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Abstract: The inherent biases of different long-term gridded surface soil moisture (SSM) products,
unconstrained by the in situ observations, implies different spatio-temporal patterns. In this study,
the Random Forest (RF) model was trained to predict SSM from relevant land surface feature variables
(i.e., land surface temperature, vegetation indices, soil texture, and geographical information) and
precipitation, based on the in situ soil moisture data of the International Soil Moisture Network
(ISMN.). The results of the RF model show an RMSE of 0.05 m3 m−3 and a correlation coefficient of
0.9. The calculated impurity-based feature importance indicates that the Antecedent Precipitation
Index affects most of the predicted soil moisture. The geographical coordinates also significantly
influence the prediction (i.e., RMSE was reduced to 0.03 m3 m−3 after considering geographical
coordinates), followed by land surface temperature, vegetation indices, and soil texture. The spatio-
temporal pattern of RF predicted SSM was compared with the European Space Agency Climate
Change Initiative (ESA-CCI) soil moisture product, using both time-longitude and latitude diagrams.
The results indicate that the RF SSM captures the spatial distribution and the daily, seasonal, and
annual variabilities globally.

Keywords: soil moisture; random forest; global scale; in situ constrained; feature importance;
antecedent precipitation index

1. Introduction

Soil moisture (SM) is an essential climate variable that plays a fundamental role in
the water and heat exchanges between the land and atmosphere [1–3]. Soil moisture
controls the allocating of the precipitation into runoff and infiltration and feedback to the
atmosphere [4] via its role in partitioning the incoming radiation into latent, sensible, and
ground heat fluxes. In most hydrological models, the initial SSM will significantly impact
the climatic mean and predicted extremes [5]. Thus, predicting and analyzing the surface
soil moisture (SSM) at a global scale will contribute to understanding the hydrological
cycle, land surface processes, and land-atmosphere interactions.

So far, there are three main methods for obtaining SSM: in situ measurements, remote
sensing (RS)-based retrievals, and land surface model (LSM) simulations, each of which
has its advantages and limitations. The in situ measurements could provide continuous
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SM time series from different soil layers at the point scale. There are community efforts in
developing an in situ SM database with global coverage, for example, the International Soil
Moisture Network (ISMN) [6–8]. Remote sensing has an edge in extensive spatial coverage
and is low cost compared to in situ sensors. There are RS-based SSM products from
both active (e.g., ASCAT, Sentinel-1) and passive microwave data (e.g., AMSR-E, AMSR-2,
SMOS, SMAP), which have been intensively validated [9–12]. The LSM simulation is
another option to obtain the SSM at flexible spatiotemporal scales (e.g., GLDAS-Noah,
ERA-5, NCEP-NCAR), although a considerable amount of atmospheric forcing data is
needed to run LSMs functionally [11,13–15].

One widely adopted approach for generating long-term SSM is to blend/merge the
RS-based and LSM SSM products across various climate conditions and land covers [16,17].
As LSM provides continuous spatiotemporal distribution of SSM, it is usually used as the
reference data for blending multi-sources of SSM. Nevertheless, using different LSMs will
lead to a different spatiotemporal pattern of the final SSM product [18]. For example, Koster
et al. (2009) compared the volumetric SSM of the National Centre of Atmosphere Research
(NCAR) and ECMWF Reanalysis ERA-40 with the in situ observations from the FLUXNET
site in California, U.S. The National Center for Environmental Prediction (NCEP)-NCAR
reanalysis product values are higher than ERA-40 from January to June and lower than
ERA-40 from July to late year, while both LSM-SSMs overestimated the in situ data [19].
In another study, Naz et al. (2020) compared the anomaly of five different LSMs with the
ESA-CCI SSM over Europe and showed that the Global Land Data Assimilation System
(GLDAS) has the most considerable temporal variability among other datasets [20].

To address systematic bias in the SSM products, Zeng et al. (2016) and Zhuang et al.
(2020) used the triple-collocation-based blending procedure for the multi-satellite SSM data
over Tibetan Plateau [18,21]. In their studies, the arithmetic average of the in situ SSM from
the same climate zone was used to represent the SSM climatology for that climate zone. The
blended result shows a better performance representing spatial patterns of SSM over the
Tibetan Plateau. It is well known that the spatiotemporal pattern of the SSM is controlled by
both physiographical (e.g., soil texture, geographical coordinates) and dynamic variables
(e.g., precipitation, vegetation, land surface temperature (LST)), which varies significantly
under different climate zones [22]. Therefore, the lack of in situ measurements in certain
climate zones may hamper the applicability of this approach, especially in regions of Africa,
Latin America, and the Mid-East, where in situ SSM observations are limited [8].

