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In fields such as medicine and drug discovery, the ultimate goal of a
classification is not to guess a class, but to choose the optimal course of action
among a set of possible ones, usually not in one-one correspondence with the
set of classes. This decision-theoretic problem requires sensible probabilities
for the classes. Probabilities conditional on the features are computationally
almost impossible to find in many important cases. The main idea of the
present work is to calculate probabilities conditional not on the features, but
on the trained classifier’s output. This calculation is cheap, needs to be made
only once, and provides an output-to-probability ‘transducer’ that can be
applied to all future outputs of the classifier. In conjunction with problem-
dependent utilities, the probabilities of the transducer allow us to find the
optimal choice among the classes or among a set of more general decisions,
by means of expected-utility maximization. This idea is demonstrated in a
simplified drug-discovery problem with a highly imbalanced dataset. The
transducer and utility maximization together always lead to improved results,
sometimes close to theoretical maximum, for all sets of problem-dependent
utilities. The one-time-only calculation of the transducer also provides,
automatically: (i) a quantification of the uncertainty about the transducer
itself; (ii) the expected utility of the augmented algorithm (including its
uncertainty), which can be used for algorithm selection; (iii) the possibility
of using the algorithm in a ‘generative mode’, useful if the training dataset
is biased.
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1 The inadequacy of common classification approaches

As the potential of using machine-learning algorithms in important
fields such as medicine or drug discovery increases1, the machine-
learning community ought to keep in mind what the actual needs and
inference contexts in such fields are. We must avoid trying (intentionally
or unintentionally) to convince such fields to change their needs, or to
ignore their own contexts just to fit machine-learning solutions that are
available and fashionable at the moment. Rather, we must make sure the
that solutions fit needs & context, and amend them if they do not.

The machine-learning mindset and approach to problems such as
classification in such new important fields is often still inadequate in
many respects. It reflects simpler needs and contexts of many inference
problems successfully tackled by machine learning earlier on.

A stereotypical ‘cat vs dog’ image classification, for instance, has
four very important differences from a ‘disease I vs disease II’ medical
classification, or from an ‘active vs inactive’ drug classification:

(i) Nobody presumably dies or loses large amounts of money if a
cat image is misclassified as dog or vice versa. But a person can
die if a disease is misdiagnosed; huge capitals can be lost if an
ultimately ineffective drug candidate is pursued. The gains and

losses – or generally speaking the utilities – of correct and incorrect
classifications in the former problem and in the two latter problems
are vastly different.

(ii) To what purpose do we try to guess whether an image’s subject is a
cat or a dog? For example because we must decide whether to put
it in the folder ‘cats’ or in the folder ‘dogs’. To what purpose do we
try to guess a patient’s disease or a compound’s chemical activity?
A clinician does not simply tell a patient “You probably have
such-and-such disease. Goodbye!”, but has to decide among many
different kinds of treatments. The candidate drug compound may
be discarded, pursued as it is, modified, and so on. The ultimate goal

of a classification is always some kind of decision, not just a class guess. In
the cat-vs-dog problem there is a natural one-one correspondence
between classes and decisions. But in the medical or drug-discovery

1 Lundervold & Lundervold 2019; Chen et al. 2018; Green 2019.
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problems the set of classes and the set of decisions are very different, and
have even different numbers of elements.

(iii) If there is a 70% probability that an image’s subject is a cat, then it is
natural to put it in the folder ‘cats’ rather than ‘dogs’ (if the decision
is only between these two folders). If there is a 70% probability
that a patient has a particular health condition, it may nonetheless
be better to dismiss the patient – that is, to behave as if there was
no condition. This is the optimal decision, for example, when the
only available treatment for the condition would severely harm the
patient if the condition were not present. Such treatment would be
recommended only if the probability for the condition were much
higher than 70%. Similarly, even if there is a 70% probability that a
candidate drug is active it may nonetheless be best to discard it. This
is the economically most advantageous choice if pursuing a false-
positive leads to large economic losses. The target of a classification is

not what’s most probable, but what’s optimal.

(iv) The relation from image pixels to house-pet subject may be almost
deterministic; so we are effectively looking for or extrapolating a
function pet= 𝑓 (pixels) contaminated by little noise. But the relation
between medical-test scores or biochemical features on one side,
and disease or drug activity on the other, is typically probabilistic;
so a function disease = 𝑓 (scores) or activity = 𝑓 (features) does not
even exist. We are assessing statistical relationships P(disease, scores)
or P(activity, features) instead, which include deterministic ones as
special cases.

In summary, there is place to improve classifiers so as to (i) quantitat-
ively take into account actual utilities, (ii) separate classes from decisions,
(iii) target optimality rather than ‘truth’, (iv) output and use proper
probabilities.

In artificial intelligence and machine learning it is known how to
address all these issues in principle – the theoretical framework is for
example beautifully presented in the first 18 chapters or so of Russell &
Norvig’s 2022 text2.

Issues (i)–(iii) are simply solved by adopting the standpoint of Decision

Theory, which we briefly review in § 3 below and discuss at length in a

2 see also Self & Cheeseman 1987; Cheeseman 1988; 2018; Pearl 1988; MacKay 2005.
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companion work3. In short: The set of decisions and the set of classes
pertinent to a problem are separated if necessary. A utility is associated
to each decision, relative to the occurrence of each particular class; these
utilities are assembled into a utility matrix: one row per decision, one
column per class. This matrix is multiplied by a column vector consisting
in the probability for the classes. The resulting vector of numbers contains
the expected utility of each decision. Finally we select the decision having
maximal expected utility, according to the principle bearing this name.
Such procedure also takes care of the class imbalance problem4.

Clearly this procedure is computationally inexpensive and ridicu-
lously easy to implement in any machine-learning classifier. The difficulty
is that this procedure requires sensible probabilities5 for the classes, which
brings us to issue (iv), the most difficult.

Some machine-learning algorithms for classification, such as support-
vector machines, output only a class label. Others, such as deep networks,
output a set of real numbers that can bear some qualitative relation to
the plausibilities of the classes. But these numbers cannot be reliably in-
terpreted as proper probabilities, that is, as the degrees of belief assigned
to the classes by a rational agent6; or, in terms of ‘populations’7, as the
expected frequencies of the classes in the hypothetical population of units
(degrees of belief and frequencies being related by de Finetti’s theorem8).
Algorithms that internally do perform probabilistic calculations, for
instance naive-Bayes or logistic-regression classifiers9, unfortunately rest
on strong probabilistic assumptions, such as independence and particular
shapes of distributions, that are often unrealistic (and their consistency
with the specific application is rarely checked). Only particular classifiers
such as Bayesian neural networks10 output sensible probabilities, but
they are computationally very expensive. The stumbling block is the
extremely high dimensionality of the feature space, which makes the
calculation of the conditional probabilities

P(class, feature | training data)

3 Dyrland et al. 2022a. 4 cf. the analysis by Drummond & Holte 2005 (they use the term
‘cost’ instead of ‘utility’). 5 “credibilities [that] would be agreed by all rational men if
there were any rational men” Good 1966. 6 MacKay 1992a; Gal & Ghahramani 2016;
Russell & Norvig 2022 chs 2, 12, 13. 7 Lindley & Novick 1981. 8 Bernardo & Smith
2000 ch. 4; Dawid 2013. 9 Murphy 2012 § 3.5, ch. 8; Bishop 2006 §§ 8.2, 4.3; Barber 2020
ch. 10, § 17.4. 10 Neal & Zhang 2006; Bishop 2006 § 5.7.
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(a problem opaquely called ‘density regression’ or ‘density estimation’11)
computationally unfeasible.

If we solved the issue of outputting proper probabilities then the
remaining three issues would be easy to solve, as discussed above.

In the present work we propose an alternative solution to calculate
proper class probabilities, which can then be used in conjunction with
utilities to perform the final classification or decision.

This solution consists in a sort of ‘transducer’ that transforms the
algorithm’s raw output into a probability. This probability transducer has
a low computational cost, can be applied to all commonly used classifiers
and to simple regression algorithms, does not need any changes in
algorithm architecture or in training procedures, and is grounded on
first principles. The probability obtained from the transducer can be
combined with utilities to perform the final classification or decision task.
Notably, the set of available decisions and their utilities can be changed on

the fly, for each new classification instance.
This probability transducer also has three other great benefits, which

come automatically with its computation. First, it gives a quantification
of how much the probability would change if we had further data to
calculate the transducer. Second, it can give an evaluation of the whole

classifier – including an uncertainty about such evaluation – that allows
us to compare it with other classifiers and choose the optimal one. Third,
it allows us to calculate both the probability of class conditional on
features, and the probability of features conditional on class. In other words
it allows us to use the classification algorithm in both ‘discriminative’
and ‘generative’ modes12, even if the algorithm was not designed for a
generative use.

In § 2 we present the general idea behind the probability transducer
and its calculation. Its combination with the rule of expected-utility
maximization to perform classification is discussed in § 3; we call this
combined use the ‘augmentation’ of a classifier.

In § 4 we demonstrate the implementation, use, and benefits of clas-
sifier augmentation in a concrete drug-discovery classification problem
and dataset, with a random forest and a convolutional neural network
classifiers.
11 Ferguson 1983; Thorburn 1986; Hjort 1996; Dunson et al. 2007. 12 Russell & Norvig
2022 § 21.2.3; Murphy 2012 § 8.6.

5



Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Section 5 offers a synopsis of further benefits and uses of the prob-
ability transducer, which are obtained almost automatically from its
calculation.

Finally, we give a summary and discussion in § 6, including some
teasers of further applications to be discussed in future work.

2 An output-to-probability transducer

2.1 Main idea: algorithm output as a proxy for the features

Let us first consider the essentials behind a classification (or regression)
problem. We have the following quantities:

• the feature values of a set of known units,
• the classes of the same set of units,

which together form our learning or training data; and
• the feature value of a new unit,

where the ‘units’ could be widgets, images, patients, drug compounds,
and so on, depending on the classification problem. From these quantities
we would like to infer

• the class of the new unit.
This inference consists in probabilities

P(class of new unit | feature of new unit, classes & features of known units)
(1)

for each possible class.
These probabilities are obtained through the rules of the probability

calculus13; in this case specifically through the so-called de Finetti
theorem14 which connects training data and new unit. This theorem is
briefly summarized in appendix B.1.

Combined with a set of utilities, these probabilities allow us to determ-
ine an optimal, further decision to be made among a set of alternatives.
Note that the inference (1) includes deterministic interpolation, i.e. the
assessment of a function class= 𝑓 (feature), as a special case, when the
probabilities are essentially 0s and 1s.

13 Jaynes 2003; Russell & Norvig 2022 chs 12–13; Gregory 2005; Hailperin 2011; Jeffreys
1983:see further references in appendix B. 14 Bernardo & Smith 2000 ch. 4; Dawid 2013.
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A trained classifier should ideally output the probabilities above
when applied to the new unit. Machine-learning classifiers trade this
capability for computational speed – with an increase in the latter of
several orders of magnitude15. Thus their output cannot be considered
a probability, but it still carries information about both class and feature

variables.
Our first step is to acknowledge that the information contained in

the feature and in the training data, relevant to the class of the new unit,
is simply inaccessible to us because of computational limitations. We do
have access to the output for the new unit, however, which does carry
relevant information. Thus what we can do is to calculate the probability

P(class of new unit | output for new unit) (2)

for each class.
Once we calculate the numerical values of these conditional probab-

ilities, we effectively have a function that maps the algorithm’s output to
class probabilities. It therefore acts as an output-to-probability transducer.

