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1 Abstract 13 

In precision livestock farming, technology-based solutions are used to monitor and manage 14 

livestock and support decisions based on on-farm available data. In this study, we developed a 15 

methodology to monitor the lying behaviour of dairy cows using noisy spatial positioning data, 16 

thereby combining time-series segmentation based on statistical changepoints and a machine 17 

learning classification algorithm using bagged decision trees. Position data (x, y, z -coordinates) 18 

collected with an ultra-wide band positioning system from 30 dairy cows housed in a freestall 19 

barn were used. After the data pre-processing and selection, statistical changepoints were 20 

detected per cow-day (no. included = 331) in normalized 'distance from the centre of the barn' 21 

and (z) time series. Accelerometer-based lying bout data were used as a practical ground truth. 22 

For the segmentation, changepoint detection was compared with getting-up or lying-down events 23 

as indicated by the accelerometers. For the classification of segments into lying or non-lying 24 

behaviour, two data splitting techniques resulting in 2 different training and test sets were 25 

implemented to train and evaluate performance: one based on the data collection day and one 26 

based on cow identity. In 85.5% of the lying-down or getting-up events a changepoint was 27 

detected in a window of 5 minutes. Of the events where no detection had taken place, 86.2% could 28 

be associated with either missing data (large gaps) or a very short lying or non-lying bout. Overall 29 

classification and lying behaviour prediction performance was above 91% in both independent 30 

test sets, with a very high consistency across cow-days. Per cow-day, the average error in the 31 

estimation of the lying durations were 7.1% and 7.8% for the cow-identity and time-based data 32 

splits respectively. This resulted in sufficient accuracy for automated quantification of lying 33 

behaviour in dairy cows, for example for health or welfare monitoring purposes. 34 
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2 Introduction 38 

Precision livestock farming solutions typically aim at supporting monitoring and decision taking 39 

by farmers using on-farm sensors measuring animal behaviour, performance and production 40 

(Banhazi et al., 2012). The raw data used to generate decision support are often noisy time series, 41 

prone to errors and variation caused not only by sensor failure or the harsh and changing farm 42 

environments in which they operate, but also by the animals' specific physiology itself. The 43 

resulting complexity and magnitude of the raw data render them hard to interpret as such by 44 

farmers or other end-users. Consequently, these data have little value without proper (pre-) 45 

processing algorithms that translate the raw measures in information informative for the targeted 46 

end-users.  47 

In dairy production, precision technologies are vastly deployed and implemented (Lovarelli et al., 48 

2020; Stygar et al., 2021). The reason for the dairy sector being pacesetter in this area, is groups 49 

of animals are typically much less homogeneous (e.g. animals with different age, lactation stages 50 

and parities are kept in the same barn) compared to other livestock species and therefore 51 

management at group level is less applicable. Additionally, dairy cows are highly valuable but 52 

rather vulnerable, rendering individual monitoring crucial to optimize production, welfare and 53 

sustainability. Because of the physiological stress these animals endure during lactation, timely 54 

and specific interventions obviate animal suffering and financial losses. As modern dairy farms 55 

grew larger over the past decade, investments in sensor technology to guide these interventions 56 

became increasingly justifiable (Borchers & Bewley, 2015). Out of the many technologies 57 

available, a system monitoring cow position and its derived behavioural features not only 58 

promises to disclose cow health, but might also reveal welfare and social interactions - aspects 59 

that become increasingly important in the livestock production landscape (Boyland et al., 2016; 60 

Chopra et al., 2020). To this end, many technologies such as radio frequency identification, 61 

wireless  local area network systems, ultrasound positioning systems, etc. have been proposed, as 62 

compared by Huhtala et al., (2007). Today's commercialized positioning systems mainly serve to 63 

locate cows for e.g., treatment or when they don't go milking. Monitoring specific cow behaviours 64 

offers new paths both for research and commercial decision support systems that can help the 65 

farmer manage their herd, optimize production and quickly act upon disease or welfare problems. 66 

A continuous and essential step to better unlock the potential of cow behavioural analyses is the 67 

development of new ways to process data from sensor technologies that allow precise and timely 68 

interpretation and extraction of actionable information (Eckelkamp & Bewley, 2020). As such, 69 

extra value can be created from existing technology.  70 

Lying behaviour has been shown to change upon a changing health and welfare status (Tucker et 71 

al., 2021). For example, lameness will lower the number of times an animal gets up or lies down 72 

and increases general lying bout duration (Barker et al., 2018; Weigele et al., 2018). Similarly, 73 

udder infections in which an animal becomes very sick, or metabolic problems affecting 74 

rumination time, will alter the lying behaviour (Piñeiro et al., 2019). Accurate detection and 75 