Machine learning (ML) methods provide a possibility to facilitate the understanding
of the relationship between the available in situ SSM and land surface (atmospheric) fea-
tures at the global scale. The highly nonlinear relationship between the SSM and those
features could be established statistically based on a large amount of training data [23,24].
The basic idea behind ML is to train the algorithm on measured data-pairs to get certain
comprehensive environmental response functions for predicting SSM. Regardless of the
complex structural characteristics [25], ML shows superior potential in studying the re-
lationship between SSM and other land surfaces (or atmospheric) parameters. Ahmad,
Kalra, & Stephen (2010) used the Support Vector Machine (SVM) to estimate the SSM at
Colorado River Basin from the satellite-based RS data of Advanced Very High-Resolution
Radiometer (AVHRR) and Tropical Rainfall Measurement Mission (TRMM) [26]. The result
indicates an excellent performance with root mean square error (RMSE) between 0.013 and
0.024 m3 m−3 compared to the in situ SSM data. Cai et al. (2019) used the deep learning
regression network (DNNR) method to calculate the SSM at the research area of Beijing
and compared the DNNR with other ML methods. Their results indicate that all the ML
methods could capture the temporal variability of the SSM, while DNNR performs slightly
better in this area, with the RMSE of 0.008 m3 m−3 [25]. Yongzhe Chen, Feng, and Fu (2021)
calibrated and merged different soil moisture products through a neural network approach,
produced 0.1-degree global soil moisture over 2003–2018 [27].

ML is a very promising tool for SSM estimation, which may help to enhance the
description of SSM dynamics both at small and large scales. Two approaches have been
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used to solve the interpretability issue of ML, the first approach is using an ML designed
for interpretation (i.e., glass box), and the second approach is using the black box explain
techniques [28]. In this study, the interpretability of ML can be increased by computing fea-
ture importance and partial dependence plot, which can explain the physical mechanisms
to a certain extent [29,30].

The present manuscript aims to (i) explore the potential of the RF model for SSM
prediction using the ISMN dataset and land surface (atmospheric) features and (ii) produce
the long-term in situ constrained global SSM and compare with the ESA-CCI SSM from
spatial and spatio-temporal perspectives.

The produced SSM dataset has a temporal coverage of 18 years (2000–2018) with
0.25-degree spatial resolution with a daily time step, which could be used for climatological
studies or provide an alternative input for the hydrological/agriculture/atmospheric model.

2. Materials and Methodology
2.1. Materials
2.1.1. In Situ SSM

In this research, the in situ SSM data from the International Soil Moisture Network
(ISMN) [31] was selected for the RF model training and validation. The ISMN was initial-
ized to collect the in situ SM into an open-access database since 2009. By the end of 2020,
the database consisted of 2678 stations from 65 networks around the world, and ISMN
is still growing [8] (see network distribution in Figure 1a). The ISMN in situ data were
collected from different organizations/groups; there is no standard protocol for the SM
collection strategy, which results in a massive diversity between the data from various
networks regarding, e.g., the sensor types installed depths, temporal measurement steps.
For all these reasons, extensive efforts have been made to harmonize the in situ SM through
a prime data quality control system to a reliable hourly in situ dataset [6]. The ISMN data
have been widely used for the validation of SSM products from both satellites and LSMs.
For example, Al-Yaari et al. (2019) assessed the reprocessed satellite-based SSM (including
SMAP, SMOS, ASCAT, and ESA-CCI) using the ISMN data as the reference [32].

2.1.2. Land Surface Features and Precipitation

Many land surface features affect SSM. Table 1 summarizes the land surface features
used in this study. Except for the geographical coordinates, the basic description and the
source information are briefly introduced. We used Google Earth Engine (GEE) for pro-
cessing most of the land surface features. With the support of the EU Copernicus Program
and the agencies from the U.S. government, GEE supports direct access to petabyte-sized
satellite imagery and other geospatial data. In addition, GEE provides lots of algorithms to
process the data efficiently, e.g., parallel computing and machine learning [33,34] which are
freely available (http://code.earthengine.google.com/, accessed on 13 September 2021).

Table 1. Land Surface Features and Data Sources List.