This idea can also be informally understood in two ways. First: the
classifier’s output is regarded as a proxy for the feature. Second: the
classifier is regarded as something analogous to a diagnostic test, such
as any common diagnostic or prognostic test used in medicine for
example. A diagnostic test is useful because its result has a probabilistic
relationship with the unknown of interest, say, a medical condition. This
relationship is easier to quantify than the one between the condition
and the more complex biological variables that the test is exploiting
‘under the hood’. Likewise, the output of a classifier has a probabilistic
relationship with the unknown class (owing to the training process); and
this relationship is in many cases easier to quantify than the one between
the class and the typically complex ‘features’ that are the classifier’s
input. We do not take diagnostic-test results at face value – if a flu test
is ‘positive’ we do not conclude that the patient has the flu – but rather
arrive at a probability that the patient has the flu, given some statistics
about results of tests performed on verified samples of true-positive and
true-negative patients16. Analogously, we need some calibration data to
find the probabilities (2).
15 to understand this trade-off in the case of neural-network classifiers see e.g. MacKay
1992b,c,a; Murphy 2012 § 16.5 esp. 16.5.7; see also the discussion by Self & Cheeseman
1987. 16 Sox et al. 2013 ch. 5; Hunink et al. 2014 ch. 5; see also Jenny et al. 2018.
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2.2 Calibration data

To calculate the conditional probabilities (2) it is necessary to have
examples of further pairs (class of unit, output for unit), of which the new
unit’s pair can be considered a ‘representative sample’17 and vice versa –
exactly for the same reason why we need training data in the first place
to calculate the probability of a class given the feature. Or, with a more
precise term, the examples and the new unit must be exchangeable18.

For this purpose, can we use the pairs (class of unit, output for unit) of
the training data? This would be very convenient, as those pairs are
readily available. But answer is no. The reason is that the outputs of
the training data are produced from the features and the classes jointly;
this is the very point of the training phase. There is therefore a direct
informational dependence between the classes and the outputs of the
training data. For the new unit, on the other hand, the classifier produces
its output from the feature alone. As regards the probabilistic relation between

class and output, the new unit is not exchangeable with (or a representative

sample of) the training data.
We need a data set where the outputs are generated by simple

application of the algorithm to the feature, as it would occur in its
concrete use, and the classes are known. The test data of standard
machine-learning procedures are exactly what we need. The new unit
can be considered exchangeable with the test data. We rename such data
‘transducer-calibration data’, owing to its new purpose.

The probability we want to calculate is therefore

P(class of new unit | output for new unit, classes & outputs of calibr. data) .
(3)

For classification algorithms that output a quantity much simpler than
the features, like a vector of few real components for instance, the
probability above can be exactly calculated. Thus, once we obtain the
classifier’s output for the new unit, we can calculate a probability for the
new unit’s class.

The probability values (4), for a fixed class and variable output, con-
stitute a sort of ‘calibration curve’ (or hypersurface for multidimensional
outputs) of the output-to-probability transducer for the classifier. See
the concrete examples of figs 1 on page 16, and 2 on page 18. It must be
17 for a critical analysis of the sometimes hollow term ‘representative sample’ see Kruskal
& Mosteller 1979a,b,c; 1980. 18 Lindley & Novick 1981.
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stressed that such curve needs to be calculated only once, and it can be
used for all further applications of the classifier to new units.

What is the relation between the ideal incomputable probability (1)
and the probability (4) obtained by proxy? If the output 𝑦 of the classifier
is already very close to the ideal probability (1), or a monotonic function
thereof, isn’t the proxy probability (4) throwing it away and replacing
it with something different? Quite the opposite. Owing to de Finetti’s
theorem, if the output 𝑦 is almost identical with the ideal probability,
then it becomes increasingly close to the frequency distribution of the
training data, as their number increases (see appendix B.1); the same
happens with the proxy probability and the frequency distribution of
the calibration data. But these two data sets should be representative of
each other and of future data – otherwise we would be ‘learning’ from
irrelevant data – and therefore their frequency distributions should also
converge to each other. Consequently, by transitivity we expect the proxy
probability to become increasingly close to the output 𝑦. Actually, if the
output is not exactly the ideal probability (1) but a monotonic function
of it, the proxy probability (4) will reverse such monotonic relationship,
giving us back the ideal probability.

Obviously all these considerations only hold if we have good training
and calibration sets, exchangeable with (representative of) the real data
that will occur in our application.

Since we are using as calibration data the data traditionally set aside
as ‘test data’ instead, an important question arises. Do we then need a
third, separate test dataset for the final evaluation and comparison of
candidate classifiers or hyperparameters? This would be inconvenient: it
would reduce the amount of data available for training.

The answer is no: the calibration set automatically also acts as a test set.
In fact, from the calculations for the probability transducer, discussed
in the next section, we can also arrive at a final evaluation value for the
algorithm as a whole. See § 5.2 and appendix B.5 for more details about
this.

It may be useful to explain why this is the case, especially for those
who may mistakenly take for granted the universal necessity of a test set.
Many standard machine-learning methodologies need a test set because
they are only an approximation of the ideal inference performed with
the probability calculus. The latter needs no division of available data

9
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into different sets: something analogous to such division is automatically
made internally, so to speak (see appendix B.1). It can be shown19 that
the mathematical operations behind the probability rules correspond
to making all possible divisions of available data between ‘training’ and
‘test’, as well as all possible cross-validations with folds of all orders. It is
this completeness and thoroughness that makes the ideal inference by
means of the probability calculus almost computationally impossible in
some cases. We thus resort to approximate but faster machine-learning
methods. These methods do not typically perform such data partitions
‘internally’ and automatically, so we need to make them – and only
approximately – by hand.

Let us stress that the performance of a classifier equipped with a
probability transducer still depends on the training of the raw classifier,
which is the stage where a probabilistic relation between output and
class is established. If the classifier’s output has no mutual information
with the true class (their probabilities are essentially independent), then
the transducer will simply yield a uniform probability over the classes.

The question then arises of what is the optimal division of available
data into the training set and the calibration set. If the calibration set
is too small, the transducer curve is unreliable. If the training set is
too small, the correlation between output and class is unreliable. In
future work we would like to find the optimal balance, possibly by a
first-principle calculation.

2.3 Calculation of the probabilities

Let us denote by 𝑐 the class value of a new unit, by 𝑦 the output of the
classifier for the new unit, and by 𝐷 := {𝑐𝑖 , 𝑦𝑖} the classes and classifier
outputs for the transducer-calibration data.

It is more convenient to focus on the joint probability of class and
output given the data,

p(𝑐, 𝑦 | 𝐷) , (4)

rather than on the conditional probability of the class given the output
and calibration data, (4).

19 Porta Mana 2019; Fong & Holmes 2020; Wald 1949; many examples of this fact are
scattered across the text by Jaynes 2003.
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The joint probability is calculated using standard non-parametric
Bayesian methods20. ‘Non-parametric’ in this case means that we do
not make any assumptions about the shape of the probability curve as
a function of 𝑐, 𝑦 (contrast this with logistic regression, for instance),
or about special independence between the variables (contrast this
with naive-Bayes). The only assumption made – and we believe it is
quite realistic – is that the curve must have some minimal degree of
smoothness. This assumption allows for much leeway, however: figs 1
and 3 for instance show that the probability curve can still have very
sharp bends, as long as they are not cusps.

Non-parametric methods differ from one another in the kind of
‘coordinate system’ they select on the infinite-dimensional space of all
possible probability curves, that is, in the way they represent a general
positive normalized function.

We choose the representation discussed by Dunson & Bhattacharya21.
The end result of interest in the present section is that the probability
density 𝑝(𝑐, 𝑦 | 𝐷), with 𝑐 discrete and 𝑦 continuous and possibly multi-
dimensional, is expressed as a sum

𝑝(𝑐, 𝑦 | 𝐷) =
∑
𝑘

𝑞𝑘 𝐴(𝑐 | α𝑘) 𝐵(𝑦 | β𝑘) (5)

of a finite but large number of terms22. Each term is the product of a
positive weight 𝑞𝑘 , a probability distribution 𝐴(𝑐 | α𝑘) for 𝑐 depending
on parameters α𝑘 , and a probability density 𝐵(𝑐 | β𝑘) for 𝑦 depending
on parameters β𝑘 . These distributions are chosen by us according to
convenience; see the appendix B.1 for further details. The parameter
values can be different from term to term, as indicated by the index
𝑘. The weights {𝑞𝑘} are normalized. For simplicity we shall from now
on omit the dependence ‘ | . . . , 𝐷)’ on the calibration data, leaving it
implicitly understood.

This mathematical representation can approximate (under some
norm) any smooth probability density in 𝑐 and 𝑦. It has the advantages
of being automatically positive and normalized, and of readily producing

20 for introductions and reviews see e.g. Walker 2013; Müller & Quintana 2004; Hjort 1996.
21 Dunson & Bhattacharya 2011; see also the special case discussed by Rasmussen 1999.
22 see Ishwaran & Zarepour 2002 on why the number of terms does not need to be infinite.
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the marginal distributions for 𝑐 and for 𝑦:

𝑝(𝑐) =
∑
𝑘

𝑞𝑘 𝐴(𝑐 | α𝑘) , 𝑝(𝑦) =
∑
𝑘

𝑞𝑘 𝐵(𝑦 | β𝑘) , (6)

from which also the conditional distributions are easily obtained:

𝑝(𝑐 | 𝑦) =
∑
𝑘

𝑞𝑘 𝐵(𝑦 | β𝑘)∑
𝑙 𝑞𝑙 𝐵(𝑦 | β𝑙)

𝐴(𝑐 | α𝑘) (7a)

𝑝(𝑦 | 𝑐) =
∑
𝑘

𝑞𝑘 𝐴(𝑐 | α𝑘)∑
𝑙 𝑞𝑙 𝐴(𝑐 | α𝑙)

𝐵(𝑦 | β𝑘) . (7b)

In the rest of the paper we shall use formula (7a), the probability of the
class given the algorithm’s output, as typically done with discriminative
algorithms.

The weights and parameters {𝑞𝑘 ,α𝑘 ,β𝑘} are the heart of this repres-
entation, because the shape of the probability curve 𝑝(𝑐 | 𝑦, 𝐷) depends
on their values. They are determined by the test data 𝐷. Their calcu-
lation is done via Markov-chain Monte Carlo sampling, discussed in
appendix B.3. For low-dimensional 𝑦 and discrete 𝑐 (or even continuous,
low-dimensional 𝑐, which means we are working with a regression
algorithm), this calculation can be done in a matter of hours, and it only

needs to be done once.
Once calculated, these parameters are saved in memory and can

be used to compute any of the probabilities (5), (6), (7) as needed, as
discussed in the next subsection. Such computations take less than a
second.

Note that the role of the classifier in this calculation is simply to
produce the outputs 𝑦 for the calibration data, after having been trained
in any standard way on a training data set. No changes in its architecture
or in its training procedure have been made, nor are any required.

3 Utility-based classification

We refer to our companion work Dyrland et al. 2022a, § 2, for a more de-
tailed presentation of decision theory and for references. In the following
we assume familiarity with the material presented there.

Our classification or decision problem has a set of decisions, which
we can index by 𝑖 = 1, 2, . . . . As discussed in § 1, these need not be

12
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the same as the possible classes; the two sets may even be different in
number. But the true class, which is unknown, determines the utility

that a decision yields. If we choose decision 𝑖 and the class 𝑐 is true,
our eventual utility will be 𝑈𝑖𝑐 .23 These utilities are assembled into a
rectangular matrix (𝑈𝑖𝑐) with one row per decision and one column per
class. Note that the case where decisions and classes are in a natural
one-one correspondence, as in the cat-vs-dog classification example of
§ 1, is just a particular case of this more general point of view. In such
a specific case we may replace ‘decision’ with ‘class’ in the following
discussion, and the utility matrix is square.

Now let us consider the application of the algorithm, with the
probabilities calculated in the preceding section, to a new unit.

1. Fed the unit’s features to the classifier, which outputs the real value
𝑦.

2. Calculate 𝑝(𝑐 | 𝑦), for each value of 𝑐, from formula (7a), using
the parameters {𝑞𝑘 ,α𝑘 ,β𝑘} stored in memory. These are the prob-
abilities of the classes, which are collected in a column vector
(𝑝𝑐).