monitoring over time of lying thus has potential to reveal health and welfare status, contribute to 76 

new precision phenotypes, and evaluate e.g., housing situations or management practices in an 77 

accurate and non-invasive manner. One technology to do so is via 3-dimensional spatial data, such 78 

as provided via modern ultra-wide band (uwb) positioning systems currently being developed 79 

and commercialized.  80 

Ultra-wide band technology allows the transmission of high amounts of data over small distances 81 

with very low energy in a large frequency spectrum, giving it advantages over technologies such 82 



as global positioning systems that have lower battery life and accuracy (Huhtala et al., 2007). In 83 

an indoor positioning system based on uwb, Radio-Frequency identification signals are 84 

transmitted across a wide bandwidth and captured by an antenna. The tags worn by the individual 85 

cows allow precise and frequent localization of the animals with low power usage, even in 86 

cluttered indoor environments (Zhou et al., 2012). Upon development of appropriate data 87 

interpretation algorithms, indoor positioning systems allow studying and monitoring cow 88 

behaviour, including general activity, resting, feeding, drinking and social interactions with a 89 

single sensor system, giving it a relative advantage over e.g. commercially available accelerometer 90 

systems. Similarly, video-based systems (e.g. McDonagh et al., 2021) have the challenge of cow-91 

identification, sufficient spatial covering, and high computation power requirements. Despite its 92 

continuous development and high potential for animal monitoring, uwb-based positioning is yet 93 

sparingly adopted for livestock applications. As for many new sensor technologies, the main 94 

reason for this is the lack of algorithms that translate raw data into information valuable to the 95 

farmer (García et al., 2020). In case of indoor positioning systems, data interpretation is 96 

complicated by the inaccuracy and noise in the time series, missing data, and its (unpredictable) 97 

heteroscedasticity (Pastell et al., 2018; Ren et al., 2021). The latter partly results from differences 98 

in behaviour, but previous research also highlighted dependency on the position of the animal in 99 

the barn with regard to the antenna and interactions of the signal with metal (e.g. the feeding rack) 100 

and water bodies (e.g., other cows) (Ren et al., 2022). These aspects hinder straightforward 101 

interpretation of the positioning data and its derivatives (e.g., distance travelled), also preventing 102 

wider adoption. Nonetheless, as dedicated processing of these data would tremendously increase 103 

data interpretation potential, for example for the classification of behaviour, several studies on 104 

this topic have been published in the past few years (Borchers et al., 2016; Hendriks et al., 2020; 105 

Maselyne et al., 2017; Porto et al., 2013). 106 

There is a high need for new methods that elegantly integrate and interpretation-farm collected 107 

longitudinal data on which decision support can be based. Additionally, automated, continuous 108 

and non-invasive detection of lying behaviour for health and welfare monitoring based on spatial 109 

data has not been described in the past. In this study, a two-step methodology to identify lying 110 

behaviour of dairy cows using a uwb-based indoor positioning system was developed and 111 

validated against the lying bouts returned by a commercial accelerometer-based system. The 112 

methodology relies on segmentation via the detection of changepoints, which are in a second step 113 

classified as 'lying' or 'non-lying' based on a set of their statistical properties. 114 

 115 

3 Materials & methods 116 

3.1 Data collection 117 

Data were collected at the Dairy Campus research facilities of Wageningen University and 118 

Research in Leeuwarden, the Netherlands, during two periods of five days in two successive 119 

weeks in 2019 (July 3 to 8 and July 10 to 15, both periods with normal weather conditions with 120 

temperatures between 10 and 20°C). Two groups of cows, one housed in a freestall barn with a 121 

straw deep litter bedding and one in a freestall with synthetic flooring, were equipped with uwb-122 

positioning tags on the upside of a neck collar (Ubisense, Cambridge, UK and Noldus, Wageningen, 123 

the Netherlands) and accelerometers attached to right hind leg (IceQube® pedometers, 124 

IceRobotics, Edinburgh, United Kingdom). It is important to note that the Ubisense technology 125 

relies on different methods to determine (x,y)-position compared to (z)-position, affecting 126 



accuracy of the measurements. The first is calculated based on time difference of arrival, whereas 127 

the latter is derived from the axis of arrival, which makes the (z) more dependent on e.g., 128 

orientation of the tags. For the (x)- and (y) position, an accuracy of around 0.2m was found, 129 

whereas the (z)-accuracy was found to vary between 0.5 and 1m. Each group consisted of 16 cows 130 

selected based on production level, age and lactation stage such that the characteristics were 131 

comparable across each group. The cows were milked twice daily in a rotary parlour and fed ad 132 

libitum with a partial mixed ration complemented with concentrates individually rationed based 133 

on production level. 134 

3.2 Lying behaviour 135 

As continuous visual observation of the animals' behaviour is too laborious over a longer period 136 

of time, the lying bouts returned by the IceQube accelerometers were used as the benchmark 137 