Name of Predictors * Description Source Original Spatial
Resolution

Original Temporal
Resolution

Daily LST
The arithmetic average of

LST of daytime and
night-time

MOD11A1 daily LST product
https://doi.org/10.5067/MODIS/

MOD11A1.006 (accessed on
13 September 2021)

1 km Daily

Daily LST Difference
The difference between
the LST at daytime and

night-time

MOD11A1 daily LST product
https://doi.org/10.5067/MODIS/

MOD11A1.006 (accessed on
13 September 2021)

1 km Daily

NDVI Interpolated daily NDVI

MOD13A1
https://doi.org/10.5067/MODIS/

MOD13A1.006 (accessed on
13 September 2021)

500 m 16 d

http://code.earthengine.google.com/
https://doi.org/10.5067/MODIS/MOD11A1.006
https://doi.org/10.5067/MODIS/MOD11A1.006
https://doi.org/10.5067/MODIS/MOD11A1.006
https://doi.org/10.5067/MODIS/MOD11A1.006
https://doi.org/10.5067/MODIS/MOD13A1.006
https://doi.org/10.5067/MODIS/MOD13A1.006
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Table 1. Cont.

Name of Predictors * Description Source Original Spatial
Resolution

Original Temporal
Resolution

EVI Interpolated daily EVI

MOD13A1
https://doi.org/10.5067/MODIS/

MOD13A1.006 (accessed on
13 September 2021)

500 m 16 d

API Calculated Antecedent
Precipitation Index

ERA-5 daily precipitation
https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5

-single-levels?tab=overview
(accessed on 13 September 2021)

0.25◦ Daily

Soil texture (clay, silt
and sand)

ML-based global soil
texture estimation

SoilGrids
https://soilgrids.org/ (accessed on

13 September 2021)
250 m Static

* LST: Land Surface Temperature; NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Vegetation Index; API: Antecedent
Precipitation Index.
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• Land Surface Temperature

LST dominates the pattern of potential evapotranspiration and plays an essential role
in SSM retrieval [35], for example, the GOES-8 satellite imager derived LST increases with
the decrease of observed SSM [36]. Furthermore, the daily LST difference is related to the
thermal inertia of soil with a negative relationship, while thermal inertia increases with soil
moisture increase [8,37]. Thus, the daily LST difference between daytime and nighttime
was also selected as a predictor variable.

https://doi.org/10.5067/MODIS/MOD13A1.006
https://doi.org/10.5067/MODIS/MOD13A1.006
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://soilgrids.org/
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Currently, several LST datasets have been produced with rigorous validations. MOD11A1
(Collection 6) LST product from Moderate Resolution Imaging Spectroradiometer (MODIS) is
based on the split-window method [38,39]. The spatial resolution of the MOD11A1 is 1 km,
with two measurements of LST per day: descending at local time 10:30, and ascending at
22:30, respectively. The MOD11A1 LST was reported within the average error of around
1 degree Celsius [38,40].

• Vegetation Index

The vegetation index is the reflectance transformation of two or more spectral bands
from satellite imageries. For example, the Normalized Difference Vegetation Index (NDVI)
is one of the most used vegetation indexes, representing the greenness of the vegetation
condition, and is considered as a conservative water stress index [41]. Plenty of research has
been done on retrieving SSM with the help of vegetation indices, Patel et al. (2008) proposed
that Temperature/Vegetation Dryness Index (TVDI) has a strong negative relationship
with the SSM [42]. Zhao et al. (2017) estimated SSM with a random forest model using LST,
albedo, and NDVI [43]. In addition, the Enhanced Vegetation Index (EVI) is also commonly
used to improve the sensitivity of SSM estimation at high vegetation-covered areas [44,45].
This study deployed the MOD13A1 dataset of NDVI and EVI from MODIS as the predictor
variable [46]. MOD13A1 has a spatial resolution of 500 m and the temporal resolution of
16 days. The selected temporal coverage is the same as LST (from 2000 to 2019).

• Soil Texture

Soil texture heterogeneity is one of the factors that cause the spatial variability of
SSM [47]. This study selected the SoilGrids soil texture data. The SoilGrids is currently the
most detailed global soil dataset with a 250 m spatial resolution. It provides information
on the most important soil chemical and physical properties at seven different depths: 0,
5, 15, 30, 60, 100, and 200 cm, through the ML approach [48–50]. Here, only the particle
size distribution (sand, silt, and clay content) of the top layers (i.e., 0 cm and 5 cm) were
considered because our interest was mainly focused on the land surface processes.

• Precipitation

As the primary meteorological forcing, precipitation controls SSM spatial variability
in most flat areas [51,52]. Precipitation is indispensable for understanding SSM dynamics.
Many studies have attempted to connect the SSM with the precipitation, for example, with
the linear stochastic partial differential model [51] and Antecedent Precipitation Index
(API) [53].

