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Goals:
• Develop key applications (incl. GROMACS)  for exascale;
• Develop workflow solutions
• Training/support to academia and industry
• Establish a long-term organizational structure

BioExcel Center of Excellence
Improving the 

performance and 
scalability of key codes 
towards the Exascale

Devising efficient 
workflow environments 

with associated data 
integration

Provide consultancy and training to end users in academia and industry

QMMM
/CP2K/

Competency profilesCompetency profiles Mapped competencies to 
training

Mapped competencies to 
training Gap analysisGap analysis

Training Program krc.bioexcel.eu
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● Classical MD code

– supports all major force-fields

– broad algorithm support

● Development:

Stockholm Sweden & partners worldwide

● Large user base:
– One of the top HPC codes worldwide

deployed on most clusters

– 10k's academic & industry users

● Open source: LGPLv2

● Open development:

– code review & bug-tracker:https://gitlab.com/gromacs

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

https://gitlab.com/gromacs
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arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

● Focus on high performance:

efficient algorithms & highly-tuned parallel code

● Bottom-up performance oriented design:

– absolute performance over “just scaling”

● Focus on portability

– Linux distro integration and CI

– regular testing on all HPC arch

– SIMD portability library, GPU abstraction layer

– open standards-based languages/APIs

● Modern development workflow

– mandatory open code review for >10 years
– tiered CI testing / verification
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MD: computational challenge

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F

~ millisecond or less

PME F Other F

● Simulation vs real-world time-scale gap

– Every simulation: 108 –1015 steps

– Every step: 106 – 109 FLOPs

● Main goal of parallelization:

– study molecular systems: tackle the time- or length-scale challenge
– typically requires: strong scaling, increasingly ensemble

● MD codes at peak: ~100 µs / step (on commodity hardware)

– <100 atoms/core at peak
– <10000 atoms / GPU
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Multiple levels of hardware parallelism

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU & 
manycore GPU
caches, interconnects 

up to 512-bit vector units/core
=>
up to 16 single precision ops/clock
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Multiple levels of hardware parallelism
Multiple levels of parallelization

up to 512-bit vector units/core
=>
up to 16 single precision 
ops/clock

● Mapping the problem to the hardware:

expose parallelism (algorithms) & express parallelism (implementation)

● Need to choose the right: 

granularity & abstraction (problem & hardware-specific)
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HPC nodes today/soon
CPU CPU

GPU

GPU

GPU

GPU

IB IBPLXPLX

CSC Puhti :2 
CPU + 4 GPU+ 
NVlink, 2 NIC

JUWELS-Booster: 2 CPU + 
4 GPU w NVlink + 4 NIC

AMD Exascale 
architecture: LUMI, 
Frontier, Dardel

ORNL Summit:
NVLink 
CPU/GPU-GPU

Intel Exascale 
architecture: Aurora

DGX A100
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Multiple levels of hardware parallelism
Multiple levels of parallelization

Compute cluster or cloud
Networked computers:
topology, bandwidth, latency

Compute node / workstation

NUMA topology, PCIe

Multicore CPU + 
manycore GPU
caches, interconnects 

up to 512-bit vector units/core
=>
up to 16 single precision 
ops/clock

Exascale challenge:

– Increasing parallelism

 → need to express more concurrency

– Increasing complexity (interconnects, memories, NUMA)

 → tackle using runtimes or in application?

– Increasing diversity

 → zoo of programming models

 → algorithms, portability/testing, performance portability 

– Heterogeneity is here to stay
● ignore or embrace? 
● Wait for integration or tune for many generations?
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GROMACS parallelization
● Multi-level hierarchical parallelization: target each 

level of hardware parallelism individually

– Intra-node: 
● OpenMP multi-threading

–static loop schedule, cache optimized work 
decomposition layout, sparse reductions

● SIMD C++ library abstraction:
–14 flavors supported

● GPU abstraction layer
–  CUDA, OpenCL, SYCL

● thread-MPI: pthreads-based MPI for ease of use

– Inter-node:
● MPI: SPMD / MPMD
● Dynamic load balancing, task balancing
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Why codesign?

