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Abstract
Nowadays, parallel applications are used every day in high performance computing, scientific
computing and also in everyday tasks due to the pervasiveness of multi-core architectures. However,
several implementation challenges have so far stifled the integration of parallel applications and
automatic precision tuning. First of all, tuning a parallel application introduces difficulties in the
detection of the region of code that must be affected by the optimization. Moreover, additional
challenges arise in handling shared variables and accumulators. In this work we address such
challenges by introducing OpenMP parallel programming support to the TAFFO precision tuning
framework. With our approach we achieve speedups up to 750% with respect to the same parallel
application without precision tuning.
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1 Introduction

Approximate computing is a key addition to the array of techniques that can help in
improving the performance and energy efficiency of applications. As such, it has been the
subject of significant investigation by the scientific community, in particular in the fields of
computer architectures and compilers [24], resulting in a range of different techniques at the
software development, compiler, architectural, and circuit level. Within this range, precision
tuning is particularly interesting for its wide applicability and promising results [7]. This
technique aims at exploiting the trade-off between operation accuracy, performance, and
energy efficiency that is achieved by manipulating the data types used in each arithmetic
operation of a kernel. Typically, in error-tolerant applications where the range of input
values is known at compile time, the entire range of values covered by wide floating point
representations such as the 64 and 32 bit IEEE754 is unnecessary. This is exploited explicitly
by programmers using, e.g., Google’s bfloat16, but can more effectively be exploited through
an appropriate compiler. Once more, a good amount of research has been performed in
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5:2 Precision Tuning in Parallel Applications

recent years on the topic of automated management of precision tuning, as shown by a recent
survey [5], leading to compiler-based tools such as the Precimonious [23], Daisy [10], and
taffo [8].

However, in the context of parallel programming models, additional challenges arise that
are often not addressed by the abovementioned tools. This is particularly true for tools that
perform automatic detection of the region of code to be affected by the precision tuning
transformation. Indeed, to guarantee the correctness of the transformed program, precision
tuning tools need to reliably detect each parallel region and the sets of variables shared
between parallel execution threads. The analysis of the parallel behavior of the program
is particularly difficult for languages such as C, C++ and llvm-ir, which do not support
parallel programming paradigms without an auxiliary support library. At the same time, the
code transformation steps that are required to implement mixed precision in the program
must preserve the correctness of atomic instructions and locking constructs when they are
affected by the optimization process.

To address these challenges, in this work we integrate the taffo precision tuning plugins
for the llvm compiler framework with the OpenMP support for the same compiler. The
rationale for this pairing is explained by the need to produce a proof of concept for precision
tuning of parallel programming models. In particular, we focus on taffo because it does not
work as a source to source, but it is already integrated with the llvm compiler framework
(contrary e.g. to Daisy), and is up to date with recent llvm versions supporting OpenMP
(contrary to Precimonious, which requires a severely outdated version of llvm). On the side
of programming models, OpenMP is one of the simplest models, widely supported by both
compilers and benchmarking suites, making it the perfect choice for such a proof of concept.

The rest of this paper is organized as follows. In Section 2 we briefly survey the main
tools available for precision tuning during the code compilation stage and the state of parallel
language support in such tools. In Section 3 we describe the technical modifications to taffo
required for supporting OpenMP applications. In Section 4 we provide an experimental
evaluation of the system, while in Section 5 we draw some conclusions and highlight future
research directions.

2 Related Work

It has been shown that many scientific applications can benefit in terms of performance and
energy efficiency from reduced precision calculations [2, 24]. However, the problem of finding
the precision mix that satisfies the accuracy requirements while providing the maximum
performance is not trivial. As such, automated end-to-end solutions that can perform this
process are necessary. The biggest innovation in computer architecture to push performance
scaling at the end of Moore’s law is parallelization. In recent times, in literature has been
studied the question of converting the existing sequential scientific programs into parallel
ones [1]. In such cases automated parallelization libraries such as OpenMP [9], MPI [20], and
OpenACC are often used. Applying precision mix optimization on top of this parallelization
can be beneficial. However, not many of the modern precision tuning tools can work with
programs using automated parallelization. In this section, we explore the possibility of
automated precision tuning of programs that use OpenMP.

