
HPC codesign in GROMACS

Szilárd Páll
pszilard@kth.se

Workshop on Software Co-Design Actions in European Flagship HPC Codes
ISC 2022

June 2, 2022

mailto:pszilard@kth.se

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Goals:
• Develop key applications (incl. GROMACS) for exascale;
• Develop workflow solutions
• Training/support to academia and industry
• Establish a long-term organizational structure

BioExcel Center of Excellence
Improving the

performance and
scalability of key codes
towards the Exascale

Devising efficient
workflow environments

with associated data
integration

Provide consultancy and training to end users in academia and industry

QMMM
/CP2K/

Competency profilesCompetency profiles Mapped competencies to
training

Mapped competencies to
training Gap analysisGap analysis

Training Program krc.bioexcel.eu

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

● Classical MD code

– supports all major force-fields

– broad algorithm support

● Development:

Stockholm Sweden & partners worldwide

● Large user base:
– One of the top HPC codes worldwide

deployed on most clusters

– 10k's academic & industry users

● Open source: LGPLv2

● Open development:

– code review & bug-tracker:https://gitlab.com/gromacs

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

https://gitlab.com/gromacs

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

● Focus on high performance:

efficient algorithms & highly-tuned parallel code

● Bottom-up performance oriented design:

– absolute performance over “just scaling”

● Focus on portability

– Linux distro integration and CI

– regular testing on all HPC arch

– SIMD portability library, GPU abstraction layer

– open standards-based languages/APIs

● Modern development workflow

– mandatory open code review for >10 years
– tiered CI testing / verification

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

MD: computational challenge

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F

~ millisecond or less

PME F Other F

● Simulation vs real-world time-scale gap

– Every simulation: 108 –1015 steps

– Every step: 106 – 109 FLOPs

● Main goal of parallelization:

– study molecular systems: tackle the time- or length-scale challenge
– typically requires: strong scaling, increasingly ensemble

● MD codes at peak: ~100 µs / step (on commodity hardware)

– <100 atoms/core at peak
– <10000 atoms / GPU

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multiple levels of hardware parallelism

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU &
manycore GPU
caches, interconnects

up to 512-bit vector units/core
=>
up to 16 single precision ops/clock

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multiple levels of hardware parallelism
Multiple levels of parallelization

up to 512-bit vector units/core
=>
up to 16 single precision
ops/clock

● Mapping the problem to the hardware:

expose parallelism (algorithms) & express parallelism (implementation)

● Need to choose the right:

granularity & abstraction (problem & hardware-specific)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

HPC nodes today/soon
CPU CPU

GPU

GPU

GPU

GPU

IB IBPLXPLX

CSC Puhti :2
CPU + 4 GPU+
NVlink, 2 NIC

JUWELS-Booster: 2 CPU +
4 GPU w NVlink + 4 NIC

AMD Exascale
architecture: LUMI,
Frontier, Dardel

ORNL Summit:
NVLink
CPU/GPU-GPU

Intel Exascale
architecture: Aurora

DGX A100

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multiple levels of hardware parallelism
Multiple levels of parallelization

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU +
manycore GPU
caches, interconnects

up to 512-bit vector units/core
=>
up to 16 single precision
ops/clock

Exascale challenge:

– Increasing parallelism

 → need to express more concurrency

– Increasing complexity (interconnects, memories, NUMA)

 → tackle using runtimes or in application?

– Increasing diversity

 → zoo of programming models

 → algorithms, portability/testing, performance portability

– Heterogeneity is here to stay
● ignore or embrace?
● Wait for integration or tune for many generations?

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

GROMACS parallelization
● Multi-level hierarchical parallelization: target each

level of hardware parallelism individually

– Intra-node:
● OpenMP multi-threading

–static loop schedule, cache optimized work
decomposition layout, sparse reductions

● SIMD C++ library abstraction:
–14 flavors supported

● GPU abstraction layer
– CUDA, OpenCL, SYCL

● thread-MPI: pthreads-based MPI for ease of use

– Inter-node:
● MPI: SPMD / MPMD
● Dynamic load balancing, task balancing

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Why codesign?