● interdisciplinarity challenge

 → many hard problems need cross-disciplinary solutions

● MD: need for performance

– GROMACS: design focus

● portability

– GROMACS design focus

● hardware evolution...



Shared under CC BY-SA 4.0. doi.org/10.5281/zenodo.6620848

GROMACS & codesign
● Petascale → Exascale

– required algorithm & parallelization redesign

– Codesign has been & remains core component

● Physics / math + algorithms + HW 

– mainly intra-team/community 

– innovate (reformulate algorithms, accuracy-based algorithms)

– enable (domain experts method dev, CS experts micro-bench / port)

● Algorithms + HW + vendors / CS-experts

– mainly inter-team collaboration

– align goals for collaboration so benefits both ways!

– Long-term: many steps forward and several major successes
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Algorithm redesign for
modern architectures
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Embracing heterogeneity
● Heterogeneous design at the core:

– “somewhat” complex schedule.

 “→ But there is also always some reason in madness.”
● Heterogeneity for performance &

flexibility: think of the (sometimes) silent codesign partners, method devs
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Dual pair list

rcut

rlist-inner

rlist-outer

● Trading costly data regularization for 
force computation not ideal!

● Instead: keep regularized particle 
data longer, shift the cost trade-off

● Use two buffers and lists:

outer / inner

● Periodically re-prune

outer  → inner

● List lifetime / search frequency:

– outer list less frequently (costly)

– inner list more frequently (cheap)
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Bonded F PME
DD/Pair
search

Pair-search step every 50-400 iterations

MD iteration = step

Integration,
ConstraintsNon-bonded F PME F Other F

Dyn.
Prune

List pruning every 5-15 steps

Bonded F PME
DD / Pair

search

Pair-search step every 20-100 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F PME F Other F

Trade search/DD cost  → non-bonded pair interaction cost

Instead:
Trade search/DD cost   → dynamic re-pruning
Keeping the non-bonded pair interaction cost (near) constant

Accuracy-based balancing: dual pair list 
reducing decomposition & search cost
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Direct GPU communication
● Alan Gray & Gaurav Garg (NVIDIA)

● Goal:

– avoid CPU staging, accelerate critical path

– target intra-node interconnects, e.g. NVLInk

● Two flavors:

– thread-MPI: single-node (since 2021)
● P2P copies (put/get), exchange CUDA events allows remote sync
● Single process + multiple GPUs: bottlenecks required CUDA driver threading optimizations

– CUDA-aware MPI: multi-node (since 2022)
● requires host sync before issuing MPI call

DGX 1V

DGX A100

Codesign project with NVIDIA
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Multi-node GPU resident &
direct GPU communication
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Multi-GPU resident step:
single-node P2P direct GPU comm
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● The entire inner loop 
including communication 
can be enqueued ahead 
of time

– if there is no CPU task 
(Other F)

– enables more efficient 
scheduling

– overlap launch cost 
with work

– CUDA graphs

● Challenges:

– integrating CPU tasks

– load balancing  

Enqueue all work for 
100-400 iterations
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Multi-node GPU resident step &
GPU-aware MPI comm
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MPI comm & 
wait to

launch work

Wait on GPU &
launch MPI
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Direct GPU communication performance
● Major benefit on fast interconnects with GPU-resident steps

● Modest improvements on low-end interconnects
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architectures 
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DD halo exchange peak strong scaling
● JUWELS-booster:

– 2x24-core AMD EPYC Rome

– 4xA100

● ~50% parallel efficiency up to 
12 nodes 

– only ~20000 atoms/GPU
● Peak at 48-64 nodes:
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DD scaling of a large biomolecule
(1M atom STMV)
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DD halo exchange peak strong scaling
● JUWELS-booster:

– 2x24-core AMD EPYC Rome

– 4xA100

● ~50% parallel efficiency up 
to 12 nodes with only 
~20000 atoms/GPU
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PME decomposition 
● GROMACS team + Gaurav Garg (NVIDIA)

● remove the limitation of single dedicated PME GPU

● 3D FFTs strong-scaling challenge:

typical size 323-2563, hardly scale
● Released in 2022:

Hybrid mode: FFT on CPU

● In development (upstreamed):

– major algorithmic and parallelization optimizations

– HeFFT and cuFFTmp for GPU-resident mode 

Codesign project with NVIDIA

Single PME Rank

PME Spline 
+ Spread

3D R2C FFT PME Solve 3D C2R FFT PME Gather

PME Rank 1

PME Spline 
+ Spread

Distributed 
R2C FFT

PME Solve
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C2R FFT PME Gather

Halo 
exchang

Halo 
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PME Rank 0

PME Spline 
+ Spread

Distributed 
R2C FFT

PME Solve
Distributed 
C2R FFT PME Gather

Halo 
exchang

Halo 
exchang

Send 
PME F

Recv X

From 
PP

To 
PP

Recv X

Recv X Send 
PME F

Send 
PME F

Decompose work to use multiple ranks / GPUs
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Direct GPU communication with PME 
decomposition
● Major benefit on fast interconnects with GPU-resident steps

● Modest improvements on low-end interconnects
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PME scaling improvements with cuFFTmp
(in development)

● Strong scales reasonably well to 16-24 
nodes:

– only 10-15k (!) atoms per GPU

– further improvements planned

● Peak can still be lower than CPU-only 
machines

– algorithm improvements needed

– next-gen hardware expected to help
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Asynchronous scheduling: CUDA graphs 

Challenge: 
lacking priority support
PME kernels not prioritized

Decom-
position

Non-bonded F

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

Capture work in inner loop 
to build CUDA graph

single-rank/ single GPU 
task graph

Codesign project with NVIDIA

Most work done by

Alan Gray (NVIDIA)
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Asynchronous scheduling: CUDA graphs 

Challenge: 
lacking priority support
PME kernels not prioritized

Decom-
position

Non-bonded F

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

Capture work in inner loop 
to build CUDA graph

single-rank/ single GPU 
task graph

Codesign project with NVIDIA

Update graph after domain 
decom. / load balancing 
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Multi-GPU graph scheduling
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Asynchronous scheduling: CUDA graphs 

● multi-rank: leverage thread-MPI using pthreads for UVA 
direct async copies

1 PME GPU

2 PP GPUs

Generated with 
cudaGraphDebugDotPrint()

Codesign project with NVIDIA
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Multi-GPU graph scheduling
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● Inner loop compute + all 
intra-node communication 
with a single graph launch

– Reduced  overhead

– Allow the runtime to 
optimize schedule 

● Challenges / WIP:

– integrating CPU tasks 

– heterogeneous iterations

– inter-node 
communication

Graph launch 
for 10s-100s of 
iterations

Other F   ?

Codesign project with NVIDIA
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CUDA graph scheduling performance
Codesign project with NVIDIA
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SYCL for portability & performance

● SeRC & Intel: OneAPI CoE: Andrey Alekseenko (KTH)

● 1st GPU backend with DPC++ 

– early prototype released in GROMACS 2021

● added hipSYCL support as portability check first

● starting with the 2022 release:

GROMACS adopted hipSYCL for production AMD support 

● SYCL to replace OpenCL as portability GPU backend

– already broader feature set coverage

– broad vendor support: AMD, NVIDIA, Intel

Codesign project with Intel
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SYCL in GROMACS relative to native

AMD MI100

Codesign project with Intel

Intel DG1

Relative application perf 
and rel GPU kernels perf

Perf of individual GPU 
kernels

hipSYCL vs native HIP on 
ROCm 4.5.2

oneAPI/DPC++ on OpenCL/L0 vs 
native OpenCL
(oneAPI 2022.0 except L0 2021.4)
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Take-aways

● Codesign key for algorithm reformulation / redesign 

– enabled to keep up with hardware evolution

– need to be forward-looking

– disruptive vs constructive

● Long-term investment

● Interdisciplinarity helps but challenges too

● Collaboration needs long-term alignment

– much easier intra-team/community

– harder and often challenging cross-team

● Plan for the progress but allow for the incidental collaboration

– accommodating SW design will allow new domain-science contribution
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