This study used the daily precipitation data from ERA5, which is aggregated from
the 3-hourly data products [54] with a time coverage from 1978 till the present. ERA5
is one of the most advanced reanalysis products released by the European Centre for
Medium-Range Weather Forecasts (ECMWF), with higher spatial resolution and better
global water balance than ERA-Interim [55]. The data from 2000 to 2019 were used for
synchronizing the temporal coverages of the LST and Vegetation Indices.

2.1.3. ESA-CCI SSM

The ESA-CCI SSM products [16,56,57] were selected to have a spatio-temporal com-
parison with the RF predicted SSM since ESA-CCI SSM is a product by blending most
of the available satellite (both active and passive) SSM products (e.g., Soil Moisture and
Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E),
Advanced SCATterometer (ASCAT)). This study used the SSM data of ESA-CCI combined
version 04.4, with the temporal coverage from 1 January 2000 to 30 June 2018.
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2.2. Methodology

The processing methodology in this research consists of three parts: (1) data pre-
processing and harmonization, (2) training and validation of the prediction model, (3) gridded
SSM prediction and evaluation. See flowchart in Figure 2.
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• Step 1 Data Pre-processing and Harmonization

In Step 1, we first collect in situ surface soil moisture (ISMN) and other land surface
features, including daily precipitation (ERA5), land surface temperature (MOD11A1), soil
texture (SoilGrids), NDVI, and EVI (MOD13A1). Then, convert daily precipitation into
Antecedent Precipitation Index (API), and apply a smooth filter on NDVI and EVI before
daily interpolation. See details in Section 2.2.1.

• Step 2 Training and Validation of the Prediction Model

In Step 2, we first split the data from Step 1 into two sets (i.e., training & testing
set, validation & evaluation set) with the proportion of 70% (training & testing set) and
30% (validation & evaluation set) of the whole time-series. In the training & testing set,
75% of the data is used for the RF model training, and the rest 25% is used for testing
the RF model’s prediction ability. The validation & evaluation set is used to evaluate the
robustness of the trained model, see details in Section 2.2.2.

• Step 3 Gridded SSM prediction and evaluation.

In Step 3, we first apply the trained RF model with gridded land surface features to
calculate the long-term global surface soil moisture. Then compare the spatio-temporal pattern
of the RF- predicted gridded SSM with the ESA-CCI SSM, see details in Section 2.2.3.
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2.2.1. Data Pre-Processing and Harmonization

• Daily LST and Daily LST Difference

The MOD11A1 LST product consists of two LST datasets per day at 10:30 and 22:30
local time. We consider the arithmetic average of those two records as daily LST and calcu-
late the difference between the daytime and night-time value as the Daily LST difference
for that day.

Provided with the LST from both daytime and night-time, the associated quality
control (QC) band was used to ensure the quality of the LST (Wan, 2014). Only the pixels
with the QC band value of 0 (i.e., good quality data) were kept. The MOD11A1 data used
in this study starts from 24 February 2000 to 31 December 2019.

• Vegetation Index Reconstruction

Both NDVI and EVI from MOD13A1 are MODIS 16-days’ composite data. Despite
an atmospheric correction procedure for the MODIS reflectance data, noise could still be
observed in the long-term time series, which is not reasonable based on plant phenology.
Thus, we apply the Savitzky–Golay (S-G) filtering method to reduce the small peak noise
through a smoothing procedure [58]. And we also interpolated NDVI/EVI to a daily
temporal step using a simple linear approach to synchronize the temporal steps with other
features, see the equation below.

p(t) = f (t0) + ( f (t1)− f (t0))
(

t − t0
t1 − t0

)
) (1)

where p(t) is the interpolated value, f (t0) and f (t1) are the value at time t0 and t1, respectively.

• Antecedent Precipitation Index

The ERA5 daily precipitation data was used to calculate the Antecedent Precipitation
Index (API) with Equation (2). API indicates the reverse-time-weighted summation of
precipitation over a specified time [59]. The historical precipitation influence the soil water
content in a weakening effect along the reverse time axis; the more recent rainfall event
has the higher impact on the current SSM [60]. Many researchers applied API to retrieve
SSM information [59,61]. Here we use the API as a feature for the SSM prediction. The
definition of API at day t can also be represented as the equation below:

APIt =
t

∑
i=1

ki·pt−i (2)

where k is an empirical factor (decay parameter) to indicate the decay effect from the
rainfall, which should always be less than one, a suggested range of k is between 0.85 and
0.98 [62], where APIt is the API value at day of t, and pt−i is the precipitation value at
ith day before the day of t.

