If assuming γ-orderliness, the inequality is valid 507

for any non-negative γ. 508

Proof. According to Theorem .11, Q(γϵ)+Q(1−ϵ)
2 ≥ 509

1
1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du ⇔ γϵ (Q (γϵ) + Q (1 − ϵ)) ≥ 510

( 2γϵ
1−ϵ−γϵ

)
∫ 1−ϵ

γϵ
Q (u) du. Then, if 0 ≤ γ ≤ 511

1,
(
1 − 1

1−ϵ−γϵ

) ∫ 1−ϵ

γϵ
Q (u) du + γϵ (Q (γϵ) + Q (1 − ϵ)) ≥ 512

0 ⇒
∫ 1−ϵ

γϵ
Q (u) du + γϵQ (γϵ) + ϵQ (1 − ϵ) ≥

∫ 1−ϵ

γϵ
Q (u) du + 513

γϵ (Q (γϵ) + Q (1 − ϵ)) ≥ 1
1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du, the proof 514
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of the first assertion is complete. The second assertion is515

established in Theorem 0.3. in the SI Text.516

Replacing the TM in the γ-trimming inequality with WA517

forms the definition of the γ-weighted inequality. The γ-518

orderliness also implies the γ-Winsorization inequality when519

0 ≤ γ ≤ 1, as proven in the SI Text. The same rationale520

as presented in Theorem .2, for a location-scale distribu-521

tion characterized by a location parameter µ and a scale522

parameter λ, asymptotically, any WA(ϵ, γ) can be expressed523

as λWA0(ϵ, γ) + µ, where WA0(ϵ, γ) is an function of Q0(p)524

according to the definition of the weighted average. Adhering525

to the rationale present in Theorem .2, for any probability526

distribution within a location-scale family, a necessary and527

sufficient condition for whether it follows the γ-weighted in-528

equality is whether the family of probability distributions also529

adheres to the γ-weighted inequality.530

To construct weighted averages based on the νth γ-
orderliness and satisfying the corresponding weighted in-
equality, when 0 ≤ γ ≤ 1, let Bi =

∫ (i+1)ϵ

iϵ
QA (u, γ) du,

ka = kϵ + c. From the γ-orderliness for a right-skewed dis-
tribution, it follows that, − ∂QA

∂ϵ
≥ 0 ⇔ ∀0 ≤ a ≤ 2a ≤

1
1+γ

, − (QA(2a,γ)−QA(a,γ))
a

≥ 0 ⇒ Bi − Bi+1 ≥ 0, if 0 ≤ γ ≤ 1.
Suppose that Bi = B0. Then, the ϵ,γ-block Winsorized mean,
is defined as