3. The expected utility �̄�𝑖 of decision 𝑖 is given by the matrix product
of an appropriate utility matrix (𝑈𝑖𝑐) and the column vector (𝑝𝑐):

�̄�𝑖 :=
∑
𝑐

𝑈𝑖𝑐 𝑝𝑐 . (8)

4. Choose the decision 𝑖∗ having largest �̄�𝑖 , according to the principle
of maximum expected utility:

choose 𝑖∗ = arg max
𝑖

{
�̄�𝑖

}
≡ arg max

𝑖

{∑
𝑐

𝑈𝑖𝑐 𝑝𝑐

}
(9)

We call the procedure above, especially steps 2.–4., the augmentation

of the classifier.
In step 2. we have effectively translated the classifier’s raw output

into a more sensible probability. From this point of view the function

23 We apologize for the difference in notation from our companion work, where the class
variable is ‘𝑗’ and the utilities ‘𝑈𝑖 𝑗 ’
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𝑝(𝑐 | 𝑦) can be considered as a more appropriate substitute of the softmax
function, for instance, at the output of a neural network (compare fig. 2).

The matrix multiplication of and subsequent selection of steps 3.–4.
are computationally inexpensive; they can be considered as substitutes
of the ‘argmax’ selection that typically happen at the continuous output
of a classifier.

It should be noted that the utilities𝑈𝑖𝑐 used in step 3. can either be the
same for each new unit, or different from unit to unit. The augmentation
procedure is therefore extremely flexible, at no additional computational
cost.

4 Demonstration

4.1 Overview

We illustrate the implementation of the probability transducer and its
combination with utility-based decisions in a concrete example. The
evaluation of the results is also made from the standpoint of decision
theory, using utility-based metrics, as explained in our companion
paper24.

A couple of remarks may clarify the purpose of this illustration and
our choice of classification problem.

The internal consistency of decision theory guarantees that utility-
based decisions always improve on, or at least give as good results as,
any other procedure, including the standard classification procedures
used in machine learning. This is intuitively obvious: we are, after all,
grounding our single class choices upon the same gains & losses that
underlie our classification problem and that are used in its evaluation.
The present illustration is therefore not a proof for such improvement –
none is needed. It is a reassuring safety check, though: if the results were
negative it would mean that errors were made in applying the method
or in the computations.

Rather than looking for some classification problem and dataset
on which the decision-theoretic approach could lead to astounding
improvements, we choose one where machine-learning classifiers already
give excellent results, therefore difficult to improve upon; and which

24 Dyrland et al. 2022a.
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is characterized by a naturally high class imbalance. The classification
problem is moreover of interest to us for other ongoing research projects.

The binary-classification task is a simplified version of an early-stage
drug-discovery problem: to determine whether a molecule is chemically
‘inactive’ (class 0) or ‘active’ (class 1) towards one specific target protein.

Two machine-learning classifiers are considered: a Random Forest
and a residual Convolutional Neural Network (ResNet), details of which
are given in appendix A. The random forest takes as input a set of
particular physico-chemical characteristics of a molecule, and outputs a
real number in the range [0, 1], corresponding to the fraction of decision
trees which vote for class 1, ‘active’. The convolutional-neural-network
takes as input an image representing the chemical and spatial structure
of the molecule, and outputs two real numbers roughly corresponding
to scores for the two classes.

We use data from the ChEMBL database25, previously used in the
literature for other studies of machine-learning applications to drug
discovery26. One set with 60% of the data is used to train and validate
the two classifiers. One set with 20% is used for the calibration of the
probability transducer and evaluation of the classifiers. One further data
set with 20% is here used as fictive ‘real data’ to illustrate the results of
our procedure; we call this the ‘demonstration set’.

Note that the additional demonstration dataset has an illustrative purpose

only for the sake of the present example. In a real design & evaluation of
a set of candidate classifiers, the calibration set will at the same time be
the evaluation test set, and no further data subset will be necessary, as
explained in § 2.2.

In all data sets, class 0 (‘inactive’) occurs with a 91% relative frequency,
and class 1 (‘active’) with 9%; a high class imbalance.

Technical details about the setup and training of the two classifiers
and of the calculation of the probability-transducer parameters are given
in appendix B.3.

4.2 Probability-transducer curves

Mathematical details about the expression of the joint probability 𝑝(𝑐, 𝑦),
eq. (5), for the random forest and the convolutional neural network are
given in appendix B.3.

25 Bento et al. 2014. 26 Koutsoukas et al. 2017.
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Figure 1 Probabilities of class 1 (‘active’, blue solid curve) and class 0 (‘inactive’, red
dashed curve) conditional on the random-forest output. Their extremal values are 0.0014
and 0.929. The random-forest output clearly cannot be interpreted as a probability. The
shaded region around each curve represents its 12.5%–87.5% range of possible variability
if more data were used to calculate the probabilities.

Random forest

Figure 1 shows the probabilities of classes 1 and 0 conditional on
the random-forest output: p(class 1 | output) and p(class 0 | output). It also
shows the range of variability that these probabilities could have if
more data were used for the calibration: with a 75% probability they
would remain within the shaded regions. This variability information is
provided for free by the calculation; we plan to discuss and use it more
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in future work.
This curve is not a straight line, which means that the random-forest

output cannot be interpreted as a probability. Note that for an output
of around 0.32 both classes are equally probable. For an output of 0.5,
class 1 has a probability of around 75%.

The probabilities increase (class 1) or decrease (class 0) monotonic-
ally up to output values of around 0.9. The minimum and maximum
probabilities are 0.14% and 92.9%; these values will be important for a
later discussion. The output, if interpreted as a probability for class 1
(‘active’), tends to be too pessimistic for this class (and too optimistic
for the other) in a range from roughly 0.25 to 0.95; and too optimistic
outside this range. For instance, for an output of 0.3 the probability for
class 1 is 40%; for an output of 1 the probability for class 1 is 92%.

Convolutional neural network

Figure 2 shows the probability of class 1 conditional on the bivariate
output of the convolutional neural network, p(class 1|outputs). Its extremal
values are 0.14% and 92.3%. It is interesting to compare this probability
with the softmax function of the outputs, shown in the smaller side plot,
typically used as a proxy for the probability.

A cross-section of this probability surface along the bisector of the II
and IV quadrants of the output space is shown in fig. 3, together with the
cross-section of the softmax. The probability takes on extremal values,
around 1% and 90%, only in very narrow ranges, and quickly returns
and extrapolates to 50% everywhere else. The softmax, on the other
hand, extrapolates to extreme probability values – a known problem of
neural networks27. The conservative extrapolation of the transducer is
also reflected in the 75% interval of possible variability of the probability
(shaded region), which becomes extremely wide at the extremities.

4.3 Results on demonstration data

The essential point of the decision-theoretic approach is that we first need
to specify the utilities involved in the classification problem, because they
determine (i) together with the probabilities, which class we choose in
each single instance; (ii) the metric to evaluate a classifier’s performance.

27 Gal & Ghahramani 2016.
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Figure 2 Probability of class 1 conditional on the
convolutional-neural-network outputs. Its extremal val-
ues are 0.0014 and 0.923. Plot on the side: softmax function
of the same outputs, for comparison.

The utilities are assembled into a utility matrix which we write in the
format

d
e
c
i
s
i
o
n

1
0

true class

0 1[
True 0 False 0
False 1 True 1

]
. (10)
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Figure 3 Cross-section of the probability surface of fig. 2 across the bisector of the II
and IV quadrants of output space. The shaded region represents the 12.5%–87.5% range
of possible variability upon increase of the calibration dataset. The cross-section of the
softmax function (grey dashed curve) is also shown for comparison.

We call equivalent two utility matrices that differ by a constant additive
term and a positive multiplicative term, since changes in the zero or unit
of measurement of utilities do not affect comparative evaluations.

For illustration we choose four utility matrices:

utility case I[
1 0
0 1

] utility case II[
1 −10
0 10

] utility case III[
1 0

−10 10

] utility case IV[
10 0

−10 1

]
. (11)

Case I represents any case where the correct classification of either class
is equally valuable; and the incorrect classification, equally invaluable.
Note that this utility matrix is equivalent to any other of the form

[
𝑎 𝑏
𝑏 𝑎

]
with 𝑎 > 𝑏. Accuracy is the correct metric to evaluate this case. Case II
represents any case where the correct classification of class 1, ‘active’
or ‘positive’, is ten times more valuable than that of class 0, ‘inactive’
or ‘negative’, and its incorrect classification is as damaging as correct
classification is valuable. The remaining two cases are interpreted in an
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analogous way. The ‘value’ could simply be the final average monetary
revenue at the end of the drug-discovery project that typically follows
any of these four situations. Of particular relevance to drug discovery,
where false positives are known to be especially costly28, is the utility
matrix of case II and possibly that of case III.

We consider each of these utility matrices, in turn, to be the one
underlying our classification problem. In each case we perform the
classification of every item – a molecule – in the demonstration data as
follows:

1. feed the features of the item to the classifier and record its output
2. feed this output to the probability transducer and record the result-

ing probability for class 1; form the normalized probability vector
for the two classes

3. multiply the probability vector by the utility matrix to determine
the expected utility of each class choice, eq. (8)

4. choose the class with higher expected utility (ties have to be decided
unsystematically, to avoid biased results), eq. (9).

Confusion matrices – and a peculiar situation

Once all items in the demonstration dataset are classified, we compare
their chosen classes with their true ones and compute the resulting
confusion matrix, which we also write in the format (10). The confusion
matrices for all cases, methods, and algorithms are presented in table 1
on page 23. Ties (both classes were equally preferable) are solved by
giving half a point to each class.

The standard method produces the same confusion matrix in all
four utility cases because it does not use utilities to choose a class. The
augmentation produces instead a different confusion matrix in each
utility case: even if the class probabilities for a give datum are the same
in all cases, the threshold of acceptance varies so as to always be optimal
for the utilities involved.

A peculiar case of this automatic optimization of the threshold is
visible for the transducer applied to either algorithm in case IV: it leads,

28 Sink et al. 2010; Hingorani et al. 2019.
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for both the random forest and the convolutional neural network, to the
confusion matrix [

3262 326
0 0

]
(12)

which means that all items were classified as ‘0’, ‘inactive’. How can this
happen? Let us say that the probabilities for class 0 and 1, determined
by the transducer from algorithm output, are 1 − 𝑝 and 𝑝. In case IV,
the expected utilities of choosing class 0 or 1 are given by the matrix
multiplication

[ 10 0
−10 1

] [ 1−𝑝
𝑝

]
:

choose 0: expect 10 · (1 − 𝑝) + 0 · 𝑝 = 10 − 10 𝑝 ,

choose 1: expect −10 · (1 − 𝑝) + 1 · 𝑝 = −10 + 11 𝑝 .
(13)

It is optimal to choose class 1 only if (disregarding ties)

− 10 + 11 𝑝 > 10 − 10 𝑝 or 𝑝 > 20/21 ≈ 0.952 , (14)

that is, only if the probability of class 1 is higher than 95%. The threshold
is so high because on the one hand there is a high cost (−10) if the true
class is not 1, and on the other hand a high reward (10) if the true class is
indeed 0. Now, a look at the transducer curve for the random forest, fig. 1,
shows that the transducer never assigns a probability higher than 93%
to class 1. Similarly the transducer for the convolutional neural network,
fig. 2, never reaches probabilities above 92%. So the threshold of 95%
will never be met in either case, and no item will be classified as 1. It is
simply never rewarding, on average, to do so29. It can be seen that this
situation will occur with any utility matrix

[
𝑎 𝑏
𝑐 𝑑

]
, with 𝑎 > 𝑐 and 𝑑 > 𝑏,

such that 𝑎−𝑐
𝑎−𝑐+𝑑−𝑏 ≈ 0.93.

This peculiar situation has a notable practical consequence. We have
found the transducer curve for a classifier, and see that its maximum
probability for class 1 is 93%. We have assessed that the utilities involved
are

[ 10 0
−10 1

]
, so the threshold to classify as 1 is 95%. Then we immediately

find that there is no need to employ that classifier, in this utility case: it is
simply more profitable to automatically treat all data as class 0.