As OpenMP is an automatic parallelization library that supports C/C++ and targets
a wide variety of execution platforms, the automated precision tuning tools that can work
with C/C++ source code and that do not make assumptions about the target platform are
of especial interest for comparison.
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Precimonious [23] is a precision tuning tool that works with C/C++ source code and
outputs the suggested type changes in a json file. It uses delta-debugging [25] search algorithm
to find a precision mix that has better performance while maintaining enough accuracy.
Precimonious uses dynamic analysis to verify that the precision mix satisfies the requirements,
which depends on having a representative dataset. Precimonious only supports IEEE-754
floating-point types, which limits its use.

CRAFT [16, 15] is a source-to-source precision tuning tool that works with C/C++ code.
It uses binary search to determine the precision required at the given program level. It goes
through the modules, functions, basic blocks, and individual instructions in a breadth-first
search fashion to refine the precision mix. CRAFT uses dynamic analysis to verify that the
precision mix satisfies the requirements, which depends on having a representative dataset.
The tool can potentially work with OpenMP. CRAFT only supports IEEE-754 floating-point
types, which limits its use.

FloatSmith [17, 21] is a source-to-source precision tuning tool that is based on CRAFT [16]
and that works with C/C++ code. FloatSmith integrates ADAPT [19] to narrow the search
space for CRAFT using static analysis. It uses CRAFT to further optimize the precision mix
using different search strategies: combinational, compositional, delta-debugging, hierarchical,
hierarchical-compositional, and Genetic Search Algorithm. FloatSmith uses dynamic analysis
to verify that the precision mix satisfies the requirements, which depends on having a
representative dataset. The paper reports a successful test with OpenMP version of LULESH
benchmark [14]. FloatSmith does not support fixed-point types, which limits its use.

GeCoS + ID.Fix [6] is a source-to-source precision tuning tool that works with C/C++
code and targets generic hardware platforms. It uses static analysis technique called value
range propagation to infer the value range of dependent variables based on user-annotated
variables. However, it mostly focuses on floating point to fixed point conversion to minimise
the number of bits used during computation. Additionally, it does not consider the possibility
of a mixed precision output, with floating point and fixed point data types coexisting in the
same program.

Daisy [10] is a precision tuning tool that targets generic platforms, supports fixed-point
types, and provides formal guarantees on the result precision. It uses a combination of
mixed-precision tuning with delta-debugging algorithm and rewriting with a genetic algorithm
to reduce the roundoff error. Daisy uses a static error analysis with interval arithmetic and
SMT [11], and a static heuristic performance cost function. Unfortunately, Daisy requires
the program to be written in a Scala-based domain-specific language, and only supports
optimization of arithmetic kernels without conditionals or loops, which makes it unsuitable
for optimizing programs that use OpenMP.

taffo [8] is a precision tuning tool based on LLVM [18] for optimizing C/C++ programs.
This paper introduces in taffo support for inter-procedural precision tuning of the programs
parallelized with OpenMP [9]. taffo is a precision tuning tool with user-defined scope based
on variable annotations. It performs static code analysis using user-provided range values to
infer the algorithm properties and the affected variables and statically validates the effect of
the precision tuning step on the target values. It also provides formal guarantees about error
magnitude for programs without unbounded loops and gives an estimate when unbounded
loops are present. It controls the overhead introduced by the type casting operators [3].
taffo is built as an LLVM pass and uses LLVM-IR as its input and output, so it can
support a wide variety of programming languages, although it is mainly targeted at programs
written in C/C++. It supports optimization using IEEE-754 [13] floating-point, and dynamic
fixed-point types with a focus on general-purpose computing platforms.

PARMA-DITAM 2022



5:4 Precision Tuning in Parallel Applications

For the more detailed overview of the field we refer the reader to the recent surveys.
Cherubin and Agosta [5] surveys the software tools used at the different stages of precision
tuning. Stanley-Marbell et al. [24] introduces unified terminology for quality versus resource
usage tradeoffs. It also surveys the field categorizing both software and hardware approaches
used on the different levels of the computing stack.

