
A two-step radiologist-like approach for
Covid-19 computer-aided diagnosis from chest

x-ray images

Carlo Alberto Barbano1[0000−0001−9512−0440], Enzo
Tartaglione1,2[0000−0003−4274−8298], Claudio Berzovini3, Marco Calandri1, and

Marco Grangetto1[0000−0002−2709−7864]?

1 University of Turin, Torino, Italy
{name.surname}@unito.it
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Abstract. Thanks to the rapid increase in computational capability
during the latest years, traditional and more explainable methods have
been gradually replaced by more complex deep-learning-based approaches,
which have in fact reached new state-of-the-art results for a variety of
tasks. However, for certain kinds of applications performance alone is not
enough. A prime example is represented by the medical field, in which
building trust between the physicians and the AI models is fundamental.
Providing an explainable or trustful model, however, is not a trivial task,
considering the black-box nature of deep-learning based methods. While
some existing methods, such as gradient or saliency maps, try to pro-
vide insights about the functioning of deep neural networks, they often
provide limited information with regards to clinical needs.

We propose a two-step diagnostic approach for the detection of Covid-19
infection from Chest X-Ray images. Our approach is designed to mimic
the diagnosis process of human radiologists: it detects objective radio-
logical findings in the lungs, which are then employed for making a final
Covid-19 diagnosis. We believe that this kind of structural explainabil-
ity can be preferable in this context. The proposed approach achieves
promising performance in Covid-19 detection, compatible with expert
human radiologists. Moreover, despite this work being focused Covid-
19, we believe that this approach could be employed for many different
CXR-based diagnosis.

Keywords: Deep Learning · Chest X-Ray · Radiological findings · Covid-
19.
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1 Introduction

Early Covid-19 diagnosis is a key element for proper treatment of the patients
and prevention of the spread of the disease. Given the high tropism of Covid-19
for respiratory airways and lung epythelium, identification of lung involvement
in infected patients can be relevant for treatment and monitoring of the dis-
ease. Virus testing is currently considered the only specific method of diagnosis.
The US Center for Disease Control (CDC) recommends collecting and testing
specimens from the upper respiratory tract (nasopharyngeal and oropharyn-
geal swabs) or from the lower respiratory tract when available (bronchoalveolar
lavage, BAL) for viral testing with reverse transcription polymerase chain reac-
tion (RT-PCR) assay ([1]). Testing on BAL samples provides higher accuracy,
however this test is unconfortable for the patient, possibly dangerous for the
operator due to aerosol emission during the procedure and cannot be performed
routinely. Nasopharingeal swabs are easily executable and affordable and cur-
rent standard in diagnostic setting; their accuracy in literature is influenced by
the severity of the disease and the time from symptoms onset and is reported
up to 73.3% [25]. Current position papers from radiological societies (Fleischner
Society, SIRM, RSNA) [1,10,16] do not recommend routine use of imaging for
Covid-19 diagnosis; however, it has been widely demonstrated that, even at early
stages of the disease, chest x-rays (CXR) can show pathological findings.
In the last year, many works attempted to tackle this problem, proposing deep
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Fig. 1: Comparison between standard approaches for Covid-19 diagnosis and
our proposed two-step method.

learning-based strategies [20,18,3,12,21]. All of the proposed approaches include
some elements in common:

– the images collected during the pandemic need to be augmented with non-
Covid cases from publicly available datasets;
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– some standard pre-processing is applied to the images, like lung segmentation
using U-Net [15] or similar models [20] or converting the pixels of the CXR
scan in Hounsfield units;

– the deep learning model is trained to predict the final diagnosis using state-
of-the-art approaches for deep neural networks.

Despite some very optimistic results [3,12,21,13,19], the proposed approaches
exhibit significant limitations that deserve further analysis. For example, a re-
cent work [20] showed that augmenting Covid-19 datasets with negative cases
from publicly-available datasets can inject dangerous biases, where the trained
model learn to discriminate different data sources rather than actual radiological
features related to the disease. These unwanted effects are difficult to spot when
using a black box model like deep neural networks, without having control on
the decision process.
In this work, we propose an explainable approach, mimicking the radiologists’
decision process. We break-down the Covid-19 diagnosis problem into two sep-
arate sub-problems. First, we train a model to detect anomalies in the lungs.
These anomalies are widely known and, following [6], they comprise 14 objective
radiological observations which can be found in lungs. Then, the employ this
information to train a decision tree model, such that the Covid-19 diagnosis is
fully explainable and grounded to objective radiological findings (Fig. 1). Mim-
icking the radiologist’s decision is more robust to biases and aims at building
trust for the physicians and patients towards the AI tool, which can be useful
for a more precise COVID diagnosis. Thanks to the collaboration with the radi-
ology units of Città della Salute e della Scienza di Torino (CDSS) and San Luigi
Hospital (SLG) in Turin, we collected the COvid Radiographic images DAta-set
for AI (CORDA), comprising both positive and negative COVID cases as well as
a ground truth on the human radiological reporting, and it currently comprises
almost 1000 CXRs.
The rest of the paper is structured as follows. Section 2 introduces and describes
the datasets used in this work; Section 3 discusses the possible radiological re-
ports, objective findings in the radiographies; Section 4 discusses the approach
thanks to, from the radiological reports generated, the COVID diagnosis is being
elaborated; Section 5 discusses the results achieved and finally Section 6 draws
the conclusions.