BWMϵ,γ,n := 1
n

 (1−ϵ)n∑
i=nγϵ+1

Xi +
2nγϵ+1∑

i=nγϵ+1

Xi +
(1−ϵ)n∑

i=(1−2ϵ)n

Xi

 ,

which is double weighting the leftest and rightest blocks hav-531

ing sizes of γϵn and ϵn, respectively. As a consequence of532

Bi − Bi+1 ≥ 0, the γ-block Winsorization inequality is valid,533

provided that 0 ≤ γ ≤ 1. The block Winsorized mean uses534

two blocks to replace the trimmed parts, not two single quan-535

tiles. The subsequent theorem provides an explanation for536

this difference.537

Theorem .13. Asymptotically, for a right-skewed distribution538

following the γ-orderliness, the Winsorized mean is always539

greater than or equal to the corresponding block Winsorized540

mean with the same ϵ and γ, for all 0 ≤ ϵ ≤ 1
1+γ

, provided541

that 0 ≤ γ ≤ 1.542

Proof. From the definitions of BWM and WM, the state-543

ment necessitates
∫ 1−ϵ

γϵ
Q (u) du + γϵQ (γϵ) + ϵQ (1 − ϵ) ≥544 ∫ 1−ϵ

γϵ
Q (u) du +

∫ 2γϵ

γϵ
Q (u) du +

∫ 1−ϵ

1−2ϵ
Q (u) du ⇔ γϵQ (γϵ) +545

ϵQ (1 − ϵ) ≥
∫ 2γϵ

γϵ
Q (u) du+

∫ 1−ϵ

1−2ϵ
Q (u) du. Define WMl(x) =546

Q (γϵ) and BWMl(x) = Q (x). In both functions, the547

interval for x is specified as [γϵ, 2γϵ]. Then, define548

WMu(y) = Q (1 − ϵ) and BWMu(y) = Q (y). In both549

functions, the interval for y is specified as [1 − 2ϵ, 1 − ϵ].550

The function y : [γϵ, 2γϵ] → [1 − 2ϵ, 1 − ϵ] defined by551

y(x) = 1 − x
γ

is a bijection. WMl(x) + WMu(y(x)) =552

Q (γϵ) + Q (1 − ϵ) ≥ BWMl(x) + BWMu(y(x)) = Q (x) +553

Q
(
1 − x

γ

)
is valid for all x ∈ [γϵ, 2γϵ], according to the554

definition of γ-orderliness. Integration of the left side555

yields,
∫ 2γϵ

γϵ
(WMl (u) + WMu (y (u))) du =

∫ 2γϵ

γϵ
Q (γϵ) du +556 ∫ y(2γϵ)

y(γϵ) Q (1 − ϵ) du =
∫ 2γϵ

γϵ
Q (γϵ) du +

∫ 1−ϵ

1−2ϵ
Q (1 − ϵ) du =557

γϵQ (γϵ) + ϵQ (1 − ϵ), while integration of the right side558

yields
∫ 2γϵ

γϵ
(BWMl (x) + BWMu (y (x))) dx =

∫ 2γϵ

γϵ
Q (u) du +559

∫ 2γϵ

γϵ
Q
(
1 − x

γ

)
dx =

∫ 2γϵ

γϵ
Q (u) du +

∫ 1−ϵ

1−2ϵ
Q (u) du, which are 560

the left and right sides of the desired inequality. Given that the 561

upper limits and lower limits of the integrations are different 562

for each term, the condition 0 ≤ γ ≤ 1 is necessary for the 563

desired inequality to be valid. 564

565

From the second γ-orderliness for a right-skewed dis-
tribution, ∂2QA

∂2ϵ
≥ 0 ⇒ ∀0 ≤ a ≤ 2a ≤ 3a ≤

1
1+γ

, 1
a

( (QA(3a,γ)−QA(2a,γ))
a

− (QA(2a,γ)−QA(a,γ))
a

)
≥ 0 ⇒ if

0 ≤ γ ≤ 1, Bi −2Bi+1 +Bi+2 ≥ 0. SMϵ can thus be interpreted
as assuming γ = 1 and replacing the two blocks, Bi + Bi+2
with one block 2Bi+1. From the νth γ-orderliness for a right-
skewed distribution, the recurrence relation of the derivatives
naturally produces the alternating binomial coefficients,

(−1)ν ∂νQA
∂ϵν

≥ 0 ⇒ ∀0 ≤ a ≤ . . . ≤ (ν + 1)a ≤ 1
1 + γ

,

(−1)ν

a

 QA(νa+a,γ)
. . .

a
− . . .

QA(2a,γ)
a

a
−

QA(νa,γ)
. . .

a
− . . .

QA(a,γ)
a

a


≥ 0 ⇔ (−1)ν

aν

(
ν∑

j=0

(−1)j

(
ν

j

)
QA ((ν − j + 1) a, γ)

)
≥ 0

⇒ if 0 ≤ γ ≤ 1,

ν∑
j=0

(−1)j

(
ν

j

)
Bi+j ≥ 0.

Based on the νth orderliness, the ϵ,γ-binomial mean is intro-
duced as

BMν,ϵ,γ,n := 1
n

 1
2 ϵ−1(ν+1)−1∑

i=1

ν∑
j=0

(
1 − (−1)j

(
ν

j

))
Bij

 ,

where Bij =
∑nϵ(j+(i−1)(ν+1)+1)

l=nγϵ(j+(i−1)(ν+1))+1 (Xl + Xn−l+1). If ν is
not indicated, it defaults to ν = 3. Since the alternating sum
of binomial coefficients equals zero, when ν ≪ ϵ−1 and ϵ → 0,
BM → µ. The solutions for the continuity of the breakdown
point is the same as that in SM and not repeated here. The
equalities BMν=1,ϵ = BWMϵ and BMν=2,ϵ = SMϵ,b=3 hold,
when γ = 1 and their respective ϵs are identical. Interestingly,
the biases of the SMϵ= 1