A look at the other confusion matrices of table 1 shows the effect of
the automatic threshold optimization also in utility cases II and III: as the
cost of some misclassification increases, the number of the correspoding
misclassifications decreases.
29 Drummond & Holte 2005 cf. the analysis by.
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Utility yields

We can finally assess the performance of both classifiers, with and
without augmentation, on the demonstration dataset. As explained in
our companion work30 and summarized in § 3, the correct metric for
such performance must naturally depend on the utilities that underlie
the problem. It is the utility yield per datum produced by the classifier
on the dataset, obtained by taking the grand sum of the products of
the homologous elements of the utility matrix (𝑈𝑖 𝑗) and the confusion
matrix (𝐶𝑖 𝑗): ∑

𝑖 𝑗

𝑈𝑖 𝑗 𝐶𝑖 𝑗 . (15)

The utility yields for the different cases, classifiers, and methods
are presented in table 2. The maximum and minimum theoretically
achievable yields, which are obtained when all data are correctly classi-
fied or incorrectly misclassified, are also shown for each case. Since the
maximum and minimum differ from case to case, the table also reports
the rescaled utilities: for each case, the rescaled utility is obtained by
a change in the zero and scale of its measurement unit such that the
minimum and maximum achievable yields become 0 and 1:

rescaled utility =
utility − theoretical min

theoretical max − theoretical min
. (16)

Let us first compare the two algorithms when employed in the
standard way (red). Their performance is very close to the theoretical
maximum in most cases, the worse being the random forest in case II.
The random forest outperforms the convolutional neural network in
cases I, III, IV.

Then let us look at the performances obtained with the augmentation
(blue bold). We note the following:

• The augmentation improves the performance of each algorithm in
all cases. The improvement also occurs in case IV for the random
forest, where the standard method already had an extremely high
performance (rescaled utility of 0.988).

• In cases II and IV the augmentation improves the originally worse
algorithm above the originally better one.

30 Dyrland et al. 2022a.
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[ 1 0
0 1

] [ 1 −10
0 10

] [ 1 0
−10 10

] [ 10 0
−10 1

]
standard method

[ 3225 79.5
37 246.5

]
Ra

nd
om

Fo
re

st

augmentation
[ 3207 38

55 288
] [ 3050 7

212 319
] [ 3207 40

55 286
] [ 3262 326

0 0
]

standard method
[ 3165 49

97 277
]

N
eu

ra
l

N
et

w
or

k

augmentation
[ 3189 65

73 261
] [ 2882 12

380 314
] [ 3189 66

73 260
] [ 3262 326

0 0
]

Table 1 Confusion matrices from demonstration dataset

[ 1 0
0 1

] [ 1 −10
0 10

] [ 1 0
−10 10

] [ 10 0
−10 1

]
min achievable utility 0 −0.91 −9.09 −9.09
max achievable utility 1 1.82 1.82 9.18

standard method 0.968 1.36 1.48 8.95

Ra
nd

om
Fo

re
st

augmentation 0.974 1.72 1.54 9.09

standard method 0.959 1.52 1.38 8.63

N
eu

ra
l

N
et

w
or

k

augmentation 0.962 1.64 1.41 9.09

Rescaled utility yields, eq. (16)

standard method 0.968 0.834 0.969 0.988

Ra
nd

om
Fo

re
st

augmentation 0.974 0.964 0.974 0.995

standard method 0.959 0.890 0.960 0.970

N
eu

ra
l

N
et

w
or

k

augmentation 0.962 0.937 0.963 0.995

Table 2 Utility yields from demonstration dataset
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Figure 4 Space of utility matrices (modulo equivalence) for binary classification.

• In case IV the augmentation brings the utility yield to above 99%
of the theoretical maximum; remember from the previous section
that this is achieved by classifying all data as class 0.

• With augmentation, the random forest outperforms the convolu-
tional neural network in all cases, with a possible tie for case IV.

These were four particular cases only, though. Does the augmentation
lead to an improvement (or at least to no change), on average, over all
possible utility matrices? We expect this to be the case, owing to the
internal consistency of decision theory.

We give evidence of this fact by considering a large number (10 000)
of utility matrices selected uniformly from the utility-matrix space (more
precisely: manifold) for binary classification. This two-dimensional space,
shown in fig. 4, is discussed in our companion work31.

For each of these utility matrices, we calculate the rescaled utility
yields obtained by using either classifier in the standard way, and with
the augmentation – probability-transducer & utility-based classification.
The utility yields obtained in the two ways are plotted against each other
in fig. 5. Histograms of their distributions are also shown on the sides.

The augmentation clearly leads to increased utility yields, especially
for those cases where the standard performance of the two algorithms is
particularly high or low – compare the left tails of the histograms for the

31 Dyrland et al. 2022a § 3.2.
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Figure 5 Rescaled utility yields obtained using the two classifiers in the standard way, vs
those obtained with augmentation, for a uniform distribution of possible utility matrices
over the utility-matrix space of fig. 4. The augmentation always leads to an improved utility
yield, especially in cases where the standard method has a low or high performance. Owing
to noise coming from numerical rounding, in some cases the yield from augmentation
may appear lower than from the standard method (points below the dashed grey line).

standard method and augmentation. The standard method in some cases
has utility yields as low as 0.76 for the random forest and 0.85 for the
convolutional neural network; whereas the augmentation never leads to
yields below 0.96 for the random forest and 0.92 for the convolutional
neural network. This explains the U-shapes of the scattered points. Note
that the minimum values of the plot’s axes is 0.75, so the improvement is
upon utility yields that are already quite high.
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There are a few apparent decreases in the utility yield, in some
cases. The extremal relative decreases are −0.09% for random forest and
−0.2% for convolutional neural network. Given their small magnitude,
we believe them to be caused by numerical-precision error rather than
to be real decreases

4.4 From ‘inactive vs active’ to more general decisions

In the demonstration just discussed we assumed that the decisions
available for each molecule examined were just two: ‘molecule is inactive’
vs ‘molecule is active’, corresponding to the two unknown classes. In a
more general drug-discovery problem we could have a different set of
decisions, for instance ‘discard’ vs ‘promote to next examination stage’
vs ‘examine with different method’. Each decision would have its own
utilities conditional on the two possible classes, forming a 3×2 utility
matrix. The analysis and calculations of the present section would be
easily generalized to such case.

5 Additional uses of the probability-transducer: an overview

The probability-transducer presented in § 2 and illustrated in the previous
section has several other uses and advantages, all of which come for
free or almost for free with its calculation. We give a brief overview of
them in the present section, leaving a more thorough discussion and
applications to future works.

The additional uses are mainly three:
• Quantification of the possible variability of the transducer probab-

ility curve.
• Evaluation of the optimal algorithm, including the uncertainty

about such evaluation.
• ‘Generative use’ of the augmented algorithm, even if the original

algorithm is not designed for generative use.

5.1 Variability of the transducer’s probability curve

The output-to-probability function, eq. (4), such as those plotted in
figs 1 and 2–3, is determined by the data in the calibration set. There is
the question, then, of how the function could change if we used more
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calibration data. Such possible variability could be of importance. For
example, we may find that the transducer only yields class probabilities
around 0.5, and wonder whether this is just a statistical effect of a too
small calibration dataset, or whether it would persist even if we used
more calibration data.

The calculation of the transducer parameters automatically tells us
the probabilities of these possible variations, in the form of a set of
possible alternative transducer curves, from which we can for example
calculate quantiles. The shaded regions in figs 1, 7 and 3 are examples of
such probability intervals. Their calculation is sketched in appendix B.4.

5.2 Expected utility of the classifying algorithm

At the end of the discussion about the calibration dataset, § 2.2, we
gave our assurances that no additional data must be set apart – with
a detrimental reduction in training data – for evaluation or testing
purposes. This is because from the probabilities (4), obtained from the
calibration data, we can also calculate the expected, future utility yield of the

augmented algorithm, once we have specified the utility matrix underlying
the particular application. More details about this calculation, which
amounts to a low-dimensional integration, are given in appendix B.5;
see especially formula (29).

For the random forest and convolutional neural network of the
demonstration § 4, for instance, this calculation gives the expected
utilities (non-rescaled) of table 3. The augmented random forest is
expected to be optimal for cases I and II, possibly also in case III, although
the difference in utilities is likely affected by numerical-precision error.
There is no preference in case IV.

Let us emphasize again that these values are obtained from the

parameters of the transducer curve, without the need of any additional dataset.
The demonstration dataset discussed in § 4.1 was not used for their
calculation. The results from that dataset, reported in table 2, corroborate
these values.

One may ask: but how can you be sure that what you basically found
from the calibration data will generalize to new data? The answer goes
back to the discussion at the end of § 2.2, about how the probability
calculus works, and to the technical details explained in appendix B: the
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[ 1 0
0 1

] [ 1 −10
0 10

] [ 1 0
−10 10

] [ 10 0
−10 1

]
Random Forest 0.973 1.68 9.59 9.08
Neural Net 0.962 1.62 9.56 9.08

Table 3 Expected utilities for the two algorithms of § 4
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Figure 6 Probability distributions of the long-run utility yields of random forest and
convolutional neural network in the four cases of § 4
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probability calculus automatically considers all possible sets of new data
that could be encountered in the future application32.

In fact, the calculation of an algorithm’s expected utility automatically
produces a probability distribution of the possible long-run yields the
algorithm could give. The distributions for the long-run utilities of the
random forest and the convolutional neural network in cases I–IV of § 4
are shown in fig. 6. It can be calculated, eq. (30), that in case I the random
forest will very probably, 99%, be superior to the convolutional neural
network. In case II the probability is somewhat lower, 83%. In cases III
and IV it is completely uncertain (50%) which algorithm will be best.

The evaluation of candidate classifiers’ performances and their un-
certainties are obviously extremely important for the choice and final
deployment of the optimal classifier.

5.3 Discriminative and generative modes

The transducer parameters, calculated as discussed in § 2.3 and ap-
pendix B, allow us to calculate not only the ‘discriminative’ probability of
the class given the algorithm’s output, formula (7a), but also the inverse,
‘generative’ probability33 of the output given the class, formula (7b). The
transducer thus allow us to use the original algorithm both in ‘discrim-
inative mode’ and in ‘generative mode’, even if it is not a generative
algorithm in itself.

Having an available generative mode is extremely useful, because it
is the required way to calculate the class probabilities if the calibration and

training sets do not have the same class frequencies as the real population on

which the classifier will be employed. For instance, two classes may appear
in a 50%/50% proportion in the calibration set but in a 90%/10% pro-
portion in the real population. This discrepancy in the two populations’
frequencies can occur for several reasons. Examples: samples of the real
population are unavailable or too expensive to be used for calibration
purposes; the class statistics of the real population has suddenly changed
right after the deployment of the classifier; it is necessary to use the
classifier on a slightly different population; or the sampling of calibration
data was poorly designed.

32 cf. Smith & Winkler 2006. 33 Russell & Norvig 2022 § 21.2.3; Murphy 2012 § 8.6.
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In such situations, the discriminative probabilities p(𝑐 | 𝑦) are usually
no longer the same in the two populations either, owing to the identity

p(𝑐 | 𝑦) p(𝑦) ≡ p(𝑦 | 𝑐) p(𝑐) . (17)

Typically, a change in p(𝑐) leaves p(𝑦 | 𝑐) the same; but then both p(𝑦)
and p(𝑐 | 𝑦) must change as well. This means that the discriminative
probabilities the algorithm and transducer have learned from the training
and calibration sets are actually wrong: they cannot lead to reliable
inferences on the real population.