2 Datasets

In this section we introduce the datasets that we employed for building our
proposed method. As shown in recent works such as [20], augmenting COVID
datasets with negative cases from publicly-available datasets (such as ChestXRay
or RSNA) can drive the models towards spourious correlations, such as discrim-
inating only between healthy and unhealthy lung, or also be influenced by infor-
mation related to the image acquisition sites. This is why we focus on the recog-
nition of objective pathologies and radiological findings (CheXpert), which we
then use for training a model to elaborate the final Covid-19 diagnosis (CORDA).
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Fig. 2: Radiological findings provided by CheXpert, conforming to the
medical known categorization [6].

We now provide a short description of the main datasets, additional information
can be found in the supplementary material.

CheXpert. This is a large dataset comprising about 224k CXRs. This dataset
consists of 14 different observations on the radiographic image: differently from
many other datasets which are focused on disease classification based on clin-
ical diagnosis, the main focus here is “chest radiograph interpretation”, where
anomalies are detected [9]. The learnable radiological findings are summarized
in Fig. 2.
ChestXRay. This dataset contains 5857 X-ray images collected at the Guangzhou
Women and Children’s Medical Center, Guangzhou, China. In this dataset, three
different labels are provided: normal patients (1583), patients affected by bacte-
rial pneumonia (2780) and affected by viral pneumonia (1493). This dataset is
granted under CC by 4.0 and is part of a work on Optical Coherence Tomogra-
phy [11].4

RSNA. Developed for the RSNA Pneumonia Detection Challenge, this dataset
contains pneumonia cases found in the NIH Chest X-ray dataset [22]. It com-
prises 20672 normal CXR scans and 6012 pneumonia cases, for a total of 26684

4 https://data.mendeley.com/datasets/rscbjbr9sj/2/files/

f12eaf6d-6023-432f-acc9-80c9d7393433

https://data.mendeley.com/datasets/rscbjbr9sj/2/files/f12eaf6d-6023-432f-acc9-80c9d7393433
https://data.mendeley.com/datasets/rscbjbr9sj/2/files/f12eaf6d-6023-432f-acc9-80c9d7393433
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images.5

CORDA. This dataset was created for this study by retrospectively selecting
chest x-rays performed at a dedicated Radiology Unit in CDSS and at SLG
in all patients with fever or respiratory symptoms (cough, shortness of breath,
dyspnea) that underwent nasopharingeal swab to rule out COVID-19 infection.
Patients’ average age is 61 years (range 17-97 years old). It contains a total of
898 CXRs and can be split by different collecting institution into two similarly
sized subgroups: CORDA-CDSS, which contains a total of 447 CXRs from 386
patients, with 150 images coming from COVID-negative patients and 297 from
positive ones, and CORDA-SLG, which contains the remaining 451 CXRs, with
129 COVID-positive and 322 COVID-negative images. Including data from dif-
ferent hospitals at test time is crucial to doublecheck the generalization capability
of our model.

The data collection is still in progress, with other 5 hospitals in Italy willing
to contribute at time of writing. We plan to make CORDA available for research
purposes according to EU regulations as soon as possible.

3 Radiological report

Fig. 3: Radiological report framework. After the convolutional encoder ex-
tracts features from the CXR, the Hierarchical Classifier provides outcome for
the different lung pathologies.

In this section we describe our proposed method for detecting and classify-
ing radiological findings from CXRs. For this task, we leverage the large scale

5 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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dataset CheXpert, which contains annotation for different kinds of common ra-
diological findings that can be observed in CXR images (like opacity, pleural
effusion, cardiomegaly, etc.). Given the high heterogeneity and the large size of
CheXpert, its use is perfect for our purposes: in fact, once the model is trained
on this dataset, there is no need to fine-tune it for the Covid-19 diagnosis, since
it will already extract objective radiological findings.
CheXpert provides 14 different types of observations for each image in the
dataset. For each class, the labels have been generated from radiology reports
associated with the studies with NLP techniques, conforming to the Fleischner
Society’s recommended glossary [6], and marked as: negative (N), positive (P),
uncertain (U) or blank (N/A). Following the relationship among labels illus-
trated in Fig. 2, as proposed by [9], we can identify 8 top-level pathologies and
6 child ones.