● interdisciplinarity challenge

 → many hard problems need cross-disciplinary solutions

● MD: need for performance

– GROMACS: design focus

● portability

– GROMACS design focus

● hardware evolution...

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

GROMACS & codesign
● Petascale → Exascale

– required algorithm & parallelization redesign

– Codesign has been & remains core component

● Physics / math + algorithms + HW

– mainly intra-team/community

– innovate (reformulate algorithms, accuracy-based algorithms)

– enable (domain experts method dev, CS experts micro-bench / port)

● Algorithms + HW + vendors / CS-experts

– mainly inter-team collaboration

– align goals for collaboration so benefits both ways!

– Long-term: many steps forward and several major successes

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Algorithm redesign for
modern architectures

i1

i1 i2

i3 i4 jm

jn

12 13 14 15111098

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

4x4 setup on SIMD-16

Cluster pair-interaction
algorithm for SIMD/SIMT

Accuracy-based automated list
buffer improves SIMD algorithm
parallel efficiency

Dual pair list with
dynamic pruning

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9 S S S

0

50

100

150

200

250

300

K
C

yc
le

s

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9

S
M

X
1

0

S
M

X
1

1

S
M

X
1

2

0

50

100

150

200

250

300

0

200

400

600

800

lis
t s

ize

lis
t s

iz
e

200

400

600

800

raw pair list
reshaped list

0 100 200 300 4000 100 200 300 400

Regularized
lists: balanced
execution

Multi-level heterogeneous data
and task load-balancing: intra-
GPU, intra-node, inter-node

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Embracing heterogeneity
● Heterogeneous design at the core:

– “somewhat” complex schedule.

 “→ But there is also always some reason in madness.”
● Heterogeneity for performance &

flexibility: think of the (sometimes) silent codesign partners, method devs

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Dual pair list

rcut

rlist-inner

rlist-outer

● Trading costly data regularization for
force computation not ideal!

● Instead: keep regularized particle
data longer, shift the cost trade-off

● Use two buffers and lists:

outer / inner

● Periodically re-prune

outer → inner

● List lifetime / search frequency:

– outer list less frequently (costly)

– inner list more frequently (cheap)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Bonded F PME
DD/Pair
search

Pair-search step every 50-400 iterations

MD iteration = step

Integration,
ConstraintsNon-bonded F PME F Other F

Dyn.
Prune

List pruning every 5-15 steps

Bonded F PME
DD / Pair

search

Pair-search step every 20-100 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F PME F Other F

Trade search/DD cost → non-bonded pair interaction cost

Instead:
Trade search/DD cost → dynamic re-pruning
Keeping the non-bonded pair interaction cost (near) constant

Accuracy-based balancing: dual pair list
reducing decomposition & search cost

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

v2
95.5

9

v2
95.5

9

v3
02.0

6.0
3_1

v3
02.0

6.0
3_2

v3
02.0

6.0
3

v3
02.0

6.0
3

v3
04.2

2

v3
04.2

2

v3
04.4

3

v3
04.4

3

v3
04.4

3

v3
04.5

4

v3
04.5

4

v3
10.1

9

v3
19.1

3

v3
19.1

3

v3
19.2

3

v3
19.2

3

v3
19.3

7

v3
19.3

7

v3
31.2

0

v3
31.4

4

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

4.5

Change in CUDA runtime API overhead
between driver v295 and v331

measurement/driver version

M
cy

cl
es

/s
te

p

Vendor-collaboration codesign:
long-term practice

1.5 3 6 12 24 48 96 192 384 768 15363072
0

20

40

60

80

100

120
CUDA runtime API overhead vs input size

GTX 680

K20

System size (1000-s of atoms)

C
U

D
A

 R
T

o
ve

rh
ea

d
 (

u
s/

st
ep

)

