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Simulation modeling is
a principal tool for
analyzing the behavior
of water resources
systems, evaluating
future conditions, and
assessing alternative
management policies

Adapted from: The Water Module - Student Resource, School
of Geography and the Environment, University of Oxford 2018
(https://upgro.files.wordpress.com/2018/03/water-module-
student-resource-web.pdf)
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m Modeling typically in two communities

Focusing on Focusing on
locally-relevant consistency with
water system larger scale
elements processes
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Water resources systems’ models
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Water resources systems’ models

Broader scale components (e.g.,
precipitation, temperature) are treated
external inputs to model components

Local scale



Large scale hydrologic models

Focus on regional/global processes, with an
individual basin being just a subcomponent

Large scale



Large scale hydrologic models

Enable consistency and interoperability with
larger-scale processes: energy and water fluxes,
biogeochemical cycles, atmospheric fluxes



https://www.cesm.ucar.edu/models/clm/

Allow inferences across multiple basins with a
consistent framework
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Modeling typically in two communities

Can inform local decision
making
Detailed and high resolution

Large data requirements
Limited transferability to
other locations/scales

Local scale )




Modeling typically in two communities

Directly linked to regional

Can inform local decision processes that shape local
making systems
Detailed and high resolution Interoperable with non-

hydrologic large-scale models

Large data requirements Simplistic representation of
Limited transferability to human processes
other locations/scales Coarse at small scales

Local scale Large scale




Modeling convergence

Efforts to internalize Efforts to incorporate
more larger-scale more institutional and
hydrologic and infrastructure
climatologic processes processes

Local scale Large scale




-
Focusing on this convergence, we want to

address three questions:

Local scale Large scale
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If our modeling is converging, are our

inferences converging too?

Local scale Large scale
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If our modeling is converging, are our

inferences converging too?

A lot of our current and
future stressors are

shaped by processes in
larger scales. What can

we learn about modeling
them better?
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s
If our modeling is converging, are our

inferences converging too?

A lot of our current and Many large-scale
future stressors are processes are shaped
shaped by processes in by humans. How can
larger scales. What can local-scale systems
we learn about modeling modeling better inform
them better? large-scale models?
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Upper Colorado River Basin (horthwest Colorado)
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Water resources system model of the basin

StateMod

https://cdss.colorado.gov/

Local scale 2



Water resources system model of the basin
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Water resources system model of the basin

: —_—
! NG s, N v/ %
B e 313 . # A
75 ’(' &7 ¢ " 7 2 ¥
> V4 ’ )
| f PR a0 Yy . 7 a

" Explicit modeling of institutional

StateMod ,\ allocatio

https://cdss.colorado.gov/

LY ikl

Local scale 23




Water resources system model of the basin
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Large-scale hydrologic model (basin extent)
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Large-scale hydrologic model (basin extent)

o 7 {
1

rlbut

—

edon a gnd

Model attrlbutes are spatlally
\ dlst

“|Z o 10 T
- VAN L R 2
- BT RN o 4
I/ - Z 1 4 N
2 7 » - : o = 4 ‘ .
NG 7 £ F AN 4 f/
VIS N
/ = fd " )
o A J
"\ 7AIZ7 N
A1 WAL

A 2N B
RN § A
A (% \'
NN Lo
N | L e P

Vi)
N 3O \

1L
1L

MOSART-WM

https://im3.pnnl.gov/model?
model=MOSART-WM

| Large scale



StateMod

https://cdss.colorado.gov/

Local scale

Representation of reservoirs
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StateMod

https://cdss.colorado.gov/

Local scale

Representation of reservoirs
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Representation of reservoirs
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Difference in total storage
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Is our modeling indeed
converging?



12000 -
Total surface 10000 A
runoff 8000 -
(Million m3) 6000 -
4000 -

33



12000 A
Total surface 10000
runoff 8000 -
(Million m3) 6000 -
4000 -

StateMod

34




12000 -

Total surface 10000 A
StateMod

(Million m3)

MOSART-WM

o @
Q Q
OIS




12000 -

Total surface 10000
runoff 8000 -
(Million m3) 6000 -
4000 -

The MOSART-WM surface
runoff input appears to
underestimate total surface
runoff in this basin, especially
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Streamflow compared with USGS observations
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Streamflow compared with USGS observations

Headwaters: Below Granby lake
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Streamflow compared with USGS observations

Headwaters: Below Granby lake
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s
If our modeling is converging, are our

inferences converging too?

Local scale Large scale
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How about water scarcity
inferences?



How many users are vulnerable to water
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How many users are vulnerable to water
scarcity?

Nodes classified (%)
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How many users are vulnerable to water
scarcity?
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How many users are vulnerable to water
scarcity?

Vulnerability criterion:
“if they experience a water shortage of
10% of their demand 5% of the time”

Nodes classified (%)
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How many users are vulnerable to water
scarcity?

Vulnerability criterion:
“if they experience a water shortage of
10% of their demand 5% of the time”

For any given metric, up to 40%
of the basin’s water users could
be classified as vulnerable.

Nodes classified (%)
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How many users are vulnerable to water
scarcity?

Vulnerability criterion:
“if they experience a water shortage of
10% of their demand 5% of the time”
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For any given metric, up to 40%
of the basin’s water users could
be classified as vulnerable.
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There is a small number of users
that always experience some
level of shortage.
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How many users are vulnerable to water
scarcity?
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How many users are vulnerable to water
scarcity?

(D o

Even with the strictest
metrics considered,
approximately half of the
S . basin would not be
identified as vulnerable to
water scarcity.
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How many users are vulnerable to water
scarcity?

(D o

Even with the strictest
metrics considered,
approximately half of the
—————— .. basin would not be
identified as vulnerable to
3 occU™® water scarcity.

Nodes glassified (%)
Nodes classified (%)
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were experienced would be dampened by the ones that did not.
StateMod -



B
How many users are vulnerable to water

scarcity?
Using StateMod outputs
(2) (b) Similar attenuation
happening with
MOSART-WM outputs
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How many users are vulnerable to water

scarcity?

Using StateMod outputs
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approximated well,
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Spatial distribution of shortages
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Spatial distribution of shortages
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Spatial distribution of shortages MOSART-WM
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If our modeling is converging, are our

inferences converging too?

Local scale Large scale
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If our modeling is converging, are our

inferences converging too?

Local scale Large scale
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s
If our modeling is converging, are our

inferences converging too?

What can
we learn
about
modeling
large-scale
processes
better?

Local scale Large scale
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If our modeling is converging, are our

inferences converging too?

What can
we learn
about
modeling
large-scale
processes
better?

interacting
limited datd
avaﬂabﬂﬂy

Local scale Large scale
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If our modeling is converging, are our

inferences converging too?

What can How can
we learn local-scale
about systems
S eracting modeling modellfvg
[imited datd large-scale better inform
qvailability processes large-scale
better? models?

Local scale Large scale
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If our modeling is converging, are our

inferences converging too?
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Thank you!

Find me at:

DA hadjimichael@psu.edu
https://www.hadjimichael.info/
§) @a_hadjimichael
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