3.1 Architecture

As the backbone of our model, we use the widely known ResNet [7] and DenseNet [4]
convolutional architecture. The encoder is followed by a fully connected classi-
fier. The classifier architecture that we design reflects the hierarchy of the dif-
ferent lung pathologies presented in Fig. 2. As shown in Fig. 3, the classifier
is constructed by stacking two fully-connected layers, and makes use of con-
nectivity patterns similar to “dense connections” as proposed by [8]. The first
fully-connected layer (FC1 ) is used to classify the 8 top-level classes from the
extracted features. Output logits from FC1 are then concatenated with the ex-
tracted image features, and the second fully-connected layer (FC2 ) is used to
predict the remaining 6 children pathologies. Finally, the logits from FC1 and
FC2 are concatenated, and a final sigmoid layer is used to obtain the probability
for each class. We call this architecture Hierarchical Classifier (HC).

3.2 Dealing with uncertain labels

In order to extract the radiological findings from CXRs, a deep learning model
is trained on the 14 observations. For this purpose, given the possibility of hav-
ing multiple findings in the same CXR, we employ the weighted binary cross
entropy loss for training the model. Typically, weights are used to compensate
class unbalancing, giving higher importance to less represented classes. Within
CheXpert, however, we also need to tackle another issue: how to treat the samples
with the U label. Towards this issue, multiple approaches have been suggested
by [9]. The most popular is to just ignore all the uncertain samples, excluding
them from the training process and considering them as N/A.
We propose to include the U samples in the learning process, mapping them
to the maximum uncertainty (probability 0.5 to be P or N). Then, we assign a
weight to the P and N outcomes:

wn =


1 + S+

n /S−n if yn = 0

1 + S−n /S+
n if yn = 1

1 if yn = 0.5

(1)
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where S−n and S+
n respectively represent the cardinality of negative and positive

samples for the n-th class. These weights are then plugged in the weighted loss
entropy loss to be minimized:

Ln = −wn · [yn log(xn) + (1− yn) log(1− xn)] (2)

Hence, uncertain samples will have a lower influence during the training process,
while being pushed either towards 0 or 1 by the higher weight certain samples
in the same class. All of the remaining blank labels are ignored when computing
the BCE loss, considering them as missing labels.
Table 1 shows a performance comparison between the standard approach as
proposed by [9] and our proposal (U-label use), for 5 salient radiological findings,
using the same setting as in [9]. We observe an overall improvement in the
performance, which is expected by the inclusion of the U-labeled examples. For
all our experiments, we will use models trained using the U labeled samples.

Table 1: Performance (AUC) for a DenseNet-121 trained on CheXpert.

Method Atelectasis Cardiomegaly Consolidation Edema Pleural Eff.

Baseline [9] 0.79 0.81 0.90 0.91 0.92
U-label 0.83 0.79 0.93 0.93 0.93

4 COVID diagnosis

The second step of the proposed approach is building the model which can ac-
tually provide a clinical diagnosis for COVID. We freeze the model obtained
from Sec. 3 and use its output as input features to train a new binary classifier
on the CORDA dataset. We test two different types of classifiers: a decision
tree (Tree) and a two-layers fully-connected classifier (FC). The decision tree is
trained on the probabilities output of the radiological reports, using the stan-
dard CART Algorithm implementation provided by the Python scikit-learn [14]
package. The fully-connected classifier, comprising one hidden layer of size 512
and the output layer, is instead trained on the encoder latent space. The reason
is that training it on the output probabilities would result in a loss of explain-
ability compared to the decision tree, hence it makes more sense to maximize
the achievable performance by training on the full latent space as discussed in
Sec.5.

5 Experiments

In this section we compare the COVID diagnosis generalization capability through
a direct deep learning-based approach (baseline) and our proposed two-step di-
agnosis, where first we detect the radiological findings, and then we discriminate
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Table 2: Results for COVID diagnosis. Abbreviations: ResNet-18 (RN-18),
DenseNet-121 (DN-121), Pretrain dataset (Pretrain), Chest X-Ray (CXR),
CheXpert (ChXp), Train dataset (Train), CORDA-CDSS (CDSS), CORDA-
SLG (SLG). We denote fully-explainable methods with †.