Despite the spatial heterogeneity of decay parameter (k), since the soil water retention
varies from space, most researchers use only one pair of values (k and t) for their study
area [63], which is adopted in this study as well. Here, we calculated the API with different
combinations of the parameters (k and t) and compared the API and in situ SSM with Pearson
Correlation Coefficient (r), and we chose the optimized parameters (k is 0.91 and t is 34).

• Spatial Resampling

Land surface features have different spatial resolutions. The land surface feature was
extracted from their original resolution for pixels that collocate with the in situ site in RF
model training. It is 0.25 degrees for the API, 500 m for NDVI and EVI, 1 km for LST, and
250 m for soil grids. For calculating the long-term gridded global SSM, the land surface
features were aggregated into 0.25 degrees resolution, which is around 27,830 m at the
equator. The World Geodetic System of 1984 (EPSG:4326) was chosen as the geographic
coordinate system in our study.
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• Data splitting

The API, daily LST, daily LST difference, and NDVI/EVI data were synchronized
based on the temporal coverage of in situ data time-series of each ISMN station. Here is the
strategy of data split: First, divide the predictors and SSM into training & testing set (70%)
and validation & evaluation set (30%) based on the time series. For example, assuming the
data were recorded from 1 January 2000 to 31 December 2019, the training & testing set con-
sists of the first 70% data (14 years, from 2000 to 2013), and the validation & evaluation set
consists of the last 30% data (6 years, from 2014 to 2019). Second, split the training & testing
set into two parts (e.g., training set and testing set) randomly with the proportion of 75%
and 25% (in RF algorithm).

2.2.2. Training and Validation of RF Model

Random Forest (RF) is an ensemble learning method that outputs a result based on
many individual training models (trees). RF follows the Bootstrap Aggregation (Bagging)
strategies, i.e., random sampling with replacement [64].

Given a training set of X = x1, x2 . . . xn with the related predictors of Y = y1, y2 . . . yn,
RF randomly chooses samples with replacement to form the subset of the original training
set as Xb, Yb. The following Equation (3) explains the relationship between Xb and Yb,
where fb express the relationship.

Xb,i = fb,i(Yb,i) (3)

when repeating the equation with N times (i.e., building N trees), the predicted output
would be expressed according to the following Equation (4):

Xpred =
1
N
·

N

∑
i

fb,i(Yb,i) (4)

The model testing and validation were evaluated based on the comparison of pre-
dicted and in situ SSM with several commonly used statistical metrics, including Root
Mean Square Error (RMSE, Equation (5)), unbiased Root Mean Square Error (ubRMSE,
Equation (8), Pearson Correlation Coefficient (r, Equation (6)), and the Mean Difference
(MD, Equation (7)):

RMSE =

√√√√∑N
i

(
ypred, i − yre f , i

)2

N
(5)

r =
∑
(

ypred − ypred

)(
yre f − yre f

)
√

∑
(

ypred − ypred

)2
√

∑
(

yre f − yre f

)2
(6)

MD =
∑N

i

(
ypred, i − yre f , i

)
N

(7)

ubRMSE =

√
(RMSE)2 − (MD)2 (8)

where ypred,i is predicted SSM (m3 m−3), yre f ,i is in situ SSM (m3 m−3), N is the number
of valid pairs of SSM data, ypred is the mean value of the predicted SSM data (m3 m−3).
Furthermore, RF SSM and in situ SSM of validation and evaluation set were plotted together
in time-series to have a direct comparison.
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To interpret the results, impurity-based feature importance and partial dependence
plot were computed to better understand how the land surface features affect the SSM.
All the statistical analyses were performed in the Scikit-learn package in Python [65].
The feature importance is computed as a normalized total reduction in node impurity by
that feature over all trees, further details of the package can be found on the website:
https://scikit-learn.org/stable/ (accessed on 13 September 2021).

2.2.3. Gridded SSM Prediction and Evaluation

The last step is to apply the trained RF model on the 0.25 degrees resolution gridded
land surface features to predict the long-term gridded SSM at the global scale. And compare
the RF-model Predicted gridded SSM (at 0.25 degrees) with ESA-CCI SSM products. A large
quantity of the in situ SSM data originates from the continental United States. Therefore, a
more detailed comparison was performed at a regional scale for that region. In addition
to the simple comparison through the multiple years’ mean SSM map, we also used the
Hovmöller diagram to show the longitudinal and latitudinal temporal variability.

3. Results and Discussion

The results consist of training and testing of the RF model, the feature importance,
partial dependence plot, and the evaluation of the robustness of the model with statistical
metrics and the time-series comparison.