3 Proposed Solution

In this section we describe the modifications we performed on taffo to allow handling of
OpenMP applications. In order to describe such modifications, we must first give a quick
outline of the internal architecture of taffo and of the OpenMP support in llvm.

taffo consists of five independent passes, which take the form of a loadable plugin for
LLVM-based compilers. The pass-based architecture allows taffo to be expandable, easy to
use and robust.

The taffo tool requires the programmer to define some contextual information related
to the value ranges of the inputs and the extent of the area of code that needs to be tuned.
This information is inserted through annotation of the source code. The first pass of taffo,
called Initializer, reads such annotations and converts them in the internal data structures
required by the rest of taffo.

From the user-provided information, taffo then analyses the program to conservatively
derive the numerical intervals each variable in the program will have at runtime. This pass
is called the Value Range Analysis or vra. The information derived by the vra is then
used to determine which reduced-precision data type to use for the variables, a procedure
called Data Type Allocation (dta). The dta can operate based on two different algorithms:
a peephole-based algorithm which always chooses the fixed-point data type with the highest
valid point position for each variable, and a new optimiser based on ILP techniques [4].
This step is able to optimally mix floating point and fixed point data types by exploiting a
mathematical model of how changes to the precision mix affect the speedup and the output
error.

Finally, the Conversion pass is responsible for applying the data type changes on the
program being tuned. The Feedback Estimator pass statically analyses the error using
state-of-the-art estimation methods [7].

While taffo operates at the intermediate representation level, therefore in the so-called
middle-end, OpenMP is mainly implemented in the compiler frontend. In fact, OpenMP is
used by adding specific pragma annotations in a C or C++ program. Depending on the
pragma, OpenMP will automatically transform what would normally be a non-parallel C
language construct into a parallel one. The most common pragmas are the parallel pragma
and the for pragma, and as a result we will focus on supporting such pragmas in our
implementation strategy. The parallel pragma executes a given code block multiple times in
parallel in multiple threads. The number of threads depends on the estimated maximum
number of independent threads that can be run on the machine. On the other hand, the for
pragma must appear before a for loop, and it executes each iteration of the loop in parallel
with respect to the other. The implementation of a typical OpenMP library uses a fixed
thread pool, a well-known implementation strategy for supporting parallel computations
while minimizing the operating-system-level overhead of creating and destroying threads
every time a new task must be instantiated. The parallel pragma starts a new task on each
available thread in the pool, all tasks running the same piece of code. The for pragma is
similar, except that each task executes its body multiple times depending on how many
threads are in the pool. Since the trip-count of the loop must be known up-front, the
induction variable of the loop shall not be modified in the body of the loop itself.
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This functionality is supported by the OpenMP runtime library provided with the clang
compiler. The creation of the thread pools and the enqueueing of the tasks is performed
by code in such library, but the code that calls the library functions is generated by the
clang frontend at compile-time of the program. The block of code that is associated to each
parallel task to be executed is outlined by the clang compiler to a separate function. A
pointer to this function is then passed to a specific runtime function alongside with the local
variables that are used within each thread context. For example, see the C language program
in Listing 1 and its corresponding llvm-ir compiled version in Listing 2. The parallel for
statement is translated to a call to a runtime function called “__kmpc_fork_call”, and
the body of the loop is outlined to the function “.omp_outlined.”. Each thread executes
the outlined function, and in that function other runtime calls are present to compute the
number of times the body of the loop must be executed.