9 ,b=3 and the WMϵ= 1
9

are nearly indis-
tinguishable in common asymmetric unimodal distributions
such as Weibull, gamma, lognormal, and Pareto (SI Dataset
S1). This indicates that their robustness to departures from
the symmetry assumption is practically similar under uni-
modality, even though they are based on different orders of
orderliness. If single quantiles are used, based on the second
γ-orderliness, the stratified quantile mean can be defined as

SQMϵ,γ,n := 4ϵ

1
4ϵ∑

i=1

1
2(Q̂n ((2i − 1)γϵ) + Q̂n (1 − (2i − 1)ϵ)),

SQMϵ= 1
4

is the Tukey’s midhinge (35). In fact, SQM is a 566

subcase of SM when γ = 1 and b → ∞, so the solution for the 567

continuity of the breakdown point, 1
ϵ

mod 4 ̸= 0, is identical. 568

However, since the definition is based on the empirical quantile 569

function, no decimal issues related to order statistics will arise. 570

The next theorem explains another advantage. 571
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Theorem .14. For a right-skewed second γ-ordered distri-572

bution, asymptotically, SQMϵ,γ is always greater or equal to573

the corresponding BMν=2,ϵ,γ with the same ϵ and γ, for all574

0 ≤ ϵ ≤ 1
1+γ

, if 0 ≤ γ ≤ 1.575

Proof. For simplicity, suppose the order statistics of the sam-576

ple are distributed into ϵ−1 ∈ N blocks in the computa-577

tion of both SQMϵ,γ and BMν=2,ϵ,γ . The computation of578

BMν=2,ϵ,γ alternates between weighting and non-weighting,579

let ‘0’ denote the block assigned with a weight of zero and580

‘1’ denote the block assigned with a weighted of one, the se-581

quence indicating the weighted or non-weighted status of each582

block is: 0, 1, 0, 0, 1, 0, . . . . Let this sequence be denoted by583

aBMν=2,ϵ,γ (j), its formula is aBMν=2,ϵ,γ (j) =
⌊

j mod 3
2

⌋
. Simi-584

larly, the computation of SQMϵ,γ can be seen as positioning585

quantiles (p) at the beginning of the blocks if 0 < p < 1
1+γ

, and586

at the end of the blocks if p > 1
1+γ

. The sequence of denoting587

whether each block’s quantile is weighted or not weighted is:588

0, 1, 0, 1, 0, 1, . . . . Let the sequence be denoted by aSQMϵ,γ
(j),589

the formula of the sequence is aSQMϵ,γ
(j) = j mod 2. If pair-590

ing all blocks in BMν=2,ϵ,γ and all quantiles in SQMϵ,γ , there591

are two possible pairings of aBMν=2 (j) and aSQMϵ,γ
(j). One592

pairing occurs when aBMν=2,ϵ,γ (j) = aSQMϵ,γ
(j) = 1, while the593

other involves the sequence 0, 1, 0 from aBMν=2,ϵ,γ (j) paired594

with 1, 0, 1 from aSQMϵ,γ
(j). By leveraging the same principle595

as Theorem .13 and the second γ-orderliness (replacing the two596

quantile averages with one quantile average between them),597

the desired result follows.598

The biases of SQMϵ= 1
8

, which is based on the second order-599

liness with a quantile approach, are notably similar to those600

of BMν=3,ϵ= 1
8

, which is based on the third orderliness with a601

block approach, in common asymmetric unimodal distributions602

(Figure ??).603

Hodges–Lehmann inequality and γ-U -orderliness604

The Hodges–Lehmann estimator stands out as a unique robust605

location estimator due to its definition being substantially606

dissimilar from conventional L-estimators, R-estimators, and607

M -estimators. In their landmark paper, Estimates of location608

based on rank tests, Hodges and Lehmann (8) proposed two609

methods for computing the H-L estimator: the Wilcoxon score610

R-estimator and the median of pairwise means. The Wilcoxon611

score R-estimator is a location estimator based on signed-rank612

test, or R-estimator, (8) and was later independently discov-613

ered by Sen (1963) (36, 37). However, the median of pairwise614

means is a generalized L-statistic and a trimmed U -statistic,615

as classified by Serfling in his novel conceptualized study in616

1984 (38). Serfling further advanced the understanding by617

generalizing the H-L kernel as hlk (x1, . . . , xk) = 1
k

∑k

i=1 xi,618

where k ∈ N (38). Here, the weighted H-L kernel is defined619

as whlk (x1, . . . , xk) =
∑k

i=1
xiwi∑k

i=1
wi

, where wis are the weights620

applied to each element.621

By using the weighted H-L kernel and the L-estimator, it
is now clear that the Hodges-Lehmann estimator is an LL-
statistic, the definition of which is provided as follows:

LLk,ϵ,γ,n := Lϵ0,γ,n

(
sort

(
(whlk (XN1 , ··· , XNk ))(

n
k)

N=1

))
,

where Lϵ0,γ,n (Y ) represents the ϵ0,γ-L-estimator that uses 622

the sorted sequence, sort
(

(whlk (XN1 , ··· , XNk ))(
n
k)

N=1

)
, as in- 623

put. The upper asymptotic breakdown point of LLk,ϵ,γ is 624

ϵ = 1 − (1 − ϵ0)
1
k , as proven in DSSM II. There are two ways 625

to adjust the breakdown point: either by setting k as a constant 626

and adjusting ϵ0, or by setting ϵ0 as a constant and adjusting 627

k. In the above definition, k is discrete, but the bootstrap 628

method can be applied to ensure the continuity of k, also 629

making the breakdown point continuous. Specifically, if k ∈ R, 630

let the bootstrap size be denoted by b, then first sampling the 631

original sample (1 − k + ⌊k⌋)b times with each sample size of 632

⌊k⌋, and then subsequently sampling (1 − ⌈k⌉ + k)b times with 633

each sample size of ⌈k⌉, (1 − k + ⌊k⌋)b ∈ N, (1 − ⌈k⌉ + k)b ∈ N. 634

The corresponding kernels are computed separately, and the 635

pooled sorted sequence is used as the input for the L-estimator. 636

Let Sk represent the sorted sequence. Indeed, for any fi- 637

nite sample, X, when k = n, Sk becomes a single point, 638

whlk=n (X1, . . . , Xn). When wi = 1, the minimum of Sk 639

is 1
k

∑k

i=1 Xi, due to the property of order statistics. The 640

maximum of Sk is 1
k

∑k

i=1 Xn−i+1. The monotonicity of the 641

order statistics implies the monotonicity of the extrema with 642

respect to k, i.e., the support of Sk shrinks monotonically. For 643

unequal wis, the shrinkage of the support of Sk might not be 644

strictly monotonic, but the general trend remains, since all 645

LL-statistics converge to the same point, as k → n. Therefore, 646

if
∑n

i=1
Xiwi∑n

i=1
wi

approaches the population mean when n → ∞, 647

all LL-statistics based on such consistent kernel function ap- 648

proach the population mean as k → ∞. For example, if 649

whlk = BMν,ϵk,n=k, ν ≪ ϵ−1
k , ϵk → 0, such kernel function is 650

consistent. These cases are termed the LL-mean (LLMk,ϵ,γ,n). 651

By substituting the WAϵ0,γ,n for the Lϵ0,γ,n in LL-statistic, 652

the resulting statistic is referred to as the weighted L-statistic 653

(WLk,ϵ,γ,n). The case having a consistent kernel function is 654

termed as the weighted L-mean (WLMk,ϵ,γ,n). The wi = 1 655

case of WLMk,ϵ,γ,n is termed the weighted Hodges-Lehmann 656

mean (WHLMk,ϵ,γ,n). The WHLMk=1,ϵ,γ,n is the weighted 657

average. If k ≥ 2 and the WA in WHLM is set as TMϵ0 , it 658

is called the trimmed H-L mean (Figure ??, k = 2, ϵ0 = 15
64 ). 659

The THLMk=2,ϵ,γ=1,n appears similar to the Wilcoxon’s one- 660

sample statistic investigated by Saleh in 1976 (39), which 661

involves first censoring the sample, and then computing the 662

mean of the number of events that the pairwise mean is greater 663

than zero. The THLM
k=2,ϵ=1−(1− 1

2 )
1
2 ,γ=1,n

is the Hodges- 664

Lehmann estimator, or more generally, a special case of the 665

median Hodges-Lehmann mean (mHLMk,n). mHLMk,n is 666

asymptotically equivalent to the MoMk,b= n
k

as discussed pre- 667

viously, Therefore, it is possible to define a series of location 668

estimators, analogous to the WHLM, based on MoM. For 669

example, the γ-median of means, γmoMk,b= n
k

,n, is defined by 670

replacing the median in MoMk,b= n
k

,n with the γ-median. 671

The hlk kernel distribution, denoted as Fhlk , can be de-
fined as the probability distribution of the sorted sequence
sort