'ground truth' for lying behaviour. Despite this is a sensor-based measure and not visual 138 

observation which would be the true gold standard, it allows to include multiple cows 139 

simultaneously, with minimal labour and for a longer period of time, and it has been shown to 140 

have sufficient accuracy to detect the actual lying behaviour, with r > 0.99 (Borchers et al., 2016). 141 

For each cow, the timestamp of each lying down or getting up event was retrieved from the 142 

IceQube software. These data were visually assessed to verify time synchronization and cow 143 

identity across the different sensor systems. Only data for which in that time period both uwb and 144 

IceQube data were available were retained. More specifically, for each cow, data were kept from 145 

the first available IceQube lying bout onward until the end of the last lying bout registered, such 146 

that the analysis was carried out on the data for which accelerometers were certainly attached to 147 

the animals. This prevented that a lack of lying bout registrations was not caused by cows not 148 

wearing a sensor. Two out of the 32 cows were excluded from the study because no ground truth 149 

lying bouts were registered due to a technical problem with the IceQube sensors.  150 

3.3 Ultra-wide band data editing 151 

Raw binary data were extracted from daily Tracklab back-up _les (.tlp) (Noldus, Wageningen, the 152 

Netherlands) and converted with Python 3.7 into (x,y,z)-position time series containing one 153 

measurement per second per cow. All further data processing was done using Matlab 2018b and 154 

2020b (The MathWorks Inc., Natick, Massachusetts, USA). The (x,y,z)-position was expressed 155 

relative to a pre-specified origin (x,y,z)=(0,0,0), which is a intrinsic characteristic of the 156 

technology hardware. In the barns at Dairy Campus, the (x)-co-ordinate gives the position in the 157 

direction of the feeding racks (range 0 to 23m in the first barn and 23 to 46m in the second barn), 158 

whereas the (y)-coordinate represents the position perpendicular to the feeding alley (range 0 to 159 

14m). A plan of the barn is shown in Figure 1. Codes are available at 160 

https://git.wur.nl/iadriaens/b4f_indtracking.  161 

 162 
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Figure 1 -Barn plan of where the position data are collected, including the origin left-under and the orientation of the axes 164 

The (z)-position can be considered the height of the tag on the neck collar. When the (y)-value was 165 

larger than 11.5m, the animals were in the slatted flooring (feeding) area, in which it was 166 

considered they did not lie down (as formally confirmed by the IceQube data). To interpret the 167 

raw position time series and derive cow behaviour from them, multiple data editing steps were 168 

implemented to deal with noise and missing data (missing data = on average 43% per day, small 169 

gaps and absent data due to milking included, shown in Figure A 1 of the appendix). First, outliers 170 

indicating a position outside the barn edges were replaced with the edge value when it were single 171 

measurements likely caused by normal measurement inaccuracy. When multiple successive 172 

measurements were registered out of the barn edges, they probably resulted from a lost tag that 173 

was put aside by the animal caretakers (in our dataset, this happened during 11 cow-days. An 174 

example is shown in Figure A 2 of the appendix). These measurements were replaced by missing 175 

values (on top of the 43% on average in the raw data), by retaining the time-stamps in the dataset, 176 

but replacing (x,y,z)-value by “NaN = Not a Number”. Second, based on a data exploration step 177 

(not further detailed in this paper, but for which the code can be found in the repositories linked 178 

to this manuscript), a methodology to manage missing data was developed and implemented. 179 

More specifically, how we dealt with the missing data depended on (1) the gap size and (2) the 180 

amount of non-missing data in predefined window preceding the gap. When data of a day were 181 

available and the sensor was attached to the cow, no extra data were deleted before the analysis, 182 

only data imputation was done. Missing data always occurred at cow-measurement level, i.e., if 183 

data were unavailable, both the (x,y)- and (z)-position lacked. For gaps smaller than 60 seconds, 184 

we assumed that the cow's behaviour would remain constant, or the error made when this 185 

assumption was untrue would be negligible. In this case, the missing data were imputed by 186 

sampling them from a normal distribution with mean and standard deviation calculated from the 187 

data preceding the gap in a window of twice the gap size in each dimension. For gaps between 60 188 

and 180 seconds, making assumptions on the consistency of the behaviour was more tricky but 189 

these gaps could still be due to failure of the sensor system or interference with the barn 190 

environment. For these gaps, we used a simple linear interpolation with added noise based on the 191 

average standard deviation of the data. Missing data in gaps longer than 180 seconds were left 192 

without data, as these often resulted from the animals not being in the barn e.g. during milking. 193 