But, as we just said, the generative probabilities p(𝑦 | 𝑐) often remain
the same. And these have been automatically computed in the transducer
calibration, formula (7b). We can then use them to calculate the prob-
ability of class 𝑐 through Bayes’s theorem, by supplying the population

prevalence 𝑟𝑐 of the class:

𝑝(𝑐 | 𝑦, prevalences) =
𝑝(𝑦 | 𝑐) 𝑟𝑐∑
𝑐 𝑝(𝑦 | 𝑐) 𝑟𝑐

. (18)

The population prevalences34, also called base rates35, are the relative
frequencies of occurrence of the various classes in the population whence
our unit originates. This notion is very familiar in medicine and epidemi-
ology. For example, a particular type of tumour can have a prevalence of
0.01% among people of a given age and sex, meaning that 1 person in
10 000 among them has that kind of tumour, as obtained through a large
survey.

We recommend the outstandingly insightful discussion by Lindley
& Novick 1981 on the problem of population mismatch and on which
conditional probabilities to use in that case.

Figure 7 shows the ‘generative’ probability densities p(output | class 1),
p(output | class 0) of the random-forest output from the demonstration of
§ 4. The shaded regions are 75% intervals of possible variability upon
increase of the calibration dataset.

There is a high probability of output values close to 0 when the true
class is 0 (‘inactive’), and a peak density around 0.8 when the true class
is 1 (‘active’), as expected. The density conditional on class 0 is narrower
than the one conditional on class 1 owing to the much larger proportion

34 Sox et al. 2013 ch. 3; Hunink et al. 2014 § 5.1. 35 Bar-Hillel 1980; Axelsson 2000.
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Figure 7 Probability densities of the random-forest output conditional on class 1 (‘active’,
blue solid curve) and on class 0 (‘inactive’, red dashed curve, truncated). The shaded region
around each curve represents its 12.5%–87.5% range of possible variability upon increase
of the calibration dataset.

data in the former class. Intuitively speaking, we have seen that most
data in class 1 correspond to high output values, but we have seen too
few data in this class to reliably conclude, yet, that future data will show
the same correspondence.

We can show the usefulness of using the probability transducer in
generative mode by altering the class frequencies of the demonstration
set: we keep all data of class 1 (the less frequent) and unsystematically
select a number of data from class 0 equal to half that of class 1. This new
demonstration set has thus a proportion 1/3 vs 2/3 of class 0 and class 1:
their preponderance has been almost inverted. Finally we apply both
classifiers in the standard way and with the augmentation in generative
mode, considering again a large number of possible utility matrices,
uniformly selected from their space. The rescaled utility yields are shown
in fig. 8.

We see that the performance of the standard method has worsened;
this is especially manifest by a comparison of the top histograms of figs 5
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Figure 8 Rescaled utility yields obtained using the two classifiers in the standard way, vs
those obtained with augmentation in generative mode, on an altered dataset with very
different class balance from the training and calibration sets. The distribution of possible
utility matrices is uniform over their space, as before. The utility yields of the standard
method have worsened with respect to those of fig. 5, as can be seen from the histogram
tails. The augmentation in generative mode, however has not suffered from this dataset
mismatch.

and 8. The median utility yield of the random forest has gone from 0.967
to 0.834; that of the convolutional neural network from 0.959 to 0.893.
And yet the augmentation in generative mode is almost unaffected, the
median changing from 0.974 to 0.967 for the random forest and from
0.961 to 0.941 for the convolutional neural network.
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6 Summary and discussion

The successful application of machine-learning classifiers in fields such as
medicine or drug discovery, which involve high risks and special courses
of action, demands that we replace a too-simplistic view of classification
with a more articulated and flexible one. A classifier must be able to
handle decisions that do not correspond to some unknown classes; it must
take into account problem-specific gains and losses arising from such
decisions; it must choose not what’s likely, but what’s optimal; and the
uncertainties underlying its operation must be amenable to assessment.
And it should preferably face all these requirements with methods based
on first-principles guaranteeing consistency and universal applicability.

The basic theory that allows us to face most of these requirements
has been around for a long time36: Decision Theory, whose methods keep
on see-sawing in machine learning37. It allows us to consider decisions
separate from classes, to evaluate gains and losses, and to decide what’s
optimal. In the present work we have tried to revive it, showing that
its application is straightforward, involves little computational cost,
and always leads to improvement on results obtained with standard
machine-learning methods, even when these are already nearly optimal.

The main obstacle in using decision theory is that it requires proper
probabilities, which in many applications might only be obtained at
too high computational costs – if these probabilities are conditional on the

‘features’ constituting the input to classifier.
We have proposed the idea of using probabilities conditional on the

output of the classifier instead. This is somehow like using the classifier in
the guise of a diagnostic test, such as a typical medical test.

This probabilistic quantification is not computationally expensive,
can be calculated exactly by Bayesian model-free (non-parametric) density-
regression methods38, and only needs to be done once per trained algorithm.

We have called the resulting output-to-probability function a ‘prob-
ability transducer’. Concrete examples are given in fig. 1 for the output
of a random-forest classifier, and in figs 2, 3 for the bivariate output
of a convolutional neural network. In the latter case, the probability
transducer is essentially a replacement of the popular softmax.

36 at least since Luce & Raiffa 1957; cf. Russell & Norvig 2022 § 1.2. 37 e.g. Self &
Cheeseman 1987; Elkan 2001; Drummond & Holte 2005. 38 Dunson & Bhattacharya
2011.
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The quantification of the probabilistic relationship between a clas-
sifier’s output and the unknown class requires a ‘calibration dataset’,
whose role can perfectly be played by the ‘test’ or ‘evaluation’ set of
standard machine-learning methodology. The calibration dataset also
delivers all necessary evaluations; thus a third, additional test set is not
required.

The probability transducer gives probabilities that are easily com-
bined with the set of utilities specific to the problem, to make a classi-
fication or a more general decision based on maximum expected utility,
according to the principles of decision theory. This procedure is compu-
tationally inexpensive: a low-dimensional matrix multiplication followed
by an ‘argmax’. We have called ‘augmentation’ the joint use of transducer
and utility-maximization. The utilities employed by the augmentation
can also differ from one tested item to the other, without any changes to
the computational costs.

We have demonstrated the use of the probability transducer and
augmentation on a random forest and a convolutional neural network in
a drug-discovery problem: classifying molecules as ‘inactive’ or ‘active’.
The problem has a naturally high class imbalance, and standard machine-
learning classifiers often have nearly optimal performance on the dataset
used to explore this problem. Yet, the augmentation led to improvements

for all possible choice of utilities underlying the classification, as shown in
fig. 5. The calculation of the two probability transducers’ parameters
took at most 75 min.

The calculation of a probability transducer from a calibration dataset
also provides extremely useful additional information, for free or almost
so: (a) the possible variability of the transducer function, if more calibra-
tion data were acquired; (b) the expected utility of the whole algorithm
on which the transducer is used, including the uncertainty about such
utility; (c) the possibility of using the classifier in a ‘generative mode’,
giving the probability of the output conditional on the class; this is
useful when the only available data for training has different statistical
properties from the real-use data.

Some literature has promoted and employed the use of utilities in
so called cost-sensitive learning39. One approach is to bake utilities into
the loss function used at the training stage, so that the utilities can

39 Elkan 2001; Correa Bahnsen et al. 2015; Ling & Sheng 2017.
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have an effect on the training of the classifier. This approach effectively
wastes information and has computational disadvantages. First, since the
optimal decision depends on the product of utilities and probabilities,
the algorithm learns about this product only, and not about the two
factors separately.40 Yet, the utilities are known, otherwise they could
not be combined with the loss function. The information about them is
therefore wasted. Second, if the statistics of the data involved remain the
same, but the utilities suddenly change, the classifier has to be trained
anew. Such a classifier cannot be used in cases where the utilities differ
from one tested item to the next (see discussion above).

The method proposed in the present work does not suffer from either
of these drawbacks. The training phase needs no changes, and focuses
on retrieving information about the data’s statistics – which is then
extracted by the probability transducer. The full information contained
in the utilities is used. And the utilities can even be changed on the fly
during the use of the classifier.

Future directions

It is possible to construct a probability transducer that takes the output
from several classifiers at once. This would be the optimal way of doing
‘ensembling’ from the point of view of the probability theory. In future
work we plan to examine this possibility and compare it with standard
ensembling methods.

As mentioned at the end of § 2.2, we also plan to assess what is the best
way to split available data into the training set and the calibration set, in
order to have an optimal amount of mutual information between features,
class, and algorithm output (training data) and a reliable transducer
(calibration data).

For the demonstration of § 4 we also tried a ‘mixed’ method: directly
combining the output of the classifier (raw output for the random forest
and standard softmax for the CNN), as it were a probability, with the
utilities; and then classifying by utility maximization as usual. This
method generally led to improvements with respect to the standard
one, and in some cases also with respect to the probability-transducer
augmentation. But on average, over the space of utility matrices, the

40 In Elkan 2001 §§ 2–3, for example, the decision threshold of the algorithm is changed by
making the algorithm learn wrong class probabilities on purpose.
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mixed method was worse than the augmentation method, for both
random forest and convolutional neural network. In future work we may
try to compare the performance of the two methods with different kinds
of dataset.
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Appendices: mathematical and technical details

A Algorithms and data used in the demonstration

A.1 Data

The data comes from the open-access ChEMBL bioactivity database41.
The dataset used in the present work was introduced by Koutsoukas
et al. (2017). The data consist in structure-activity relationships from
version 20 of ChEMBL, with Carbonic Anhydrase II (ChEMBL205) as
protein target.

A.2 Pre-processing

For our pre-processing pipeline, we use two different methods to rep-
resent the molecule, one for the Random Forest (RF) and one for the
Convolutional Neural Network (CNN). The first method turns the mo-
lecule into a hashed bit vector of circular fingerprints called Extended
Connectivity Fingerprints (ECFP)42. From our numerical analysis, there
was little to no improvement using a 2048-bit vector over a 1024-bit
vector.

For our convolutional neural network, the data is represented by
converting the molecule into images of 224 pixels × 224 pixels. This is
done by taking a molecule’s SMILES (Simplified Molecular Input Line
Entry System) string43 from the dataset and converting it into a canonical
graph structure by means of RdKit44. This differs from ECFP in that it
represents the actual spatial and chemical structure (or something very
close to it) of the molecule rather than properties generated from the
molecule.

The dataset has in total 1631 active molecules and 16310 non-active
molecules which act as decoys. For training, the active molecules are
oversampled, as usually done with imbalanced datasets45, to match the
same number of non-active molecules.

A.3 Prediction

Virtual screening is the process of assessing chemical activity in the
interaction between a compound (molecule) and a target (protein). The
41 Bento et al. 2014. 42 Rogers & Hahn 2010. 43 David et al. 2020. 44 Landrum et al.
2017. 45 Provost 2000.
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goal of the machine learning algorithms is to find structural features
or chemical properties that show that the molecule is active towards
the protein46. Deep neural networks have previously been shown to
outperform random forests and various linear models in virtual high-
throughput screening and in quantitative structure-activity relationship
(QSAR) problems47.

A.4 Chosen classifiers

The algorithms and methods used to create the models have previously
been shown to give great results for a lot of different fields.

Random Forest

The first machine learning model used in the experiments is an RF
model implemented in sci-kit learn48. RF is an ensemble of classifying or
regression trees where the majority of votes is chosen as the predicted
class49. It is known for being robust when dealing with a large number
of features (as in our case), being resilient to over-fitting, and achieving
good performance. And has already been shown to deliver powerful
and accurate results in compound classification and QSAR analysis50.
The following parameters were used when training the model:

Number of trees: 200
Criterion: Entropy
Max Features: Square root

Convolutional Neural Network

The second model is a pre-trained residual network (ResNet)51 with 18
hidden layers trained on the well-known ImageNet dataset52 by using the
PyTorch framework53. ResNet has shown to outperform other pre-trained
convolutional neural network models54. A ResNet with 34 hidden layers

46 Green 2019. 47 Koutsoukas et al. 2017. 48 Pedregosa et al. 2011. 49 Breiman 2001.
50 Svetnik et al. 2003. 51 He et al. 2016. 52 Russakovsky et al. 2015. 53 Paszke et al. 2019.
54 He et al. 2016.
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showed little to no performance gain, so we chose to go with the simpler
model. The model is trained with the following hyperparameters:

Learning rate: 0.003
Optimization technique: Stochastic Gradient Descent
Activation Function: Rectified linear unit (ReLU)
Dropout: 50%
Number of epochs: 20
Loss function: Cross-entropy loss

A.5 Dateset split

The data set is split into four parts:
• Training set: 45% of the dataset to train the model.
• Validation set: 15%, for validating the model after each epoch.
• Calibration set: 20%, for calibrating the probability transducer.
• Demonstration set: 20%, for evaluation.