3.1. Training and Testing of the Prediction Model

In situ SSM from 2206 stations was selected in this study, with their data extent are
longer than one year. The RF model was trained using the training set with one thousand
trees. Then this model was applied to the testing set to predict the SSM. Two independent
pieces of training were implemented, one model was trained with all the land surface
features except geographical coordinates (Model I), and one was trained with all the land
surface features (Model II).

Figure 3a,b show the scatterplot of predicted and in situ SSM based on 194,387 samples
of the testing set. As presented in Figure 3a (Model I), the results are quite satisfactory
with RMSE of 0.07 (m3 m−3), ubRMSE of 0.07 (m3 m−3), and r of 0.73. If the geographical
coordinates were included in the model (Model II), the prediction performance improved to
an RMSE of 0.05 (m3 m−3), ubRMSE of 0.05 (m3 m−3), and r of 0.90, as shown in Figure 3b.
Figure 3c indicates that the dominant features (predictors) in Model I are API and the
daily LST. Then EVI and NDVI show similar importance. The followed less important
features are daily LST difference and soil texture information. In Model II, the geographical
coordinates show a high importance level, being the second and third most important
variables (see Figure 3d).

3.2. Predicted SSM Time-Series of Validation and Evaluation Set

The trained model II was then applied to the validation datasets that are distributed
around the world. Figure 4 shows boxplots of statistical metrics of the validation period,
together with a comparison with ESA CCI SSM. The median of RMSE and ubRMSE for
all stations is 0.052 (m3 m−3and 0.045 (m3 m−3), and the median r value is 0.65. ESA-CCI
SSM shows a median of RMSE and ubRMSE of 0.080 (m3 m−3) and 0.055 (m3 m−3) and
the median r of 0.55, respectively. The performance of the presented method is satisfactory
and in line with the literature, e.g., Shen et al., 2016 evaluated the ESA-CCI v02 SSM over
China with 547 stations in situ data, with the median r of 0.368, and ubRMSE of 0.069 m3

m−3 [66]; Albergel et al., 2012 evaluate ASCAT, SMOS and ECMWF soil moisture analysis
(SM-DAS-2) over Africa, Australia, Europe and the United States with more than 200
stations, and the average RMSE is larger than 0.178 m3 m−3 [9].

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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The predicted SSM and ESA CCI SSM time-series have been plotted along with the in
situ SSM to evaluate the performance of temporal variability of predicted SSM. Figure 5a
shows the comparison at the station Versailles-3-NNW, in the humid subtropical zone
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(Cfa) and covered with grassland. Both the RF SSM and ESA-CCI SSM capture the annual
or interannual variabilities reasonably well, and RF SSM could predict some detailed
information in the spring and autumn. In other stations, the RF SSM overperforms ESA-
CCI SSM, e.g., the station GoodWinCreekPasture of SCAN in Figure 5b, the station node403
of SoilSCAPE in Figure 5c, and the station DryLake of SNOTEL in Figure 5d, covering
various climate zones (humid subtropical zone (Cfa), hot-summer Mediterranean climate
(Csa), humid continental climate (Dfb).
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3.3. Global Scale Comparison

Figure 6 shows the annual mean value of the RF-predicted and ESA-CCI SSM of 2015.
A similar spatial pattern is observed between Figure 6a,b, although the RF-model predicted
SSM (hereafter as RF SSM) seems smoother than ESA-CCI SSM. Figure 6c depicts that the
RF SSM is relatively lower than ESA-CCI SSM at wetter region and higher value at the
drier region, for example, in south-eastern China, the RF SSM is 0.2 m3 m−3 lower than
the ESA-CCI SSM, while in the western U.S. and western Australia, RF SSM is 0.1 m3 m−3

higher than ESA-CCI SSM.
In addition, the RF SSM map includes the SSM information in the northern part of

South America, the middle part of Africa, and Indonesia. Those regions are the tropical
rainforest, which has been masked out in the ESA-CCI SSM products due to the signal
scattering and attenuation of the vegetation [56].
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3.4. Regional Scale Comparison
3.4.1. Spatial Patterns

Figure 7a,b shows the average RF SSM and ESA-CCI SSM from 24 February 2000 to
30 June 2018 over the continental United States.

In general, the two SSM maps (Figure 7a,b) show a similar spatial pattern: a relatively
dry condition in the southern part and some discrete wet regions in the northern part of
the west coast. A humid region was observed in the east side of the U.S., while towards
the southeast (close to Florida), the soil becomes drier again. The general spatial pattern of
the difference between the RF model predicted and ESA-CCI SSM is shown in Figure 7c.
Figure 8 shows the distribution maps of statistical metrics of these two products with the
in situ measurements as the reference. To make it comparable, the same evaluation period
is used for ESA-CCI SSM and RF SSM.
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In general, RF SSM shows a relatively low value of errors, especially for the coastal
area and mid-western part of the continent (Figure 8a–d). Also, when comparing the
Pearson Correlation of the two products (Figure 8e–f), a significantly higher r can be found
in RF SSM for these regions. Furthermore, the difference between RMSE and ubRMSE is
less significant in the RF SSM, which indicates a lower bias [67].