Listing 1 Example C language OpenMP program.

int main()
{

float container[16];
#pragma omp parallel for shared(container)
for (int i = 0; i < 16; i++) {

float result = i * 0.05;
container[i] = result;

}
return 0;

}

Listing 2 Simplified llvm-ir listing corresponding to the example OpenMP program in Listing 1.

define i32 @main() {
entry:

call void @__kmpc_fork_call(%struct.ident_t* nonnull @2, i32 1,
@.omp_outlined., [16 x float]* nonnull %container)

ret i32 0
}

define internal void @.omp_outlined.(i32* %.global_tid., i32* %.bound_tid.,
[16 x float]* %container) {

entry:
...
call void @__kmpc_for_static_init_4( ... )
...

omp.loop.exit:
call void @__kmpc_for_static_fini( ... )
...
ret void

}

In order to add support for OpenMP-aware optimizations in llvm-ir, an optimization
pass must have the appropriate domain knowledge to be able to interpret the meaning of
each runtime invocation. Therefore, our implementation approach involved appropriate
modifications to the taffo passes to add this knowledge. In particular, taffo must be able
to detect OpenMP outlined functions, and it must be able to infer the trip count of loops in
such outlined functions correctly.

PARMA-DITAM 2022



5:6 Precision Tuning in Parallel Applications

To implement these abilities, we modified two passes of taffo: Initializer and Conversion.
In Initializer, the program is searched for instances of call sites of the OpenMP fork function.
At each call site, the OpenMP fork function is temporarily deleted and replaced by a local
trampoline function, whose body simply calls the OpenMP outlined function. This allows
taffo’s existing code to handle OpenMP programs without additional modifications.

Indeed, analyses and transformations in taffo are intra-procedural, and can handle
mixed-precision across functions and in function arguments. The vra and dta passes are
able to inspect each call-site independently and derive mixed-precision data types and value
ranges for each call argument. This means that call sites of the same function can have
different type annotations depending on the surrounding context. Therefore, the Conversion
pass must duplicate each function affected by the mixed-precision transformation a number
of times that depends on the number of call sites with unique type assignments. In the final
program, as a result, call sites that in the original program invoked the same function now
may invoke different functions, depending on whether the call sites now use different types
than before or not. This applies to the OpenMP trampoline functions and outlined functions
as well. To support the OpenMP runtime, an additional process has been implemented in the
Conversion pass, which converts the calls to the trampoline function back to the original call
to the OpenMP library function. This procedure effectively also replaces OpenMP outlined
functions with their mixed-precision cloned equivalent if needed.

For what concerns the handling of trip count of loops, we exploit the fact that the
OpenMP library initialization function of for loops takes as arguments the lower bound,
upper bound and stride of the loop. Therefore it is easy to analyze the outlined function,
detecting the initialization calls and computing the total trip count across all loops with the
formula:

n =
⌊

u − l + 1
s

⌋
,

where n is the trip count, s is the stride, u is the upper bound and l is the lower bound.

4 Experimental Evaluation

To evaluate our work, we used the PolyBench/C version 3.2 benchmark suite [22], in a version
modified for OpenMP support [12]. PolyBench is a collection of several small kernels written
in C, covering several computational tasks, such as data mining tasks, linear algebra kernels,
BLAS routines and more. Polybench allows to tune the amount of memory to employ for
every test in order to be able to adapt to multiple targets, even memory-constrained ones
such as microcontrollers.

We run all the benchmarks on a non-uniform memory access (NUMA) server with a 24
Six-Core AMD Opteron(tm) Processor 8435 (2,6 GHz) with 128GB RAM. The operating
system is Ubuntu 20.04 LTS. On this machine, not all benchmarks gained a speedup
from parallelization. As a result, only a subset of benchmarks were selected, specifically
those that can be parallelized without algorithmic changes with respect to the original
unmodified PolyBench/C suite, and where parallelization does indeed produce a speedup.
These benchmarks are 2mm, 3mm, doitgen, gemm, syr2k, and syrk.

We compiled the benchmarks in three different configurations, or versions. In all cases, the
compiler used was clang version 12.0, based on llvm version 12.0. In the first configuration
(denoted with the number zero) both the taffo mixed precision optimizations and OpenMP
support were disabled, producing a non-parallel benchmark. In the second configuration
(denoted with the number 1), OpenMP was enabled, but taffo was not used. In the third and
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Table 1 Execution time, speedup and average relative error (ARE) data of the non-parallel,
parallel, and mixed-precision parallel configurations of the selected subset of PolyBench/C.