(
(hlk (XN1 , ··· , XNk ))(

n
k)

N=1

)
. For any real value y, the cdf

of the hlk kernel distribution is given by: Fhk (y) = Pr(Yi ≤ y),
where Yi represents an individual element from the sorted
sequence. The overall hlk kernel distributions possess a two-
dimensional structure, encompassing n kernel distributions
with varying k values, from 1 to n, where one dimension is

8 | Lee
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inherent to each individual kernel distribution, while the other
is formed by the alignment of the same percentiles across all
kernel distributions. As k increases, all percentiles converge
to X̄, leading to the concept of γ-U -orderliness:

(∀k2 ≥ k1 ≥ 1, γmHLM
k2,ϵ=1−

(
γ

1+γ

) 1
k2 ,γ

≥ γmHLM
k1,ϵ=1−

(
γ

1+γ

) 1
k1 ,γ

)∨

(∀k2 ≥ k1 ≥ 1, γmHLM
k2,ϵ=1−

(
γ

1+γ

) 1
k2 ,γ

≤ γmHLM
k1,ϵ=1−

(
γ

1+γ

) 1
k1 ,γ

),

where γmHLMk sets the WA in WHLM as γ-median, with672

γ being constant. The direction of the inequality depends673

on the relative magnitudes of γmHLMk=1,ϵ,γ = γm and674

γmHLMk=∞,ϵ,γ = µ. The Hodges-Lehmann inequality can be675

defined as a special case of the γ-U -orderliness when γ = 1.676

When γ ∈ {0, ∞}, the γ-U -orderliness is valid for any dis-677

tribution as previously shown. If γ /∈ {0, ∞}, analytically678

proving the validity of the γ-U -orderliness for a paramet-679

ric distribution is pretty challenging. As an example, the680

hl2 kernel distribution has a probability density function681

fhl2 (x) =
∫ 2x

0 2f (t) f (2x − t) dt (a result after the transfor-682

mation of variables); the support of the original distribution is683

assumed to be [0, ∞) for simplicity. The expected value of the684

H-L estimator is the positive solution of
∫ H-L

0 (fhl2 (s)) ds = 1
2 .685

For the exponential distribution, fhl2,exp(x) = 4λ−2xe−2λ−1x,686

λ is a scale parameter, E[H-L] = −W−1(− 1
2e )−1

2 λ ≈ 0.839λ,687

where W−1 is a branch of the Lambert W function which can-688

not be expressed in terms of elementary functions. However,689

the violation of the γ-U -orderliness is bounded under certain690

assumptions, as shown below.691

Theorem .15. For any distribution with a finite second cen-
tral moment, σ2, the following concentration bound can be
established for the γ-median of means,

P
(

γmoMk,b= n
k

,n − µ >
tσ√

k

)
≤ e

− 2n
k

(
1

1+γ
− 1

k+t2

)2

.

Proof. Denote the mean of each block as µ̂i, 1 ≤ i ≤ b. Ob-692

serve that the event
{

γmoMk,b= n
k

,n − µ > tσ√
k

}
necessitates693

the condition that there are at least b(1 − γ
1+γ

) of µ̂is larger694

than µ by more than tσ√
k

, i.e.,
{

γmoMk,b= n
k

,n − µ > tσ√
k

}
⊂695 {∑b

i=1 1(
µ̂i−µ

)
> tσ√

k

≥ b
(
1 − γ

1+γ

)}
, where 1A is the indica-696

tor of event A. Assuming a finite second central moment,697

σ2, it follows from one-sided Chebeshev’s inequality that698

E
(

1(
µ̂i−µ

)
> tσ√

k

)
= P

(
(µ̂i − µ) > tσ√

k

)
≤ σ2

kσ2+t2σ2 .699

Given that 1(
µ̂i−µ

)
> tσ√

k

∈ [0, 1] are independent700

and identically distributed random variables, accord-701

ing to the aforementioned inclusion relation, the one-702

sided Chebeshev’s inequality and the one-sided Ho-703

effding’s inequality, P
(

γmoMk,b= n
k

,n − µ > tσ√
k

)
≤704

P
(∑b

i=1 1(
µ̂i−µ

)
> tσ√

k

≥ b
(
1 − γ

1+γ

))
=705

P
(

1
b

∑b

i=1

(
1(

µ̂i−µ
)