Remote Sens. 2021, 13, 4893 14 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 24 
 

 
Figure 8. Mean statistical metrics distribution of RF SSM and ESA-CCI SSM at the regional scale for the evaluation period. 

In general, RF SSM shows a relatively low value of errors, especially for the coastal 
area and mid-western part of the continent (Figure 8a–d). Also, when comparing the Pear-
son Correlation of the two products (Figure 8e–f), a significantly higher r can be found in 
RF SSM for these regions. Furthermore, the difference between RMSE and ubRMSE is less 
significant in the RF SSM, which indicates a lower bias [67]. 

3.4.2 Spatio-Temporal Patterns 
The longitudinal temporal variability of the RF SSM and ESA-CCI SSM for the conti-

nental U.S., over 24 February 2000 to 30 June 2018, is presented in Figure 9. 

 
(a) RF SSM 

Figure 8. Mean statistical metrics distribution of RF SSM and ESA-CCI SSM at the regional scale for the evaluation period.

3.4.2. Spatio-Temporal Patterns

The longitudinal temporal variability of the RF SSM and ESA-CCI SSM for the conti-
nental U.S., over 24 February 2000 to 30 June 2018, is presented in Figure 9.

The pixel value of the time-longitude diagram is the average value of all the pixels
along the longitude in one day. From the time axis, the seasonal and yearly variability can
be observed, and along the longitude axis, the spatial distribution of SSM from west to east
can be observed as well. First, the spatial pattern is evident in both RF SSM (Figure 9a)
and ESA-CCI SSM (Figure 9b) that the midwestern U.S. is relatively dry and the eastern
part is relatively wet. There is a significant seasonal variation on the west coast (relatively
wet during winter and dry in other seasons), which matches the temporal precipitation
distribution at this region. Also, in the middle eastern part, the seasonal difference is
evident. Annually, some humid months appear in the central-western part, like in June
2017 and August 2017, while in 2012, it was dry. In general, ESA-CCI SSM shows higher
SSM values than the RF predictions.

The time-latitude diagram can be used to explore the latitudinal temporal variability
of the regional (the continental U.S.) data. The time-latitude diagram of the RF SSM and
ESA-CCI SSM for about 18 years are presented in Figure 10. The pixel value of the time-
latitude diagram is the average value of all the pixels along that latitude on one day. From
the time axis, the seasonal and yearly variability can be observed, and along the latitude
axis, the spatial distribution from south to north can be seen. The spatial variabilities are
evident in both RF SSM (Figure 10a) and ESA-CCI SSM products (Figure 10b): dry spring
and wet autumn in the southern part and wet winter in the northern part. The annual
differences are also significant, such as the wet year in 2012 and the relatively dry year
in 2014.
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3.5. Influence of Predictor Variables

The land surface features used in this research include daily dynamic features and
static features. The dynamic features consist of daily LST, daily LST difference, NDVI/EVI
data from satellites data, and API from reanalysis products, helping capture the spatial-
temporal variability of SSM. The static features (soil texture and geographical coordinates)
also influence spatial variability. Both features are crucial in predicting the SSM through
the RF model Figures 3 and 11).
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Difference Vegetation Index (NDVI); (e) Enhanced Vegetation Index (EVI); (f) Silt content; (g) Clay
content; (h) Geographic coordinates (Longitude); (i) Geographic coordinates (Latitude).
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API is the most crucial dynamic feature with the highest importance value in the RF
model, and the predicted SSM increases with the increase of the API. NDVI/EVI has a
significant seasonal dynamic but a less annual variation. LST show not only annual and
seasonal dynamics but also considerable daily and inter-daily dynamics. The RF model
provides a possibility to capture all these intertwined features in a highly nonlinear manner.

Figure 11a shows that the SSM increases with the increase of API in a strong positive
relationship. Figure 11b depicts daily LST does not affect the SSM when lower than
7 degrees Celsius, and with the increase of daily LST higher than 7 degrees Celsius, SSM
decreased. A relatively steady trend is observed in Figure 11c–g, which are the features
with less importance shown in Figure 3. It is noted that the fluctuated trend observed in
Figure 11h,i, that both the longitude and latitude have an accountable and complex effect
on the SSM.