CUDA RT call single-stream
(us/step)

dual-stream
(us/step)

H2D pair list 0.3 1.1

H2D x+q 7.2 9.6

NB kernel 9.8 14.8

D2H forces 5.2 9.2

D2H E+shift F 1.4 1.4

cudaStreamSync 3.4 2.3

Clear kernel 9.2 8.8

Total 37.2 49.5

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

Estimated scaling improvement
with CUDA priorities

Reaction-field, 192k water system, cut=0.9

standard - two streams
single stream w/o non-
local synch

#GPUs

Pe
rf

o
rm

an
ce

 (n
s/

d
ay

)

18.5%

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0

15.34

179.75

144.92

91.47

Iris 655 sync / 1T CPU 2.74 GHz i7-8559U CPU 2TPC@2.74 GHz

Tegra X1 @994.5 MHz Tesla P4 @1113 MHz

peak kernel performance (ns/atom)

1C

3C

2C + GPU

4C + GPU

0 5 10 15 20 25 30

CPU 2TPC GPU PKG rest

power consumed (W)

1C

3C

2C + GPU

4C + GPU

0 2 4 6 8 10 12

CPU 2TPC Rest 2TPC

per-step nonbonded/total time (ms)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Direct GPU communication
● Alan Gray & Gaurav Garg (NVIDIA)

● Goal:

– avoid CPU staging, accelerate critical path

– target intra-node interconnects, e.g. NVLInk

● Two flavors:

– thread-MPI: single-node (since 2021)
● P2P copies (put/get), exchange CUDA events allows remote sync
● Single process + multiple GPUs: bottlenecks required CUDA driver threading optimizations

– CUDA-aware MPI: multi-node (since 2022)
● requires host sync before issuing MPI call

DGX 1V

DGX A100

Codesign project with NVIDIA

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

D
2H

 L
oc

 F

Multi-GPU/rank force offload scheme

Integration
Constraints

Wait
NLoc F

Loc
PS

D
2H

 N
lo

c
F,

 E

H
2D

 L
oc

 x
,q

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 L
oc

 F

Wait
Loc F

H
2D

 N
Lo

c
x,

q

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

constraint
comm

CPU

Local
stream

Non-local
stream (high priority)GPU Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Pair-search & domain-
decomposition step

Reduce
F

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

D
2H

 N
lo

c
F,

 E

Multi-GPU/rank GPU-resident scheme

Wait
NLoc F

Loc
PS

H
2D

 f

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
MPI rank

MPI comm:
send NLoc F

remote
MPI rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)

GPU
Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Reduce
F

H
2D

 N
Lo

c
x,

q

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

H
2D

 f

H
22

 N
lo

c
F,

 E

D
2H

 N
lo

c
F,

 E

Multi-GPU/rank GPU-resident scheme

Wait
NLoc F

Loc
PS

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
MPI rank

MPI comm:
send NLoc F

remote
MPI rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)

GPU
Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Reduce
F

H
2D

 N
Lo

c
x,

q

MPI communication
explicitly staged
through the CPU

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multi-node GPU resident &
direct GPU communication

Loc
PS

H
2D

 f

H
2D

Lo
c

p
ai

r
lis

t

Nloc
PS

H
2D

 N
Lo

c
pa

ir
 li

st

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
MPI rank

MPI comm:
send NLoc F

remote
MPI rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)

GPU
Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Reduce
Fun-

pack pack

Transfer directly
between GPU—
GPU (or CPU—
GPU) memory
spaces

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multi-GPU resident step:
single-node P2P direct GPU comm

Loc
PS

H
2D

 f

H
2D

Lo
c

p
ai

r
lis

t

Nloc
PS

H
2D

 N
Lo

c
pa

ir
 li

st

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
MPI rank

MPI comm:
send NLoc F

remote
MPI rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)

GPU
Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Reduce
Fun-

pack pack

● The entire inner loop
including communication
can be enqueued ahead
of time

– if there is no CPU task
(Other F)

– enables more efficient
scheduling

– overlap launch cost
with work

– CUDA graphs

● Challenges:

– integrating CPU tasks

– load balancing

Enqueue all work for
100-400 iterations

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multi-node GPU resident step &
GPU-aware MPI comm

Loc
PS

H
2D

 f

H
2D

Lo
c

pa
ir

 li
st

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
MPI rank

MPI comm:
send NLoc F

remote
MPI rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)

GPU
Bonded F

Rolling
prune

Other F

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Reduce
Fun-

pack pack

MPI doesn’t integrate into
the async tasking model!