Method Baseline [20] Two-step

Backbone RN-18 RN-18 RN-18 RN-18 DN-121 DN-121 DN-121

Classifier FC FC FC FC FC Tree† FC
Pretrain - RSNA CXR ChXp ChXp

Train CDSS CDSS SLG

Sensitivity 0.56 0.54 0.54 0.69 0.72 0.77 0.79
Specificity 0.58 0.80 0.58 0.73 0.78 0.60 0.82

BA 0.57 0.67 0.56 0.71 0.75 0.68 0.81
AUC 0.59 0.72 0.67 0.76 0.81 0.70 0.84

patients affected by COVID using a decision tree-based diagnosis (Tree) or a
deep learning-based classifier from the radiological findings (FC). The perfor-
mance is tested on a subset of patients not included in the training / validation
set. The assessed metrics are: balanced accuracy (BA), sensitivity, specificity
and area under the ROC curve (AUC). For all of the methods we adopt a 70%-
30% train-test split. For the deep learning-based strategy, SGD is used with a
learning rate 0.01 and a weight decay of 10−5. All of the experiments were run
on NVIDIA Tesla T4 GPUs using PyTorch 1.4.6

Table 2 compares the standard deep learning-based approach [20] to our two-
step diagnosis. Baseline results are obtained pre-training the model on some of
the most used publicly-available datasets. We observe that the best achievable
performance is very low, consisting in a BA of 0.67. A key takeaway is that trying
to directly diagnose diseases such as COVID-19 from CXRs might be currently
infeasible, probably given the small dataset sizes and strong selective bias in the
datasets. We can clearly see how the two-step method outperforms the direct
diagnosis: using the same network architecture (ResNet-18 as backbone and a
fully-connected classifier on top of it), we obtain a significant increase in all of
the assessed metrics. Even better results are achieved by using a DenseNet-121
as backbone and the fully-connected classifier.
Focusing on the fully-explainable decision tree method, we found that a max-
imum depth of 4 gave the best results in terms of model complexity and gen-
eralization ability. Fig. 4 graphically shows the learned decision tree (whose
performance is shown in Table 2): this provides a very clear interpretation for
the decision process. From the clinical and radiological perspective, these data
are consistent with the COVID-19 CXR semiotics that radiologists are used to
deal with. The edema feature, although unspecific, is strictly related to the inter-
stitial involvement that is typical of COVID-19 infections and it has been largely

6 The source code is available at https://github.com/EIDOSlab/covid-two-step.

https://github.com/EIDOSlab/covid-two-step.
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Fig. 4: Decision Tree obtained for COVID-19 classification based on the proba-
bilities for the 14 classes of findings.
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reported in the recent literature [5]. Indeed, in recent COVID-19 radiological pa-
pers, interstitial involvement has been reported as ground glass opacity appear-
ance [24]. However this definition is more pertinent to the CT imaging setting
rather than CXR; the “edema” feature can be compatible, from the radiologi-
cal perspective, to the interstitial opacity of COVID-19 patients. Furthermore,
the not irrelevant role of cardiomegaly (or more in general enlarged cardiome-
diastinum) in the decision tree can be interesting from the clinical perspective.
In fact, this can be read as an additional proof that established cardiovascular
disease can be a relevant risk factor to develop COVID-19 [2]. Moreover, it may
be consistent with the hypotheses of a larger role of the primary cardiovascular
damage observed on on preliminary data of autopsies of COVID-19 patients [23].

Fig. 5: GradCAM on COVID-positive images obtained from Densenet121+FC.

Although it is true that with the deep learning-based approach we observe a
boost in the performance (BA of 0.75 with DN-121+FC vs 0.68 with Tree), this
is the result of a trade-off between interpretability and discriminative power.
Using Grad-CAM [17] we have hints on the area the model focused on to take
the final diagnostic decision. From Fig. 5 we observe that on COVID-positive
images, the model seems to mostly focus on the expected lung areas. However
this kind of interpretability provides very limited insights when compared to the
clinical-based explanation given by our decision tree.
Finally, to further test the reliability of our approach, we used our strategy also
on CORDA-SLG (which are data coming from a different hospital structure),
reaching comparable and encouraging results.

6 Conclusions

One of the latest challenges for both the clinical and the AI community has been
applying deep learning in diagnosing COVID from CXRs. Recent works sug-
gested the possibility of successfully tackling this problem, despite the currently
small quantity of publicly available data. In this work we propose a multi-step
approach, close to the physicians’ diagnostic process, in which the final diag-
nosis is based upon detected lung pathologies. We performed our experiments
on CORDA, a COVID-19 CXR dataset comprising approximately 1000 images.
All of our experiments have been carried out bearing in mind that, especially
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for clinical applications, explainability plays a major role for building trust in
machine learning algorithms, although better interpretability can come at the
cost of a lower prediction accuracy.
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