Assumptions on these longer lasting gaps could not be made and were not of interest for this 194 

study, as in these cases cows are not expected to lie down. A third data editing step consisted in 195 

smoothing the (x)-, (y)- and (z)-data with a moving median filter in a window of 45 seconds to 196 

reduce noise. In order to make sensible assumptions for the settings of the changepoint analysis, 197 



data of each cow-day were analysed separately (i.e., a separate segmentation was implemented 198 

per cow-day time series). 199 

3.4 Changepoint analysis for segmentation 200 

Changepoints are time instants or samples in which the statistical properties (i.e. statistical 201 

distribution) of a (time) series abruptly change. In this study, we detected and combined the 202 

individual changepoints per cow per day in two time series of (x,y,z)-coordinate positioning data. 203 

Intuitively, one could argue to mainly rely on the position in the vertical (z) direction (height), as 204 

a cow that lies down is expected to remain in a lower and more stable position compared to when 205 

she is not lying down. However, the (z)-position was found (unpublished data exploration step) 206 

to be the most unreliable and noisy (range, variability,...) of all three coordinates. Its inaccuracy 207 

was variable in time and space, and depended on e.g., the position in the barn, the behaviour and 208 

speed of the animals, the collar attachment, the calibration settings and individual interactions 209 

between tags. Similarly, relying on detection of a relatively stable position in the (x,y)-direction 210 

(which is unmistakably true during lying bouts) is imprecise and insufficient for lying behaviour 211 

detection as well, as cow activity varies over the day, and oftentimes animals stand still for a longer 212 

period of time apart from their lying bouts, for example when grooming other animals, feeding, 213 

drinking or ruminating. These periods of 'standing' inactivity might additionally depend on 214 

accessibility lying places, hierarchy, climate of the barn, etc. In this study, we chose to work on a 215 

combination of two position-derived time series. The first is the (z)-coordinate (height) of the 216 

animals, as this is the most straightforward one and because the distributions differ during lying 217 

and non-lying behaviour, despite the noise in the data (see also Figure A 3 in the appendix). The 218 

second time series is the `centre distance' (CD), i.e. the position relative to the centre of the barn. 219 

The main advantages of using CD and not the raw (x,y)-position is that it summarizes position and 220 

movement of the animals in a single signal, is less dependent on the actual direction of movement, 221 

and has a lower variability and range. Should a cow move in a perfect circle around the centre of 222 

the barn, however, CD remains constant (as is the case when a cow stands still or lies down). We 223 

assumed that this would be extremely rare, and when it would happen for a short period of time, 224 

this would not impair the analysis because movement as such causes the signal to be more 225 

variable, which also changes the statistical properties of the time series. Before the segmentation, 226 

the CD and (z ) time series were normalized with a min-max standardization per cow over the 227 

entire dataset as follows: 228 

𝑥𝑖,𝑛𝑜𝑟𝑚 = [
𝑥𝑖 −min(𝑥)

max(𝑥) − min(𝑥)
] 229 

with xi the z or CD values at time i.  230 

The changepoint analysis relies on a parametric method that partitions both time series 231 

simultaneously in K segments based on the minimization of the following cost function J(K): 232 

 233 

𝐽(𝐾) = ∑ ∑ ∆(𝑥𝑖; 𝜒([𝑥𝑘𝑟 ⋯𝑥𝑘𝑟+1−1]))

𝑘𝑟+1−1

𝑖=𝑘𝑟

𝐾−1

𝑟=0

 234 

with 235 



∑ ∆(𝑥𝑖; 𝜒([𝑥𝑘𝑟 ⋯𝑥𝑘𝑟+1−1])) = ((𝑘𝑟+1 − 1) − 𝑘𝑟 + 1) ∗ log(𝑣𝑎𝑟([𝑥𝑘𝑟+1−1⋯𝑥𝑘𝑟]))

𝑘𝑟+1−1

𝑖=𝑘𝑟

 236 

and 237 

𝑣𝑎𝑟([𝑥𝑘𝑟+1−1⋯𝑥𝑘𝑟]) =
1

(𝑘𝑟+1 − 1) − 𝑘𝑟 + 1
∑ (𝑥𝑖 −𝑚𝑒𝑎𝑛([𝑥𝑘𝑟+1−1⋯𝑥𝑘𝑟]))