B Mathematical details and computation of the transducer

The notation is the one used in § 2.3: the class is denoted 𝑐 and the
algorithm output 𝑦. In our demonstration 𝑐 takes on values in {0, 1}, and
𝑦 either in [0, 1] or in R2; but the method can be applied to more general
cases, such as continuous but low-dimensional spaces for both 𝑐 and 𝑦,
or combinations of continuous and discrete spaces. For convenience we
use a single symbol for the pair 𝑑 := (𝑐, 𝑦).

For general references about the probability calculus and concepts
and specific probability distributions see Jaynes 2003; MacKay 2005;
Jeffreys 1983; Gregory 2005; Bernardo & Smith 2000; Hailperin 1996;
Good 1950; Fenton & Neil 2019; Johnson et al. 1996; 2005; 1994; 1995;
Kotz et al. 2000.
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B.1 Exchangeability and expression for the probability transducer

There is a fundamental theorem in the probability calculus that tells
us how extrapolation from known units – molecules, patients, widgets,
images – to new, unknown units takes place: de Finetti’s theorem55. It
is a consequence of the assumption that our uncertainty is invariant or
‘exchangeable’ under permutations of the labelling or order of the units
(therefore it does not apply to time series, for example).

De Finetti’s theorem states that the probability density of a value
𝑑0 for a new unit ‘0’, conditional on data 𝐷, is given by the following
integral:

p(𝑑0 | 𝐷) =
∫

𝐹(𝑑0) 𝑤(𝐹 | 𝐷) d𝐹 , (19)

which can be given an intuitive interpretation. We consider every possible
long-run frequency distribution 𝐹(𝑑) of data; give it a weight density
𝑤(𝐹 |𝐷)which depends on the observed data; and then take the weighted
sum of all such long-run frequency distributions.

The weight𝑤(𝐹 |𝐷) given to a frequency distribution 𝐹 is proportional
to two factors:

𝑤(𝐹 | 𝐷) ∝ 𝐹(𝐷) 𝑤g(𝐹) . (20)

• The first factor (‘likelihood’) 𝐹(𝐷) quantifies how well 𝐹 fits

known data of the same kind, in our case the calibration data
𝐷 := {𝑑1 , . . . , 𝑑𝑀}. It is simply proportional to how frequent the
known data would be, according to 𝐹:

𝐹(𝐷) := 𝐹(𝑑1) · 𝐹(𝑑2) · · · · · 𝐹(𝑑𝑀) ≡ exp
[
𝑀

∑
𝑑

�̂�(𝑑) ln 𝐹(𝑑)
]
, (21)

where �̂�(𝑑) is the frequency distribution observed in the data.
• The second factor (‘prior’) 𝑤g(𝐹) quantifies how well 𝐹 generalizes

beyond the data we have seen, owing to reasons such as physical
or biological constraints for example. In our case we expect 𝐹 to
be somewhat smooth in 𝑋 when this variable is continuous56. No
assumptions are made about 𝐹 when 𝑋 is discrete.

Formula (20) is just Bayes’s theorem. Its normalization factor is the
integral

∫
𝐹(𝐷)𝑤g(𝐹)d𝐹, which ensures that 𝑤(𝐹) is normalized.

55 Bernardo & Smith 2000 ch. 4; Dawid 2013; de Finetti 1929; 1937. 56 Cf. Good &
Gaskins 1971.
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The exponential expression in eq. (21) is proportional to the number
𝑀 of data, and in it we recognize the cross-entropy between the observed
frequency distribution �̂� and 𝐹. This has two consequences. First, it makes
the final probability 𝑝(𝑑0) increasingly identical with the distribution
�̂�(𝑑) observed in the data, because the average (19) gets more and more
concentrated around �̂�. Second, a large amount of data indicating a
non-smooth distribution 𝐹 will override any smoothness preferences
embodied in the second factor. Note that no assumptions about the shape
of 𝐹 – Gaussians, logistic curves, sigmoids, or similar – are made in this
approach (compare fig. 9).

B.2 Conditional probabilities

From eq. (19), which is expressed in terms of joint probabilities for 𝑐0
and 𝑦0, there are two ways of obtaining the probability of 𝑐0 conditional
on 𝑦0, which we report without proof:
Exchangeable output: if the newly observed value 𝑦0 of the output is

considered to be exchangeable with (or representative of) the 𝑦

values in the calibration data, then

p(𝑐0 | 𝑦0 , 𝐷, exch.) =
p(𝑐0 , 𝑦0 | 𝐷)

p(𝑦0 | 𝐷) =

∫
𝐹(𝑐0 , 𝑦0) 𝑤(𝐹 | 𝐷) d𝐹∫
𝐹(𝑦0) 𝑤(𝐹 | 𝐷) d𝐹

, (22)

where 𝐹(𝑦0) =
∑

𝑐 𝐹(𝑐, 𝑦0). This expression is effectively doing two
things: first, implicitly updating the probability distribution for
𝑦, taking as new evidence the observed 𝑦0; second, yielding the
conditional distribution of 𝑐0 given 𝑦0.

Non-exchangeable output: if the newly observed value 𝑦0 of the output
is not considered to be exchangeable with the 𝑦 values in the
calibration data, then

p(𝑐0 | 𝑦0 , 𝐷, non-exch.) =
∫

𝐹(𝑐0 , 𝑦0)
𝐹(𝑦0)

𝑤(𝐹 | 𝐷) d𝐹 ; (23)

This expression does not implicitly update of the distribution for 𝑦.
The second formula should be used if new data are considered to

lead to a distribution of features different from that of the calibration
data – although the basic assumption that the conditional distributions of
classes given features are the same still holds57.
57 see Lindley & Novick 1981 for a thorough discussion of these two cases.
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The two formulae converge to one another and to the long-run
conditional probability of 𝑐 given 𝑦, as the number of calibration data
increases. With a large number of calibration data, say hundreds or more,
the values obtained from the two formulae are negligible.

B.3 Representation of the long-run distribution and Markov-chain
Monte Carlo sampling

The integral in (19) is calculated in either of two ways, depending
on whether 𝑑 is discrete or continuous. For 𝑑 discrete, the integral is
over R𝑛 , where 𝑛 is the number of possible values of 𝑑, and can be
done analytically. For 𝑑 with continuous components, the integral is
numerically approximated by a sum over 𝑇 representative samples,
obtained by Markov-chain Monte Carlo, of distributions 𝐹 according to
the weights (20):

p(𝑑0 | 𝐷) =
∫

𝐹(𝑑0) 𝑤(𝐹 | 𝐷) d𝐹 ≈ 1
𝑇

𝑇∑
𝑡=1

𝐹𝑡(𝑑0) . (24)

The error of this approximation can be calculated and made as small as
required by increasing the number of Monte Carlo samples.

We must find a way to express any kind of distribution 𝐹(𝑑). As
mentioned in § 2.3, this is done by writing it as

𝐹(𝑐, 𝑦) =
∑
𝑙

𝑤𝑙 𝐴(𝑐 | α𝑙) 𝐵(𝑦 | β𝑙) , (25)

where the sum has a large number of terms58, {𝑤𝑙} are normalized
weights, and 𝐴(𝑐 | α), 𝐵(𝑦 | β ) are distributions, possibly the product of
further one-dimensional distributions. Effectively we are expressing 𝐹( · )
by the ‘coordinates’ (𝑤𝑙 ,α𝑙 ,β𝑙) in a space of extremely high dimensions.

This representation59 has several advantages:
• Its marginal distributions for 𝑐 and 𝑦 are also of the form (25), as

shown in § 2.3, and easily computable.
• Its conditional distributions for 𝑐 given 𝑦 and vice versa have also a

form similar to eq. (25) and easily computable.
• It can be used with conjugate priors.

58 see Ishwaran & Zarepour 2002 on why the number of terms does not need to be infinite.
59 promoted by Dunson & Bhattacharya 2011; see also Rasmussen 1999.
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• The final probability 𝑝(𝑐, 𝑦), approximated by the sum (24), has
also the form (25):

p(𝑐0 , 𝑦0) ≈
∑
𝑡 ,𝑙

𝑤𝑡 ,𝑙

𝑇
𝐴(𝑐0 | α𝑡 ,𝑙) 𝐵(𝑦0 | β𝑡 ,𝑙) . (26)

This is the expression given in § 2.3 with 𝑘 running over both
indexes 𝑡 , 𝑙 and with 𝑞𝑘 := 𝑤𝑡 ,𝑙/𝑇.

In the demonstration of § 4, where the class variable 𝑐 takes on
conventional values {0, 1}, we use a Bernoulli distribution for the class
variable 𝑐:

𝐴(𝑐 | α) = 𝑐 α + (1 − 𝑐) (1 − α) ≡
{
α if 𝑐 = 1,
1 − α if 𝑐 = 0 ,

(27)

both in the case of the random forest and of the convolutional neural
network. For the output variable we use a Gaussian distribution in
the case of the random forest, β ≡ (µ , σ) being its mean and standard
deviation:

𝐵(𝑦 | β ) = N(𝑦 | µ , σ) := 1√
2πσ2

exp
[
−
(𝑦 − µ)2

2σ2

]
. (28)

The random-forest output is actually bounded, 𝑦 ∈ [0, 1], and this
Gaussian should in principle be truncated; we did not use any truncation
as the error committed is small and the computation much faster. In the
case of the convolutional neural network’s output we use a product of
two Gaussians, each with its own parameters.

In both cases, the sum of the representation (25) has 64 terms, and
the approximating sum (24) 4096 terms.

The samples {𝐹𝑡( · )} of the sum (24) – these are samples of the distribu-
tion 𝑤(𝐹) – are obtained through Markov-chain Monte Carlo; specifically
Gibbs sampling60. Effectively we obtain samples of the coordinates
(𝑤𝑙 ,α𝑙 ,β𝑙), and the prior 𝑤g(𝐹) is a prior over these coordinates.

For the demonstration of § 4 we use a Dirichlet distribution for (𝑤𝑙), a
beta distribution for (α𝑙), a Gaussian distribution for (µ𝑙), and a gamma
distribution for (1/σ𝑙

2).

60 Neal 1993; MacKay 2005 ch. 29.
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The Markov-chain Monte Carlo sampling scheme is implemented
using the R61 package nimble62, and uses 16 parallel chains63. The
sampling took approximately 45 min for the random forest and 75 min
for the convolutional neural network, wall-clock time. The resulting
parameters are available in our supplementary data64.

B.4 Assessment of the possible variability of the probability

In § 5.1 we mentioned that the calculation of the transducer parameters
automatically also tells us how much the probabilities curves could
change if we used more data for the calibration. The range of this
possible variability was shown for example in figs 1, 7, and 3 of the
demonstration.

This possible variability is encoded in the weight 𝑤(𝐹 | 𝐷), which can
be interpreted as the probability distribution of the long-run frequency
distribution 𝐹; remember that the probability p(𝑑0 | 𝐷), for the new unit,
eq. (19), becomes closer and closer to the distribution 𝐹 at which 𝑤(𝐹 |𝐷)
peaks, as the number of data increases.

In the approximation (24), the probability 𝑤(𝐹 | 𝐷) is effectively
represented by a large number of samples {𝐹𝑡} from it. Plotting these
samples alongside p(𝑑0 | 𝐷) gives an approximate idea of how the latter
probability could change with new data. Figure 9 shows a small number
of such samples for the transducer curve of the random forest of § 4 (cf.
fig. 1). For fixed 𝑑, the samples {𝐹𝑡(𝑑)} also give estimates of the quantiles
of such change. This is how the ranges of figs 1, 7, 3 were obtained.