MPI comm &
wait to

launch work

Wait on GPU &
launch MPI

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Direct GPU communication performance
● Major benefit on fast interconnects with GPU-resident steps

● Modest improvements on low-end interconnects

1 2 4 8 16
0

20

40

60

80

100

120

140

#GPUs

p
e

rf
or

m
a

nc
e

 (
ns

/d
a

y)

1 2 4 8 16
0

20

40

60

80

100

120

140
Staged GPU comm.
Direct GPU comm.
Direct GPU comm. & GPU Update

#GPUs

pe
rfo

rm
an

ce
 (n

s/d
ay

)

System: STMV 1M atoms

Hardware: DGX-1V

Reaction-field electrostatics:
only halo-exchange

PME electrostatics:
halo-exchange & PME MPMD communication

Scaling limited by
1 PME GPU

Unused to mimic
pre-Exascale machine

architectures

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

DD halo exchange peak strong scaling
● JUWELS-booster:

– 2x24-core AMD EPYC Rome

– 4xA100

● ~50% parallel efficiency up to
12 nodes

– only ~20000 atoms/GPU
● Peak at 48-64 nodes:

>500 ns/day 0 10 20 30 40 50 60
0

100

200

300

400

500

600

RF JUWELS-Booster

RF JUWELS-Booster optimized mapping

#nodes (4GPUs/node)
Pe

rfo
rm

an
ce

 (n
s/d

ay
)

DD scaling of a large biomolecule
(1M atom STMV)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

DD halo exchange peak strong scaling
● JUWELS-booster:

– 2x24-core AMD EPYC Rome

– 4xA100

● ~50% parallel efficiency up
to 12 nodes with only
~20000 atoms/GPU

● Peak at 48-64 nodes:

>500 ns/day 0 10 20 30 40 50 60
0

100

200

300

400

500

600

RF JUWELS-Booster
RF JUWELS-Booster optimized
mapping

#nodes (4GPUs/node)
Pe

rfo
rm

an
ce

 (n
s/d

ay
)

Scaling large homogeneous systems to ~400 GPUs

DD scaling of a large biomolecule
(1M atom STMV)

1 10 100 1000
1

10

100

1000

1.44
M
5.7M
23M
46M

#nodes (4xA100)

Pe
rfo

rm
an

ce
 (n

s/d
ay

)

Input size
(million atoms)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

PME decomposition
● GROMACS team + Gaurav Garg (NVIDIA)

● remove the limitation of single dedicated PME GPU

● 3D FFTs strong-scaling challenge:

typical size 323-2563, hardly scale
● Released in 2022:

Hybrid mode: FFT on CPU

● In development (upstreamed):

– major algorithmic and parallelization optimizations

– HeFFT and cuFFTmp for GPU-resident mode

Codesign project with NVIDIA

Single PME Rank

PME Spline
+ Spread

3D R2C FFT PME Solve 3D C2R FFT PME Gather

PME Rank 1

PME Spline
+ Spread

Distributed
R2C FFT

PME Solve
Distributed
C2R FFT PME Gather

Halo
exchang

Halo
exchang

PME Rank 0

PME Spline
+ Spread

Distributed
R2C FFT

PME Solve
Distributed
C2R FFT PME Gather

Halo
exchang

Halo
exchang

Send
PME F

Recv X

From
PP

To
PP

Recv X

Recv X Send
PME F

Send
PME F

Decompose work to use multiple ranks / GPUs

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

1 2 4 8 16
0

20

40

60

80

100

120

140
Staged GPU comm.
Direct GPU comm.
Direct GPU comm. & GPU Update
& PME decomp

#GPUs

pe
rfo

rm
an

ce
 (n

s/d
ay

)