> tσ√
k

− E
(

1(
µ̂i−µ

)
> tσ√

k

))
≥706 (

1 − γ
1+γ

)
− E

(
1(

µ̂i−µ
)

> tσ√
k

))
≤707

e

−2b

((
1− γ

1+γ

)
−E

(
1(

µ̂i−µ

)
> tσ√

k

))2

≤ 708

e
−2b
(

1− γ
1+γ

− σ2
kσ2+t2σ2

)2

= e
−2b
(

1
1+γ

− 1
k+t2

)2

. 709

Theorem .16. Let B(k, γ, t, n) = e
− 2n

k

(
1

1+γ
− 1

k+t2

)2

. If 710

n ∈ N, γ ≥ 0, 0 ≤ t2 < γ + 1, and γ − t2 + 1 ≤ k ≤ 711
1
2

√
9γ2 + 18γ − 8γt2 − 8t2 + 9+ 1

2

(
3γ − 2t2 + 3

)
, B is mono- 712

tonic decreasing with respect to k. 713

Proof. Since ∂B
∂k

=

(
2n
(

1
γ+1 − 1

k+t2

)2

k2 −
4n
(

1
γ+1 − 1

k+t2

)
k(k+t2)2

)
714

e−
2n

(
1

γ+1 − 1
k+t2

)2

k and n ∈ N, ∂B
∂k

≤ 0 ⇔ 715

2n
(

1
γ+1 − 1

k+t2

)2

k2 −
4n
(

1
γ+1 − 1

k+t2

)
k(k+t2)2 ≤ 0 ⇔ 716

2n(−γ+k+t2−1)(k2−3(γ+1)k+2kt2+t2(−γ+t2−1))
(γ+1)2k2(k+t2)3 ≤ 0 ⇔ 717(

−γ + k + t2 − 1
) (

k2 − 3(γ + 1)k + 2kt2 + t2 (−γ + t2 − 1
))

718

≤ 0. When the factors are expanded, it yields a cubic inequal- 719

ity in terms of k: k3 + k2 (3t2 − 4(γ + 1)
)

+ 3k
(
γ − t2 + 1

)2 + 720

t2 (γ − t2 + 1
)2 ≤ 0. Assuming 0 ≤ t2 < γ + 1 and γ ≥ 0, 721

using the factored form and subsequently applying the 722

quadratic formula, the inequality is valid if γ − t2 + 1 ≤ k ≤ 723
1
2

√
9γ2 + 18γ − 8γt2 − 8t2 + 9 + 1

2

(
3γ − 2t2 + 3

)
. 724

Let X be a random variable and Ȳ = 1
k

(Y1 + · · · + Yk) be 725

the average of k independent, identically distributed copies 726

of X. Applying the variance operation gives: Var(Ȳ ) = 727

Var
(

1
k

(Y1 + · · · + Yk)
)