An analogous discussion holds for the marginal and conditional
probabilities that we can obtain from p(𝑑0 | 𝐷).

B.5 Assessment of the augmented algorithm’s long-run utility yield

Besides making a decision – such as choosing a class – for each new
unit, we generally must also decide which algorithm to use for such a
future task, among a set of candidates. This latter decision depends on
the future performance of each algorithm, which in turn depends on the
decision that the algorithm will make for each new unit. Two kinds of
unknown accompany this double decision: we do not know the classes

61 R Core Team 2023. 62 nimble 2021. 63 Dyrland et al. 2022b, scripts RFmcmc.R and
NNmcmc.R. 64 Dyrland et al. 2022b, files transducer_params-Random_Forest.zip and
transducer_params-Neural_Net.zip.
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Figure 9 Samples (thin light-blue curves) of probable transducer curves (for class 1) that
could be obtained if we had more calibration data in the demonstration of § 4. They are
samples obtained from the distribution 𝑤(𝐹 | 𝐷) of eq. (20). According to the probability
calculus, the curve to be used for a new unit is their average (thicker dark-blue curve),
which is the same as plotted in fig. 1.

of the future units, and we do not know which outputs each algorithm
will give for the future data.

This more complex kind of decision & uncertainty problems are also
dealt with decision theory. Their theory is presented and applied step-
by-step in the humorous lectures by Raiffa 1970 ch. 2; other references
are65. We here give only a sketch and refer to the works above for details.

Our double decision & uncertainty problem can be represented as a
decision tree. A very simplified example is illustrated in fig. 10.

We imagine to have to choose between two classification algorithms
𝑀′ and 𝑀′′. This choice corresponds to the decision node on the left
(green). Decision nodes are represented by squares.

65 Lindley 1988; Bernardo & Smith 2000 § 2.2; Pratt et al. 1996; Raiffa & Schlaifer 2000;
Luce & Raiffa 1957.
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Figure 10 Decision tree for the choice of algorithm. From left to right: Decision node
about the algorithm (green), uncertainty node about the algorithm’s output (yellow),
decision node (e.g. about class) for the inspected item (blue), uncertainty node about the
class (red). Only some example nodes and branches are labelled.

If we choose to use algorithm 𝑀′, then it may happen that it will give
either output 𝑦1 or 𝑦2 when applied to a new unit. We are uncertain about
which output will occur, with probabilities P(𝑦1 | 𝑀′) and P(𝑦2 | 𝑀′).
This uncertainty corresponds to an uncertainty node (yellow). Uncertainty
nodes are represented by circles.

Once the output of the algorithm is known, we must decide (blue
decision nodes) among choices 𝑖′ and 𝑖′′, for example to choose whether
to consider the new unit as class 0 or class 1.

The unit will turn out to be class 0 or class 1: we are uncertain
about which (red decision nodes), with probabilities P(𝑐 = 0 | 𝑦1 , 𝑀

′),
P(𝑐=1 | 𝑦1 , 𝑀

′) if the output was 𝑦1, and with probabilities P(𝑐=0 | 𝑦2 , 𝑀
′),

P(𝑐=1 | 𝑦2 , 𝑀
′) if the output was 𝑦2.

Finally, depending on our choice between 𝑖′ and 𝑖′′ and on the actual
class, we will gain one of the four utility amounts 𝑈𝑖1 0, 𝑈𝑖′ 1, 𝑈𝑖′′ 0, 𝑈𝑖′′ 1.
These are the elements of the utility matrix discussed in § 3; we have
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seen concrete numerical examples in the demonstration of § 4.
An analogous analysis and probabilities hold if we choose algorithm

𝑀′′ (the output space of this algorithm can be different from that of 𝑀′).
The basic procedure of this decision problem is to first calculate

expected utilities starting from the terminal uncertainty nodes, making
optimal decisions at the immediately preceding decision nodes. Each
such decision will therefore have an associated utility equal to its corres-
ponding maximal expected utility. The same procedure is then applied
to the uncertainty nodes about the outputs. In this way each algorithm
receives a final expected utility; in formulae,

utility of algorithm 𝑀 =
∑
𝑦

[
max

𝑖

{∑
𝑐

𝑈𝑖𝑐 P(𝑐 | 𝑦, 𝑀)
}]

P(𝑦 | 𝑀) . (29)

Either sum is replaced by an integral over a density if the related quantity,
𝑦 or 𝑐, is continuous.

What is important in the formula above is that the probabilities for
the outputs and the conditional probabilities for the classes given the
outputs are known: they are the ones calculated for the transducer from the

calibration set.
The expected utilities of table 3, § 5.2, were calculated with the

formula above (the integral over 𝑦 being approximated by a sum over a
dense grid).

These values are expected utilities, though. One may ask: what is the
probability that the final utility of one model will actually be higher or
lower than the other’s?

We can answer this question, again thanks to de Finetti’s formula (19),
similarly to how we did with the variability of the transducer curves,
explained in the previous § B.4. The long-run utility of the algorithm
𝑀 is given by formula (29) but with the probabilities replaced by the
long-term frequencies 𝐹(𝑐 | 𝑦) and 𝐹(𝑦). The probability of this long-run
utility is then determined by the density 𝑤(𝐹) represented by a set
of samples. Calculating the long-run utility for each sample we can
finally construct a probability histogram for each algorithm’s utility.
The histograms of fig. 6 are obtained this way. From them we can also
calculate the probability that an algorithm’s utility 𝑢′ will be higher than
another’s utility 𝑢′′, corresponding to the integral∬

δ(𝑢′ > 𝑢′′) p(𝑢′) p(𝑢′′) d𝑢′ d𝑢′′ . (30)

47



Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Bibliography

(‘de 𝑋’ is listed under D, ‘van 𝑋’ under V, and so on, regardless of national conventions.)

Alvarez-Melis, D., Broderick, T. (2015): A translation of “The characteristic function of a random

phenomenon” by Bruno de Finetti. arXiv doi:10.48550/arXiv.1512.01229. Transl. of
de Finetti (1929).

Axelsson, S. (2000): The base-rate fallacy and the difficulty of intrusion detection. ACM Trans.
Inf. Syst. Secur. 33, 186–205. doi:10.1145/357830.357849, http://www.scs.carleton.
ca/~soma/id-2007w/readings/axelsson-base-rate.pdf.

Bar-Hillel, M. (1980): The base-rate fallacy in probability judgments. Acta Psychol. 443, 211–233.
doi:10.1016/0001-6918(80)90046-3.

Barber, D. (2020): Bayesian Reasoning and Machine Learning, online update. (Cambridge
University Press, Cambridge). http://www.cs.ucl.ac.uk/staff/d.barber/brml.
First publ. 2007.

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, F. A., Light,
Y., et al. (2014): The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42D1,
D1083–D1090. doi:10.1093/nar/gkt1031. Release doi:10.6019/CHEMBL.database.20.

Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M.,
West, M., eds. (2011): Bayesian Statistics 9. (Oxford University Press, Oxford). doi:
10.1093/acprof:oso/9780199694587.001.0001.

Bernardo, J.-M., Berger, J. O., Dawid, A. P., Smith, A. F. M., eds. (1996): Bayesian Statistics 5.
(Oxford University Press, Oxford).

Bernardo, J.-M., Smith, A. F. (2000): Bayesian Theory, repr. (Wiley, New York). doi:
10.1002/9780470316870. First publ. 1994.

Bishop, C. M. (2006): Pattern Recognition and Machine Learning. (Springer, New York).
https://www.microsoft.com/en-us/research/people/cmbishop/prml-book.

Breiman, L. (2001): Random forests. Mach. Learn. 451, 5–32. doi:10.1023/A:1010933404324.
Cheeseman, P. (1988): An inquiry into computer understanding. Comput. Intell. 42, 58–66.

doi:10.1111/j.1467-8640.1988.tb00091.x.
— (2018): On Bayesian model selection. In: Wolpert (2018): 315–330. First publ. 1995.
Chen, H., la Engkvist, Wang, Y., Olivecrona, M., Blaschke, T. (2018): The rise of deep learning

in drug discovery. Drug Discov. Today 236, 1241–1250. doi:10.1016/j.drudis.2018.
01.039.

Correa Bahnsen, A., Aouada, D., Ottersten, B. (2015): Example-dependent cost-sensitive

decision trees. Expert Syst. Appl. 4219, 6609–6619. doi:10.1016/j.eswa.2015.04.042.
Damien, P., Dellaportas, P., Polson, N. G., Stephens, D. A., eds. (2013): Bayesian Theory

and Applications. (Oxford University Press, Oxford). doi:10.1093/acprof:oso/
9780199695607.001.0001.

David, L., Thakkar, A., Mercado, R., Engkvist, O. (2020): Molecular representations in AI-driven

drug discovery: a review and practical guide. J. Cheminf. 12, 56. doi:10.1186/s13321-020-
00460-5.

Dawid, A. P. (2013): Exchangeability and its ramifications. In: Damien, Dellaportas, Polson,
Stephens (2013): ch. 2:19–29. doi:10.1093/acprof:oso/9780199695607.003.0002.

de Finetti, B. (1929): Funzione caratteristica di un fenomeno aleatorio. In: atti del congresso

internazionale dei matematici: ed. by S. Pincherle (Zanichelli, Bologna): 179–190.
https://www.mathunion.org/icm/proceedings, http://www.brunodefinetti.it/
Opere.htm. Transl. in Alvarez-Melis, Broderick (2015). See also de Finetti (1930).

48

https://doi.org/10.48550/arXiv.1512.01229
https://doi.org/10.1145/357830.357849
http://www.scs.carleton.ca/~soma/id-2007w/readings/axelsson-base-rate.pdf
http://www.scs.carleton.ca/~soma/id-2007w/readings/axelsson-base-rate.pdf
https://doi.org/10.1016/0001-6918(80)90046-3
http://www.cs.ucl.ac.uk/staff/d.barber/brml
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.6019/CHEMBL.database.20
https://doi.org/10.1093/acprof:oso/9780199694587.001.0001
https://doi.org/10.1093/acprof:oso/9780199694587.001.0001
https://doi.org/10.1002/9780470316870
https://doi.org/10.1002/9780470316870
https://www.microsoft.com/en-us/research/people/cmbishop/prml-book
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/j.1467-8640.1988.tb00091.x
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.eswa.2015.04.042
https://doi.org/10.1093/acprof:oso/9780199695607.001.0001
https://doi.org/10.1093/acprof:oso/9780199695607.001.0001
https://doi.org/10.1186/s13321-020-00460-5
https://doi.org/10.1186/s13321-020-00460-5
https://doi.org/10.1093/acprof:oso/9780199695607.003.0002
https://www.mathunion.org/icm/proceedings
http://www.brunodefinetti.it/Opere.htm
http://www.brunodefinetti.it/Opere.htm


Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

de Finetti, B. (1930): Funzione caratteristica di un fenomeno aleatorio. Atti Accad. Lincei: Sc.
Fis. Mat. Nat. IV5, 86–133. http://www.brunodefinetti.it/Opere.htm. Summary in
de Finetti (1929).

— (1937): La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré 71,
1–68. http://www.numdam.org/item/AIHP_1937__7_1_1_0. Transl. in Kyburg, Smokler
(1980), pp. 53–118, by Henry E. Kyburg, Jr.

de Valpine, P., Paciorek, C., Turek, D., Michaud, N., Anderson-Bergman, C., Obermeyer, F.,
Wehrhahn Cortes, C., Rodríguez, A., et al. (2021): NIMBLE: MCMC, particle filtering, and

programmable hierarchical modeling. https://cran.r-project.org/package=nimble,
doi:10.5281/zenodo.1211190, https://r-nimble.org. First publ. 2016.

Drummond, C., Holte, R. C. (2005): Severe class imbalance: why better algorithms aren’t

the answer. Eur. Conf. Mach. Learn. 2005, 539–546. doi:10.1007/11564096_52,
https://webdocs.cs.ualberta.ca/~holte/Publications.