1 2 4 8 16
0

20

40

60

80

100

120

140

#GPUs

p
e

rf
or

m
a

nc
e

 (
ns

/d
a

y)

PME electrostatics:
halo-exchange & PME MPMD communication

System: STMV 1M atoms

Hardware: DGX-1V

Unused to mimic
pre-Exascale machine

architectures

Direct GPU communication with PME
decomposition
● Major benefit on fast interconnects with GPU-resident steps

● Modest improvements on low-end interconnects

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

PME scaling improvements with cuFFTmp
(in development)

● Strong scales reasonably well to 16-24
nodes:

– only 10-15k (!) atoms per GPU

– further improvements planned

● Peak can still be lower than CPU-only
machines

– algorithm improvements needed

– next-gen hardware expected to help

1 6 11 16 21 26 31
0

50

100

150

200

250
STMV on NVIDIA Selene

CPU+GPU PME decomp cuFFTMp baseline
CPU+GPU PME decomp cuFFTMp_diag_haloreduce

number of nodes (4 GPUs/node)

Pe
rfo

rm
an

ce
 (n

s/d
ay

)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Asynchronous scheduling: CUDA graphs

Challenge:
lacking priority support
PME kernels not prioritized

Decom-
position

Non-bonded F

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

Capture work in inner loop
to build CUDA graph

single-rank/ single GPU
task graph

Codesign project with NVIDIA

Most work done by

Alan Gray (NVIDIA)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Asynchronous scheduling: CUDA graphs

Challenge:
lacking priority support
PME kernels not prioritized

Decom-
position

Non-bonded F

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

Capture work in inner loop
to build CUDA graph

single-rank/ single GPU
task graph

Codesign project with NVIDIA

Update graph after domain
decom. / load balancing

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multi-GPU graph scheduling

Loc
PS

H
2D

Lo
c

p
ai

r
lis

t

Nloc
PS

H
2D

 N
Lo

c
pa

ir
 li

st

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
MPI rank

MPI comm:
send NLoc F

remote
MPI rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)

GPU
Bonded F

Rolling
prune

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Reduce
Fun-

pack pack

Graph launch
for 10s-100s of
iterations

Codesign project with NVIDIA

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

graph_13

10
_ZN3gmx17packSendBufKernelILb1EEEvP6float3PKS1_PKiiS1_

13
MEMCPY

(DtoD,170316)

8
_Z28nbnxn_gpu_x_to_nbat_x_kerneliP6float4PK6float3PKiS5_S5_ii

9
_Z43nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_cuda13NBAtomDataGpu10NBParamGpuN5Nbnxm9gpu_plistEb

18
_ZN3gmx15exec_kernel_gpuILb0ELb0EEEvNS_26BondedCudaKernelParametersEP6float4P6float3S5_

7
_ZN3gmx17packSendBufKernelILb0EEEvP6float3PKS1_PKiiS1_

12
MEMCPY

(DtoD,176328)

4
_Z28nbnxn_gpu_x_to_nbat_x_kerneliP6float4PK6float3PKiS5_S5_ii

6
_Z43nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_cuda13NBAtomDataGpu10NBParamGpuN5Nbnxm9gpu_plistEb

27
_ZN3gmx15exec_kernel_gpuILb0ELb0EEEvNS_26BondedCudaKernelParametersEP6float4P6float3S5_

3
MEMCPY

(UtoU,574104)

5
_Z28pme_spline_and_spread_kernelILi4ELb1ELb1ELb1ELb1ELi1ELb0EL14ThreadsPerAtom0EEv22PmeGpuCudaKernelParams

41
_ZN3gmx12reduceKernelILb1ELb1EEEvPK6float3S3_PS1_PKii

2
MEMCPY

(UtoU,572628)