2

𝑘𝑟

𝑖=𝑘𝑟+1−1

 238 

in which K is the number of changepoints, dividing the time series in K+1 segments, β is the 239 

penalty function, here restrained such that at most 60 changepoints are found per cow-day, 240 

because otherwise the number of changepoints would equal the number of data points as this 241 

minimizes the total cost. As adding changepoints in general lowers the cost function, it is normal 242 

that the number of changepoints found is equal to the maximum set beforehand. Because the 243 

variability in the data was high and thereby unpredictable, a mathematical penalty function for 244 

restricting the number of changepoints detected could not be found. xkr is the rth z or CD value in 245 

segment k. Besides in 'number', also a restriction was set to the minimum distance between two 246 

changepoints: they needed to be at least 300 measurements apart (i.e. the lying or non-lying 247 

duration was at least 5 minutes). Other data-based algorithms (i.e., using variability and expected 248 

minimal cost reduction) have been explored, but because of the heteroscedastic nature of the data, 249 

could not be used for this study. The changepoint search algorithm used is based on a pruned 250 

exact linear time algorithm using dynamic programming, as proposed by Killick et al. (2012), 251 

having the advantage that it is mathematically exact and has a linear computational cost with the 252 

number of data points. 253 

3.5 Data split 254 

To evaluate the performance of the classification algorithm, its performance was evaluated using 255 

two different data splits, one based on time and one based on cow identity. For both, we chose to 256 

use a smaller portion of the data for training than for testing (approximately 33-66%), unlike what 257 

is usual in machine learning practices. We preferred this data split as (1) the method described 258 

here is very robust, so a minimal amount of training data sufficed to achieve accurate predictions 259 

and adding more data did not improve the accuracy, as formally tested but not included in this 260 

manuscript, and (2) this situation mimics an on-farm situation where little training data is 261 

available. The first data split (alike the more classical machine learning approach) uses data from 262 

10 randomly chosen cows (33%) for the model training, and 20 animals (66%) as the independent 263 

test set. The second approach corresponds to a situation on farm in which current and historical 264 

data are used for training and the algorithm needs to perform well in a future situation. Here, data 265 

of the 3 first days of the dataset (25.7% of the segments, 5138 in total) were assigned to training 266 

set, after which classification performance was evaluated on the remaining 9 days of data (74.3%, 267 

14 888 segments). One cow's data only started at day 4, and was therefore not included in this 268 

training set as the animal would not have been present in the training period. 269 

3.6 Segment classification 270 

To move from segments to lying behaviour, we classified each segment as 'lying' or 'non-lying' 271 

based on its (statistical) properties, including the level and variability for the normalized data, a 272 

categorical variable to indicate whether the cow was in the slatted flooring area, the length of the 273 

segment, the number of outliers, the gap size, and the segment range. An overview of these 274 

features is given in the table in the appendix (Table A 1). The classification was done using a 275 



'bagged' (i.e., bootstrap-aggregated, Breiman, 1996) tree algorithm which consistently performed 276 

best on our data independently of input data and split. As opposed to individual decision trees 277 

(which tend to over fit, Dietterich, 1995), bagged trees combine (i.e., use an ensemble) the results 278 

of many trees, improving generalization. Other machine learning classification techniques were 279 

also tested, but no further information is provided in this manuscript, as this is not considered as 280 

truly novel and, by extension, might depend on farm context and sensor settings. The algorithm 281 

uses a random subset of predictors at each decision split (similar to random forest classification) 282 

and minimizes the classification error at each split. The model was trained with 5-fold cross-283 

validation to determine the optimal hyper parameters for the number of learning cycles (i.e., 30) 284 

and trees. For the bootstrapping, each time one segment was sampled with replacement to grow 285 

a new tree. As in some cases a 'true' change happened within a segment, a threshold of 50% was 286 

applied to calculate the binary outcome variable: if more the 50% of the segment's data 287 

corresponded to a lying bout, it's ground truth was taken as 'lying' and vice versa. The features 288 

were selected such that there was no multicollinearity across them. 289 

3.7 Performance evaluation 290 

Two aspects of the methodology are important to achieve a good performance: (1) the 291 

segmentation accuracy, i.e. are the true changes from lying to non-lying and vice versa accurately 292 

detected; and (2) the classification performance in terms of accuracy per segment and 293 

corresponding total lying duration per cow-day. For the first, we calculated how many of the true 294 

changes have a changepoint associated with them within a window of 5 minutes. Given the length 295 

of the lying bouts, this is considered as an acceptable margin for detection. When no detected 296 

changepoint was associated with the true change, we assessed potential causes, including e.g., 297 

missing data. The second was assessed using the confusion matrix comparing true and false 298 

classifications and the total accuracy, for the entire dataset as well as at cow and at cow-day level. 299 

We additionally compared the total lying down duration per cow-day in a similar way. 300 