= 1
k2 (Var(Y1) + · · · + Var(Yk)) = 728

1
k2 (kσ2) = σ2

k
, since the variance operation is a linear op- 729

erator for independent variables, and the variance of a scaled 730

random variable is the square of the scale times the vari- 731

ance of the variable, i.e., Var(cX) = E[(cX − E[cX])2] = 732

E[(cX−cE[X])2] = E[c2(X−E[X])2] = c2E[((X)−E[X])2] = 733

c2Var(X). Thus, the standard deviation of the hlk kernel 734

distribution, asymptotically, is σ√
k

. By utilizing the asymp- 735

totic bias bound of any quantile for any continuous distribu- 736

tion with a finite second central moment, σ2,(34), a conser- 737

vative asymptotic bias bound of γmoMk,b= n
k

can be estab- 738

lished as γmoMk,b= n
k

− µ ≤
√

γ
1+γ

1− γ
1+γ

σhlk =
√

γ
k

σ. That 739

implies in Theorem .15, t <
√

γ, so when γ = 1, the upper 740

bound of k, subject to the monotonic decreasing constraint, 741

is 2 +
√

5 < 1
2

√
9 + 18 − 8t2 − 8t2 + 9 + 1

2

(
3 − 2t2 + 3

)
≤ 6, 742

the lower bound is 1 < 2 − t2 ≤ 2. These analyses elucidate a 743

surprising result: although the conservative asymptotic bound 744

of MoMk,b= n
k

is monotonic with respect to k, its concentration 745

bound is optimal when k ∈ (2 +
√

5, 6]. 746

Then consider the structure within each individual hlk ker- 747

nel distribution. The sorted sequence Sk, when k = n − 1, 748

has n elements and the corresponding hlk kernel distribu- 749

tion can be seen as a location-scale transformation of the 750

original distribution, so the corresponding hlk kernel dis- 751

tribution is νth γ-ordered if and only if the original dis- 752

tribution is νth γ-ordered according to Theorem .2. Ana- 753

lytically proving other cases is challenging. For example, 754

f ′
hl2 (x) = 4f (2x) f (0)+

∫ 2x

0 4f (t) f ′ (2x − t) dt, the strict neg- 755

ative of f ′
hl2 (x) is not guaranteed if just assuming f ′(x) < 0, 756
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so, even if the original distribution is monotonic decreasing,757

the hl2 kernel distribution might be non-monotonic. Also,758

unlike the pairwise difference distribution, if the original dis-759

tribution is unimodal, the pairwise mean distribution might760

be non-unimodal, as demonstrated by a counterexample given761

by Chung in 1953 and mentioned by Hodges and Lehmann762

in 1954 (40, 41). Theorem .9 implies that the violation of763

νth γ-orderliness within the hlk kernel distribution is also764

bounded, and the bound monotonically shrinks as k increases765

because the bound is in unit of the standard deviation of the766

hlk kernel distribution. If all hlk kernel distributions are νth767

γ-ordered and the distribution itself is νth γ-ordered and γ-U -768

ordered, then the distribution is called νth γ-U -ordered. The769

following theorems highlight the significance of γ-symmetric770

distributions.771

Theorem .17. Any γ-symmetric distribution is νth γ-U-772

ordered, provided that the γ is the same.773

The succeeding theorem shows that the whlk kernel distri-774

bution is invariably a location-scale distribution if the original775

distribution belongs to a location-scale family with the same776

location and scale parameters.777

Theorem .18. whlk (x1 = λx1 + µ, . . . , xk = λxk + µ) =778

λwhlk (x1, . . . , xk) + µ.779

Proof. whlk (x1 = λx1 + µ, ··· , xk = λxk + µ) =780 ∑k

i=1
(λxi+µ)wi∑k

i=1
wi

=
∑k

i=1
λxiwi+

∑k

i=1
µwi∑k

i=1
wi

= λ

∑k

i=1
xiwi∑k

i=1
wi

+781 ∑k

i=1
µwi∑k

i=1
wi

= λ

∑k

i=1
xiwi∑k

i=1
wi

+ µ = λwhlk (x1, ··· , xk) + µ.782

According to Theorem .18, the γ-weighted inequality for a783

right-skewed distribution can be modified as ∀0 ≤ ϵ01 ≤ ϵ02 ≤784
1

1+γ
, WLM

k,ϵ=1−(1−ϵ01 )
1
k ,γ

≥ WLM
k,ϵ=1−(1−ϵ02 )

1
k ,γ

, which785

holds the same rationale as the γ-weighted inequality defined786

in the last section. If the νth γ-orderliness is valid for the787

whlk kernel distribution, then all results in the last section can788

be directly implemented. From that, the binomial H-L mean789

(set the WA as BM) can be constructed (Figure ??), while its790

maximum breakdown point is ≈ 0.065 if ν = 3. A compar-791

ison of the biases of BMν=3,ϵ= 1
8
, SQMϵ= 1

8
, THLMk=2,ϵ= 1

8
,792

WHLMk=2,ϵ= 1
8
, MHHLM

k= 2 ln(2)−ln(3)
3 ln(2)−ln(7) ,ϵ= 1

8
(midhinge793

H-L mean), mHLM
k= ln(2)

3 ln(2)−ln(7) ,ϵ= 1
8
, THLMk=5,ϵ= 1

8
,794

and WHLMk=5,ϵ= 1
8

is appropriate (Figure ??, SI795

Dataset S1), given their same breakdown points, with796

mHLM
k= ln(2)

3 ln(2)−ln(7) ,ϵ= 1
8

exhibiting the smallest biases.797
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mean, and the Winsorized mean, all with the same breakdown799

point, yields the same result that the H-L estimator has the800
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