The model’s performance improves significantly with the geographical coordinates
(i.e., Model I vs. Model II in Figure 3). The main reason is that the location information
could be linked with the spatial distribution of the climate zones. The latitude determines
the solar radiation and the longitude related to the closeness to the oceans (moisture and
temperature). It can be found in Figure 3 that the longitude has higher importance than the
latitude since the climate zones along the longitude are more distinct than along the latitude
in the case of the training data used to build the RF model. The spatial characteristic of the
annual SSM average corresponds to the spatial distribution of the climate zones, which can
be further illustrated using the frequency distribution (Figure 12) of in situ SSM in each
climate zone (Figure 1a).
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Figure 12 shows the frequency distribution of SSM in each climate zone. A Peak to
the left can be observed in some climate zones (e.g., EF in Figure 12a, Bwh and Bsh in
Figure 12b, Cwb in Figure 12c). Also, a distribution close to normal distribution can be
found, especially in the continental climate group (Dwa and Dwb in Figure 12d). In a word,
the SSM varies a lot in different climate zones, which makes the geographical coordinates
important in SSM prediction.

Figure 13 shows both RF SSM and ESA-CCI SSM perform well at different climate
zones. RF model predicted SSM shows a relatively poorer result than ESA-CCI in the
Polar climate, where most of the polar climate in situ data are from the Tibetan Plateau [8].
The passable performance of our model at polar climate might be due to the limitation of
land surface feature accuracy at the Tibetan Plateau. While ESA-CCI SSM has a relatively
higher RMSE in the tropical climate zones, this is due to the strong signal scattering on the
vegetation [56].
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Figure 13. Comparison of SSM and ESA-CCI SSM with in situ data over different climate zones. (A) Tropical; (B) Arid;
(C) Temperate; (D) Continental; (E) Polar.

4. Conclusions

This study generated a long-term in situ based gridded SSM dataset: SSM prediction
was derived with RF model trained on the in situ SSM and corresponding land surface
(atmospheric) properties (e.g., API, daily LST, daily LST difference, NDVI/EVI, soil texture,
geographical coordinates) at the global scale. In general, the trained RF model shows a satis-
factory performance compared to in situ measurements. The testing results show an RMSE
of 0.05 m3 m−3, ubRMSE of 0.05 m3 m−3, and Pearson Correlation Coefficient (r) of 0.9.
The evaluation results of the RF model at in situ stations also show satisfactory performance
with the median of the RMSE and ubRMSE of 0.052 m3 m−3and 0.045 m3 m−3, respectively.

The spatial pattern of the predicted SSM was compared with the ESA-CCI SSM. Both
products show an excellent description of the spatial variability of SSM at the global scale.
At the regional scale (the U.S.), both SSM products show a similar spatial pattern in general,
although some details are different in the two products. Based on the spatial distribution
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maps of statistical metrics of RF SSM and ESA-CCI SSM, both products can similarly
perform well. RF SSM has a generally lower RMSE, a lower difference between RMSE
and ubRMSE, and a higher r. The RF SSM shows a similar spatio-temporal pattern with
the ESA-CCI SSM based on the longitudinal and latitudinal time-series diagram; both
capture temporal variety at the scale of daily, seasonal, and annual variability. A systematic
difference was also observed between the RF and ESA-CCI SSM. RF model predicted SSM
is smoother on spatial pattern compared to ESA-CCI SSM, the RF model predicted SSM is
relatively lower (higher) than ESA-CCI SSM in the wet(dry) region.

The presented error metrics are relevant for the pedoclimatic zones covered by the
ISMN stations. Performance of the RF SSM in other zones requires further analyses, which
is demanding due to the sporadicity of in situ SSM measurements and their data access
restrictions. Overall, the trained RF model gives a satisfactory estimation with informa-
tion on feature importance, which refers to a descending sequence: API, geographical
coordinates, LST, VIs, LST difference, soil texture. Except for the dynamic variables, the
geographical coordinates are particularly important, as the geographic location is linked
to climate zones, which is related to precipitation and solar radiation that dominate the
spatio-temporal patterns of SSM. It is also illustrated that the longitude is slightly more
critical than the latitude for predicting SSM.

The random forest model has shown great potential for SSM estimation. The in
situ constrained global gridded SSM may have important implications for the hydro-
logical/agricultural/atmospheric model to improve the understanding of the interaction
between the soil-vegetation-atmosphere at a large scale. In addition, the approach proposed
in this paper can be extended to derive SSM maps at higher spatial-temporal resolution
(e.g., 1 km) and also advanced to estimate root-zone soil moisture.
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