 301 

4 Results 302 

4.1 Data overview 303 

A total of 30 cows, with each having between 4 and 12 days of data available were included in the 304 

study. These cows had parities between 1 and 7, and were on average 188 (range 119 to 243) days 305 

in lactation. An overview of the cow characteristics is given in Table 1. 306 

 307 

Table 1 – Overview of cow characteristics included in the trial. 308 

Name average std min max 
Parity 2.77 1.50 1.00 7.00 
Lactation stage 188.16 43.49 119.00 243 

Daily milk yield 26.95 6.01 12.68 41 

Fat% 4.72 0.45 4.01 5.44 

Protein% 3.38 0.23 2.94 4.06 

Lactose% 4.49 0.11 4.23 4.68 

SCC*1000c/mL 200.08 212.05 24.75 1035 

 309 



Over the measurement period, in total 2720 lying bouts were detected with the IceQube sensors. 310 

From these, 97 bouts were shorter than 10 minutes. Per cow, an average number of 90.6±24.4 311 

lying bouts per cow were included, with an average duration of 85.3±19.8 minutes per bout across 312 

cows. Cows had on average 8.2±1.8 lying bouts per day (range: 4.5 to 11.3) and spent 8.23 hours 313 

lying down in total. The within-bout level and standard deviation of the z time series, and the 314 

standard deviation of the CD across lying and non-lying bouts are given in Table 2. From this, it is 315 

clear that statistical properties of the chosen time series differ across lying and non-lying 316 

behaviour, which is the basis of our analysis. 317 

 318 

Table 2 – Distributional properties of the (z)-position and centre distance (CD) time series across lying bouts 319 
and non-lying bouts as measured by the accelerometers (i.e. gold standard) 320 

 
lying non-lying 

 
average std min max average std min max 

average z 0.71 0.10 0.49 0.89 1.21 0.09 1.06 1.34 

std1 z 0.25 0.05 0.14 0.33 0.32 0.03 0.27 0.40 

average znorm2 0.28 0.04 0.20 0.36 0.48 0.04 0.42 0.53 

std znorm 0.10 0.02 0.06 0.13 0.13 0.01 0.11 0.16 

std CD3 0.45 0.10 0.29 0.73 1.68 0.23 1.23 2.18 

std CDnorm4 0.04 0.01 0.02 0.06 0.13 0.02 0.10 0.17 

1  standard deviation; 2 normalized z- time series; 3 distance from center of the barn calculated from (x,y)-321 
position; 4 normalized centre distance 322 
 323 
4.2 Changepoint detection 324 

Of all 5443 ground truth changes in the dataset, 85.5% had a changepoint detected within 5 325 

minutes. Per cow-day, this corresponds to 2.3 changes not identified accurately with the 326 

changepoint analysis. From these unidentified changes, 50.3% were linked to changes at a 327 

moment that there were more than 15 minutes of missing values in the surrounding hour, and 328 

62.2% of these 50.3% were in a segment with at least 20% missing data. Additionally, 23.9% of 329 

these false negatives were within less than 20 minutes from another ground truth change, and 330 

thus associated with a very short segment length (Table 3). At cow level, the performance 331 

remained more or less constant, with 14.2% of the changes not detected within 5 minutes of the 332 

ground truth and up to 93% associated with missing data. Based on our experience with sensors 333 

in an on-farm environment and the fact no sensor is faultless, it is expected that part of the changes 334 

not being correctly identified with the changepoint analysis is also due to the ground truth not 335 

being perfect but this can, with the current dataset, not be verified. 336 

 337 

Table 3 – Changepoint detection results. Ground truth changes are the getting up/lying down events as 338 
measured with IceQube accelerometers. 339 

  No. % 
Ground truth changes 5443 100 
Detected changepoints within 5 minutes of ground truth 4654 85.5 

Not detected changepoints within 5 minutes of ground truth 789 14.5 

       with >15' missing values in surrounding hour  397 50.3 

       with previous/next changepoint within 20' 189 23.9 

 340 



4.3 Classification performance for cow identity-based data split 341 

The first split was based on cow identity, and the training dataset consisted of 7024 segments 342 

(35%) from 10 animals, from which 3206 segments represented non-lying behaviour (45.64%). 343 

The independent test set contained 13002 segments. The cross-validation accuracy on the 344 

training dataset was 91.7%, and the overall prediction accuracy of the test set was 92.8%. The 345 

confusion matrix is shown in Figure 2. In total, the test set contains 5625 non-lying segments, from 346 

which 5162 were correctly classified, rendering a non-lying classification accuracy of 91.8%. From 347 

the 7377 lying segments in the test set, 6901 were correctly classified, corresponding to a 348 

classification accuracy of 93.5% for the lying behaviour. In terms of lying duration, the total 349 

predicted non-lying time was 2480h, being 115h different from the ground truth non-lying time 350 

of 2595h (percent deviation = 4.4%). The total lying time was estimated as 2327h, which is 141h 351 

less than the actual lying time of 2468h in the test set (difference 5.7%). Per cow-day, the average 352 

classification accuracy at the segment level was 92.8% with a minimum accuracy of 78.7% and a 353 

maximum accuracy of 100% (Figure 3, left panel). This corresponded to an average error of 7.1% 354 

in the estimation of lying duration at cow-day level (Figure 3, right panel). 355 