11
_Z28pme_spline_and_spread_kernelILi4ELb1ELb1ELb1ELb1ELi1ELb0EL14ThreadsPerAtom0EEv22PmeGpuCudaKernelParams

38
_ZN3gmx12reduceKernelILb1ELb1EEEvPK6float3S3_PS1_PKii

1
MEMSET
(0,574104)

28
MEMCPY

(DtoD,176328)

0
MEMSET
(0,572628)

35
MEMCPY

(DtoD,170316)

14
_Z15regular_fft_r2cILj100ELj10ELj16ELj9EL9padding_t1EL9twiddle_t0EL20loadstore_modifier_t2EL8layout_t0EjfEv18kernel_arguments_tIT7_E

17
_Z28nbnxn_gpu_x_to_nbat_x_kerneliP6float4PK6float3PKiS5_S5_ii

25
_Z28nbnxn_gpu_x_to_nbat_x_kerneliP6float4PK6float3PKiS5_S5_ii

15
_Z11regular_fftILj100ELj10ELj16ELj9EL9padding_t1EL9twiddle_t0EL20loadstore_modifier_t2EL8layout_t1EjfEv18kernel_arguments_tIT7_E

16
_Z11regular_fftILj100ELj10ELj16ELj9EL9padding_t1EL9twiddle_t0EL20loadstore_modifier_t2EL8layout_t1EjfEv18kernel_arguments_tIT7_E

19
_Z16pme_solve_kernelIL12GridOrdering1ELb0ELi0EEv22PmeGpuCudaKernelParams

21
_Z43nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_cuda13NBAtomDataGpu10NBParamGpuN5Nbnxm9gpu_plistEb

20
_Z11regular_fftILj100ELj10ELj16ELj9EL9padding_t1EL9twiddle_t0EL20loadstore_modifier_t2EL8layout_t1EjfEv18kernel_arguments_tIT7_E

22
_Z11regular_fftILj100ELj10ELj16ELj9EL9padding_t1EL9twiddle_t0EL20loadstore_modifier_t2EL8layout_t1EjfEv18kernel_arguments_tIT7_E

24
_ZN3gmx12reduceKernelILb0ELb0EEEvPK6float3S3_PS1_PKii

23
_Z15regular_fft_c2rILj100ELj10ELj16ELj9EL9padding_t1EL9twiddle_t0EL20loadstore_modifier_t2EL8layout_t0EjfEv18kernel_arguments_tIT7_E

26
_Z17pme_gather_kernelILi4ELb1ELb1ELi1ELb0EL14ThreadsPerAtom0EEv22PmeGpuCudaKernelParams

30
MEMSET
(0,4000000)

29
_Z43nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_cuda13NBAtomDataGpu10NBParamGpuN5Nbnxm9gpu_plistEb

36
_ZN3gmx19unpackRecvBufKernelILb0EEEvP6float3PKS1_PKii

37
_ZN3gmx19unpackRecvBufKernelILb0EEEvP6float3PKS1_PKii

32
_ZN3gmx12reduceKernelILb0ELb0EEEvPK6float3S3_PS1_PKii

31
MEMSET
(0,28)

33
MEMCPY

(UtoU,574104)

34
MEMCPY

(UtoU,572628)

39
_Z23nbnxn_kernel_prune_cudaILb0EEv13NBAtomDataGpu10NBParamGpuN5Nbnxm9gpu_plistEii

42
_ZN3gmx15leapfrog_kernelILNS_18NumTempScaleValuesE0ELNS_19VelocityScalingTypeE0EEEviP6float3S4_S4_PKS3_PKffS8_PKtS3_

40
MEMSET
(0,835584)

43
_Z23nbnxn_kernel_prune_cudaILb0EEv13NBAtomDataGpu10NBParamGpuN5Nbnxm9gpu_plistEii