Benchmark t0 [s] t1 [s] t2 [s] S1 S2 ARE

2mm 105.375 6.199 1.819 1599.9 % 240.7 % 8.85 × 10−9%
3mm 23.760 1.381 0.803 1620.8 % 71.9 % 7.45 × 10−5%
doitgen 1.028 0.111 0.080 830.1 % 38.1 % 1.47 × 10−3%
gemm 101.646 7.515 0.850 1252.6 % 783.7 % 8.85 × 10−9%
syr2k 6.692 2.595 1.027 157.9 % 152.8 % 8.85 × 10−9%
syrk 2.285 0.974 0.239 134.6 % 308.3 % 8.85 × 10−9%

final configuration (denoted with the number 2), both OpenMP and taffo were employed.
The dataset size – a configuration option provided by all PolyBench/C benchmarks – was set to
normal for every benchmarks and in every configuration. The benchmarks were instrumented
in order to measure the execution time and the error between the taffo-optimized mixed
precision configuration and the non-mixed-precision configuration.

The data from the experiments conducted as described herein are shown in Table 1. In
the table, t0 refers to the execution time of the non-parallel kernels, t1 the execution time of
the parallel kernels, and t2 the execution time of the mixed-precision parallel kernels. S1 is
the speedup of the parallel kernel with respect to the non-parallel kernel, and it measures
the execution time improvement due to OpenMP support alone. This metric is a percentage
value computed with the following formula:

S1 = 100
(

t0

t1
− 1

)
.

Similarly, S2 is the speedup of the mixed-precision parallel kernel (configuration 2) with
respect to the parallel kernel (configuration 1), and it quantifies the improvements due
to taffo’s mixed precision optimization. S2 is computed in the same way as S1, except
replacing t1 and t0 with t2 and t1 respectively.

Finally, we shown the average relative error (ARE) introduced by the mixed precision
optimization performed by taffo. To define the ARE, let us represent the output of a
benchmark as a vector X = {x1, x2, ...xn}. If X is the vector of outputs of the unmodified
benchmark, and if Y is the vector of outputs of the benchmark optimized by employing
taffo, the ARE is defined as follows:

ARE = 100
n

n∑
i=1

∣∣∣∣xi − yi

xi

∣∣∣∣ .

The outputs of the non-parallel configurations and the parallel configurations without
mixed-precision are identical, thus we only compare the last mixed-precision parallel config-
uration with the non-parallel configuration.

The results show that, on top of the already considerable speedup derived from the
usage of a parallel algorithm, taffo is able to improve the speedup considerably, up to an
additional 783% for the gemm benchmark. For some benchmarks, namely syr2k and syrk
the gains from mixed precision are comparable with the gains obtainable by this specific
parallel implementation. This may partly be due to inefficiencies in the OpenMP runtime
implementation itself. None of the benchmarks were slowed-down by the taffo mixed
precision transformation. Finally, the ARE error metric is under 0.01% for all benchmarks,

PARMA-DITAM 2022



5:8 Precision Tuning in Parallel Applications

which is in line with previous results obtained with taffo without exploiting OpenMP
support. In conclusion, we can state that the OpenMP extension to taffo is effective
at achieving mixed-precision computation in parallel applications automatically without
introducing significant errors with respect to a non-mixed-precision computational kernel.

5 Conclusions

In this work we presented a new extension to the taffo precision tuning framework that
implements support for the OpenMP parallel programming specification. This extension
does not involve modifications to the core analysis passes of taffo or the frontend, but
it is based on domain knowledge of the OpenMP runtime library. This inherently more
scalable approach allows taffo to remain target and language independent. We verified the
functionality and effectiveness of this extension by applying it on a parallel variant of the
well-known PolyBench benchmark suite, achieving speedups up to 750% with respect to the
same parallel application without precision tuning.

Further developements involve the further extension of our approach to properly support
constructs other than omp for and omp parallel, such as omp reduce and omp task. Other goals
include support for more parallel programming frameworks and GPU-based programming
models such as OpenCL or SYCL.
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