 356 

Figure 2 -Confusion matrix showing the classification performance of the bagged tree algorithm of each 357 
segment belonging to either lying or non-lying behaviour, using a training-test split of the data based on cow 358 
identity. 359 



 360 

Figure 3 -Classification accuracy of the (z)-position and center distance (cd) time series segments per cow-day (left panel), 361 
and the resulting prediction accuracy for liedown duration per cow-day. 362 

4.4 Classification performance for time-based data split 363 

In the second split based on time, 5138 segments were included in the training dataset of day 0,1 364 

and 2, from 29 cows. The confusion matrix is shown in Figure 4. In the training set, 2229 (i.e. 365 

43.4%) segments represented 'non-lying' behaviour. The test set contained 14888 segments from 366 

30 cows. The cross-validation accuracy on the training set was 92.3%. In the test set, 6102 out of 367 

6602 segments were correctly classified as non-lying (accuracy 92.4%), whereas 7634 out of 8286 368 

segments were correctly classified as lying (accuracy 92.1%). The total predicted non-lying 369 

duration over the entire dataset was 2853h, whereas the ground truth was a non-lying duration 370 

of 2980h, giving a difference of 127h (4.27% over the entire test set). The predicted and ground 371 

truth lying duration in the test set were 2612h and 2830h respectively, corresponding to a 372 

deviation of 217h or 7.7%. 373 



 374 

Figure 4 -Confusion matrix showing the classification performance of the bagged tree  algorithm of each segment belonging 375 
to either lying or non-lying behaviour, using a training-test split of the data based on time. 376 

Per cow-day, the average classification accuracy at the segment level was 92.3% with a minimum 377 

accuracy of 78.3% and a maximum accuracy of 100% (Figure 5, left panel). This corresponded to 378 

an average error of 7.8% in the estimation of lying duration at cow-day level (Figure 5, right 379 

panel). 380 

 381 



 382 

Figure 5 -Classification accuracy of the (z)-position and center distance (cd) time series segments per cow-day (left panel), 383 
and the resulting prediction accuracy for liedown duration per cow-day for the data split based on time in the trial. 384 

 385 

5 Discussion 386 

In this study, a methodology was developed to distinguish lying from non-lying behaviour of dairy 387 

cows based on spatial uwb (x,y,z)-positioning data in a freestall barn, combining a segmentation 388 

and classification step. A high segmentation performance overall was reached, with many of the 389 

true changes indeed resulting in an alteration of statistical properties and corresponding 390 

changepoint in the selected time series. Previous (unpublished) results showed that a 391 

combination of time series, and finding simultaneous changepoints was necessary to achieve good 392 

results, which supports the general idea that more data integration is needed to achieve good 393 

performance in on-farm situations in which data are often noisy and prone to many kinds of 394 

errors. This was confirmed by the fact that mainly data-quality issues related to missing data and 395 

atypical lying behaviour (i.e. short lying and non-lying bouts) prevented reaching a higher 396 

performance in the segmentation step. The overall and at cow-day level classification 397 

performance was high, with accuracies above 91% independent of data split, demonstrating that 398 

our methodology is robust and has high practical value. We evaluated the performance of the 399 

methodology based on a data split that contained most data in the independent test set and not in 400 

the training set to mimic practical on-farm situation. Robustness of the algorithm is demonstrated 401 

by the fact that both the cow identity-based split and the time-based split performed equally well. 402 

Future research can investigate the performance of the model when using different position-403 

measuring technologies or in other farm settings and over a longer period of time.  404 

By cross-comparing sensor-based predictions instead of using visual observation, we could 405 

validate the methodology with quite an extensive dataset in contrast to what is usual when visual 406 

observations are used (e.g., Vázquez Diosdado et al., 2015). For example Kok et al. (2015) used a 407 

similar approach for validation of the IceQube accelerometers for lying behaviour, comparing the 408 

prediction results of two sensors attached to the same cow. Working with spatial data has proven 409 

challenging, and e.g., attempts to implement data-based penalty functions for restricting the 410 

number of changepoints, failed. This is mainly due to the enormous heteroscedasticity in these 411 

data, which depends on multiple factors such as the cow, the time of the day, the behaviour, factors 412 



interfering with the sensor system, etc., for which we can not account mathematically. Applying 413 

purely black-box approaches generally results in insufficient robustness, interpretability and 414 

generalisability (Hermans et al., 2018; Niloofar et al., 2021; Wathes et al., 2008). Therefore, 415 

introducing expert knowledge in animal monitoring algorithms, for example for the data pre-416 

processing steps, remains essential to make them useful for the end-users. An example of this for 417 

other data sources such as 3D accelerometers is using the static component of acceleration in the 418 

y direction (Vázquez Diosdado et al., 2015). In the current study, expert knowledge was used to 419 

pre-process and impute the data, to decide how to combine the spatial data into time series of 420 

interest for lying behaviour and set the number and distance of changepoints.  421 