45
_ZN3gmx15leapfrog_kernelILNS_18NumTempScaleValuesE0ELNS_19VelocityScalingTypeE0EEEviP6float3S4_S4_PKS3_PKffS8_PKtS3_

46
_ZN3gmx12lincs_kernelILb1ELb0EEEvNS_24LincsGpuKernelParametersEPK6float3PS2_S5_f

44
MEMSET
(0,845568)

48
_ZN3gmx12lincs_kernelILb1ELb0EEEvNS_24LincsGpuKernelParametersEPK6float3PS2_S5_f

47
_ZN3gmx13settle_kernelILb1ELb0EEEviPK13WaterMoleculeNS_16SettleParametersEPK6float3PS5_fS8_Pf7PbcAiuc

49
_ZN3gmx13settle_kernelILb1ELb0EEEviPK13WaterMoleculeNS_16SettleParametersEPK6float3PS5_fS8_Pf7PbcAiuc

Asynchronous scheduling: CUDA graphs

● multi-rank: leverage thread-MPI using pthreads for UVA
direct async copies

1 PME GPU

2 PP GPUs

Generated with
cudaGraphDebugDotPrint()

Codesign project with NVIDIA

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Multi-GPU graph scheduling

Loc
PS

H
2D

 f

H
2D

Lo
c

p
ai

r
lis

t

Nloc
PS

H
2D

 N
Lo

c
pa

ir
 li

st

Non-Local non-bonded F

D
2H

 x

Pair-search & domain-
decomposition step

MD step

Clear
buffersLocal non-bonded F... preempted

by non-local

MPI comm:
receive NLoc x

remote
MPI rank

MPI comm:
send NLoc F

remote
MPI rank

DD

DD
comm

CPU

Local
stream

Non-local
stream (high priority)

GPU
Bonded F

Rolling
prune

List
pruning

3D-FFT
 fwd

Spread Solve 3D-FFT
 back Gather

Integration
Constraints

Reduce
Fun-

pack pack

● Inner loop compute + all
intra-node communication
with a single graph launch

– Reduced overhead

– Allow the runtime to
optimize schedule

● Challenges / WIP:

– integrating CPU tasks

– heterogeneous iterations

– inter-node
communication

Graph launch
for 10s-100s of
iterations

Other F ?

Codesign project with NVIDIA

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

CUDA graph scheduling performance
Codesign project with NVIDIA

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

SYCL for portability & performance

● SeRC & Intel: OneAPI CoE: Andrey Alekseenko (KTH)

● 1st GPU backend with DPC++

– early prototype released in GROMACS 2021

● added hipSYCL support as portability check first

● starting with the 2022 release:

GROMACS adopted hipSYCL for production AMD support

● SYCL to replace OpenCL as portability GPU backend

– already broader feature set coverage

– broad vendor support: AMD, NVIDIA, Intel

Codesign project with Intel

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

SYCL in GROMACS relative to native

AMD MI100

Codesign project with Intel

Intel DG1

Relative application perf
and rel GPU kernels perf

Perf of individual GPU
kernels

hipSYCL vs native HIP on
ROCm 4.5.2

oneAPI/DPC++ on OpenCL/L0 vs
native OpenCL
(oneAPI 2022.0 except L0 2021.4)

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Take-aways

● Codesign key for algorithm reformulation / redesign

– enabled to keep up with hardware evolution

– need to be forward-looking

– disruptive vs constructive

● Long-term investment

● Interdisciplinarity helps but challenges too

● Collaboration needs long-term alignment

– much easier intra-team/community

– harder and often challenging cross-team

● Plan for the progress but allow for the incidental collaboration

– accommodating SW design will allow new domain-science contribution

Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

Acknowledgments
GROMACS

Andrey Alekseenko

Artem Zhmurov

Berk Hess

Erik Lindahl

Magnus Lundborg

Paul Bauer

Mark Abraham (Intel)

Roland Schulz (Intel)

Alan Gray (NVIDIA)

Gaurav Garg (NVIDIA)

Funding

HW / code contrib

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