Other algorithms have been developed to automatically detect lying behaviour in dairy cows, for 422 

example using machine vision solutions (Porto et al., 2013). The latter study reported a high 423 

sensitivity of 92% as well, but this was not based on lying duration, but on whether there were or 424 

weren't animals lying in a cubicle in a specific frame, ignoring the longitudinal importance of the 425 

data and restricting its current applicability on farm. Additionally, our algorithm was developed 426 

in a freestall barn without cubicles. In cubicle barns, position of the cows in the lying places could 427 

be considered as a variable as well, which allows tailoring the algorithm to different barn 428 

circumstances. In this study, we demonstrated how correct processing of aspecific positioning 429 

data (i.e., the system is not designed as such for lying behaviour only) allows to use one system 430 

for multiple purposes, maximizing the value of a single investment. In a practical setting, the 431 

developed methodology shows sufficient performance for monitoring lying behaviour of dairy 432 

cows over time. For example, the algorithm could be used to create time-series data of lying 433 

behaviour (duration, bout length), which can be assessed with additional interpretation tools such 434 

as individual control charts (Adriaens et al., 2018; Huybrechts et al., 2014). Combining these at 435 

group or at herd level, for example into time budgets allocated to certain behaviours of interest, 436 

can also indicate cow health and welfare dynamics of the animals (Tucker et al., 2021) and allows 437 

automated monitoring with little manual labour. We believe that our methodology can be 438 

generalized to other sensor data sources as well. 439 

 440 

6 Conclusions 441 

In this study, we developed a methodology to predict certain aspects of the lying behaviour of 442 

dairy cows from spatial data with the use of time-series segmentation and a subsequent 443 

classification algorithm. The methodology relies on differences in statistical properties across the 444 

behaviour of interest. The overall performance, both when considering a cow-based and a time-445 

based data split to train and evaluate the methodology, was above 92%. Missing data pose the 446 

main challenge to reach even higher accuracies, but this doesn't necessarily impair the 447 

interpretation of the current results and usability of the method in a practical setting. 448 

Generalization of the segmentation-classification method to other behaviours and other sensors 449 

was identified as a potential route to improve on-farm data interpretation for decision support. 450 

 451 
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9 Appendices 573 

Table A 1 -Statistical and non-statistical features calculated from the time-series segments 574 

feature name categorical description 

inslatted 1 cow is >85% of the time in the slatted flooring area 

seglength 0 length of the segment (in time) 

maxgapsize 0 maximum gap size of the data in the segment 

gappercent 0 percentage of the segment in time without data 

nextseggap 0 gapsize of the next segment 

avgdifoutlZ 0 
difference between the normalised Z level of the current and the previous 
segment, excluding outliers 

avgdifoutlCD 0 
difference between the normalised CD level of the current and the previous 
segment, excluding outliers 

rangeZ 0 range of the normalised Z values of the segment 

rangeCD 0 range of the normalised CD values of the segment 

difquantrangeZ 0 
difference between the interquantile (5-95%) range and the full range of the 
normalised Z data 

difquantrangeCD 0 
difference between the interquantile (5-95%) range and the full range of the 
normalised CD data 

avgoutlZ 0 average (i.e., level) of the normalised Z data without outliers 

avgoutlCD 0 average (i.e., level) of the normalised CD data without outliers 

stdoutlZ 0 standard deviation of normalised Z data without outliers 

stdoutlCD 0 standard deviation of normalised CD data without outliers 

outlpercentZ 0 percentage of outliers in the normalised Z data of the segment 

outlpercentCD 0 percentage of outliers in the normalised CD data of the segment 
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 577 

Figure A 1 – Average % of missing data when 1 measurement per day is expected per cow 578 

 579 

 580 

Figure A 2 – Barn and average cow position per day (dots) and standard deviation of the position (circle) per day for a 581 
single cow. The arrow points at a dot in which the collar was out of the barn edges, after the cow lost it. 582 
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Figure A 3 – Data exploration: Distributions of (z-) position data showing the differences during lying (upper 585 
panel) and non-lying (lower panel) behaviour. 586 
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