Dunson, D. B., Bhattacharya, A. (2011): Nonparametric Bayes regression and classification

through mixtures of product kernels. In: Bernardo, Bayarri, Berger, Dawid, Hecker-
man, Smith, West (2011): 145–158. doi:10.1093/acprof:oso/9780199694587.003.
0005, older version at https://www.researchgate.net/publication/228447342_
Nonparametric_Bayes_Regression_and_Classification_Through_Mixtures_of_
Product_Kernels.

Dunson, D. B., Pillai, N., Park, J.-H. (2007): Bayesian density regression. J. R. Stat. Soc. B 692,
163–183.

Dyrland, K., Lundervold, A. S., Porta Mana, P. G. L. (2022a): Does the evaluation stand

up to evaluation?: A first-principle approach to the evaluation of classifiers. Open Science
Framework doi:10.31219/osf.io/7rz8t.

— (2022b): Bayesian augmentation of machine-learning algorithms: supplementary data. Open
Science Framework doi:10.17605/osf.io/mfz5w.

Elkan, C. (2001): The foundations of cost-sensitive learning. In: Proceedings of the seventeenth

international joint conference on artificial intelligence, ĳcai 2001, ed. by B. Nebel (Kaufmann):
973–978. https://www.ijcai.org/Proceedings/01/IJCAI-2001-k.pdf.

Fenton, N., Neil, M. (2019): Risk Assessment and Decision Analysis with Bayesian Networks,
2nd ed. (CRC Press, Boca Raton, USA). doi:10.1201/b21982. First publ. 2013.

Ferguson, T. S. (1983): Bayesian density estimation by mixtures of normal distributions. In:
Rizvi, Rustagi, Siegmund (1983): 287–302.

Fong, E., Holmes, C. C. (2020): On the marginal likelihood and cross-validation. Biometrika
1072, 489–496. doi:10.1093/biomet/asz077.

Gal, Y., Ghahramani, Z. (2016): Dropout as a Bayesian approximation: representing model

uncertainty in deep learning. Proc. Mach. Learn. Res. 48, 1050–1059. See also Appendix
at arXiv doi:10.48550/arXiv.1506.02157.

Good, I. J. (1950): Probability and the Weighing of Evidence. (Griffin, London).
— (1966): How to estimate probabilities. J. Inst. Maths. Applics 24, 364–383.
Good, I. J., Gaskins, R. A. (1971): Nonparametric roughness penalties for probability densities.

Biometrika 582, 255–277. doi:10.1093/biomet/58.2.255.
Green, D. V. S. (2019): Using machine learning to inform decisions in drug discovery: an industry

perspective. In: Machine learning in chemistry: data-driven algorithms, learning systems,

and predictions, ed. by E. O. Pyzer-Knapp, T. Laino (American Chemical Society,
Washington, DC): ch. 5:81–101. doi:10.1021/bk-2019-1326.ch005.

49

http://www.brunodefinetti.it/Opere.htm
http://www.numdam.org/item/AIHP_1937__7_1_1_0
https://cran.r-project.org/package=nimble
https://doi.org/10.5281/zenodo.1211190
https://r-nimble.org
https://doi.org/10.1007/11564096_52
https://webdocs.cs.ualberta.ca/~holte/Publications
https://doi.org/10.1093/acprof:oso/9780199694587.003.0005
https://doi.org/10.1093/acprof:oso/9780199694587.003.0005
https://www.researchgate.net/publication/228447342_Nonparametric_Bayes_Regression_and_Classification_Through_Mixtures_of_Product_Kernels
https://www.researchgate.net/publication/228447342_Nonparametric_Bayes_Regression_and_Classification_Through_Mixtures_of_Product_Kernels
https://www.researchgate.net/publication/228447342_Nonparametric_Bayes_Regression_and_Classification_Through_Mixtures_of_Product_Kernels
https://doi.org/10.31219/osf.io/7rz8t
https://doi.org/10.17605/osf.io/mfz5w
https://www.ijcai.org/Proceedings/01/IJCAI-2001-k.pdf
https://doi.org/10.1201/b21982
https://doi.org/10.1093/biomet/asz077
https://doi.org/10.48550/arXiv.1506.02157
https://doi.org/10.1093/biomet/58.2.255
https://doi.org/10.1021/bk-2019-1326.ch005


Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Gregory, P. C. (2005): Bayesian Logical Data Analysis for the Physical Sciences: A Comparative

Approach with Mathematica Support. (Cambridge University Press, Cambridge). doi:
10.1017/CBO9780511791277.

Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. A., eds. (2006): Feature Extraction: Foundations

and Applications. (Springer, Berlin). doi:10.1007/978-3-540-35488-8.
Hailperin, T. (1996): Sentential Probability Logic: Origins, Development, Current Status, and

Technical Applications. (Associated University Presses, London).
— (2011): Logic with a Probability Semantics: Including Solutions to Some Philosophical

Problems. (Lehigh University Press, Plymouth, UK).
He, K., Zhang, X., Ren, S., Sun, J. (2016): Deep residual learning for image recognition. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR) 2016, 770–778. doi:10.1109/CVPR.2016.90,
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_
Learning_CVPR_2016_paper.html.

Hingorani, A. D., Kuan, V., Finan, C., Kruger, F. A., Gaulton, A., Chopade, S., Sofat, R.,
MacAllister, R. J., et al. (2019): Improving the odds of drug development success through

human genomics: modelling study. Sci. Rep. 9, 18911. doi:10.1038/s41598-019-54849-w.
Hjort, N. L. (1996): Bayesian approaches to non- and semiparametric density estimation. In:

Bernardo, Berger, Dawid, Smith (1996): 223–253. With discussion by M. Lavine, M.
Gasparini, and reply.

Hunink, M. G. M., Weinstein, M. C., Wittenberg, E., Drummond, M. F., Pliskin, J. S.,
Wong, J. B., Glasziou, P. P. (2014): Decision Making in Health and Medicine: Integrating

Evidence and Values, 2nd ed. (Cambridge University Press, Cambridge). doi:10.1017/
CBO9781139506779. First publ. 2001.

Ishwaran, H., Zarepour, M. (2002): Dirichlet prior sieves in finite normal mixtures. Stat.
Sinica 123, 941–963. http://www3.stat.sinica.edu.tw/statistica/J12n3/j12n316/
j12n316.htm.

Jaynes, E. T. (2003): Probability Theory: The Logic of Science. (Cambridge University
Press, Cambridge). Ed. by G. Larry Bretthorst. First publ. 1994. doi:10 . 1017 /
CBO9780511790423, https://archive.org/details/XQUHIUXHIQUHIQXUIHX2, http:
//www-biba.inrialpes.fr/Jaynes/prob.html.

Jeffreys, H. (1983): Theory of Probability, 3rd ed. with corrections. (Oxford University Press,
London). First publ. 1939.

Jenny, M. A., Keller, N., Gigerenzer, G. (2018): Assessing minimal medical statistical literacy

using the Quick Risk Test: a prospective observational study in Germany. BMJ Open 8,
e020847, e020847corr2. doi:10.1136/bmjopen-2017-020847, doi:10.1136/bmjopen-
2017-020847corr2.

Johnson, N. L., Kemp, A. W., Kotz, S. (2005): Univariate Discrete Distributions, 3rd ed. (Wiley,
New York). First publ. 1969.

Johnson, N. L., Kotz, S., Balakrishnan, N. (1994): Continuous Univariate Distributions. Vol. 1,
2nd ed. (Wiley, New York). First publ. 1970.

— (1995): Continuous Univariate Distributions. Vol. 2, 2nd ed. (Wiley, New York). First
publ. 1970.

— (1996): Discrete Multivariate Distributions. (Wiley, New York). First publ. 1969 in chapter
form.

Kotz, S., Balakrishnan, N., Johnson, N. L. (2000): Continuous Multivariate Distributions.

Vol. 1: Models and Applications, 2nd ed. (Wiley, New York). First publ. 1972 by N. L.
Johnson and S. Kotz.

50

https://doi.org/10.1017/CBO9780511791277
https://doi.org/10.1017/CBO9780511791277
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1109/CVPR.2016.90
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1038/s41598-019-54849-w
https://doi.org/10.1017/CBO9781139506779
https://doi.org/10.1017/CBO9781139506779
http://www3.stat.sinica.edu.tw/statistica/J12n3/j12n316/j12n316.htm
http://www3.stat.sinica.edu.tw/statistica/J12n3/j12n316/j12n316.htm
https://doi.org/10.1017/CBO9780511790423
https://doi.org/10.1017/CBO9780511790423
https://archive.org/details/XQUHIUXHIQUHIQXUIHX2
http://www-biba.inrialpes.fr/Jaynes/prob.html
http://www-biba.inrialpes.fr/Jaynes/prob.html
https://doi.org/10.1136/bmjopen-2017-020847
https://doi.org/10.1136/bmjopen-2017-020847corr2
https://doi.org/10.1136/bmjopen-2017-020847corr2


Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Koutsoukas, A., Monaghan, K. J., Li, X., Huan, J. (2017): Deep-learning: investigating deep

neural networks hyper-parameters and comparison of performance to shallow methods for

modeling bioactivity data. J. Cheminf. 9, 42. doi:10.1186/s13321-017-0226-y.
Kruskal, W., Mosteller, F. (1979a): Representative sampling, I: Non-scientific literature. Int. Stat.

Rev. 471, 13–24. See also Kruskal, Mosteller (1979b,c; 1980).
— (1979b): Representative sampling, II: Scientific literature, excluding statistics. Int. Stat. Rev.

472, 111–127. See also Kruskal, Mosteller (1979a,c; 1980).
— (1979c): Representative sampling, III: The current statistical literature. Int. Stat. Rev. 473,

245–265. See also Kruskal, Mosteller (1979a,b; 1980).
— (1980): Representative sampling, IV: The history of the concept in statistics, 1895–1939. Int.

Stat. Rev. 482, 169–195. See also Kruskal, Mosteller (1979a,b,c).
Kyburg Jr., H. E., Smokler, H. E., eds. (1980): Studies in Subjective Probability, 2nd ed. (Robert

E. Krieger, Huntington, USA). First publ. 1964.
Landrum, G., Kelley, B., Tosco, P., sriniker, NadineSchneider, Vianello, R., gedeck, adalke,

et al. (2017): RDKit: open-source cheminformatics software. https://www.rdkit.org.
Release doi:10.5281/zenodo.268688.

Lindley, D. V. (1988): Making Decisions, 2nd ed. (Wiley, London). First publ. 1971.
Lindley, D. V., Novick, M. R. (1981): The role of exchangeability in inference. Ann. Stat. 91,

45–58. doi:10.1214/aos/1176345331.
Ling, C. X., Sheng, V. S. (2017): Cost-sensitive learning. In: Sammut, Webb (2017): 285–289.

doi:10.1007/978-1-4899-7687-1_181.
Luce, R. D., Raiffa, H. (1957): Games and Decisions: introduction and critical survey. (Wiley,

New York).
Lundervold, A. S., Lundervold, A. (2019): An overview of deep learning in medical imaging

focusing on MRI. Z. Med. Phys. 292, 102–127. doi:10.1016/j.zemedi.2018.11.002.
MacKay, D. J. C. (1992a): The evidence framework applied to classification networks. Neural

Comput. 45, 720–736. http://www.inference.phy.cam.ac.uk/mackay/PhD.html, doi:
10.1162/neco.1992.4.5.720.

— (1992b): Bayesian interpolation. Neural Comput. 43, 415–447. http://www.inference.
phy.cam.ac.uk/mackay/PhD.html, doi:10.1162/neco.1992.4.3.415.

— (1992c): A practical Bayesian framework for backpropagation networks. Neural Comput.
43, 448–472. http : / / www . inference . phy . cam . ac . uk / mackay / PhD . html, doi:
10.1162/neco.1992.4.3.448.

— (2005): Information Theory, Inference, and Learning Algorithms, Version 7.2 (4th pr.)
(Cambridge University Press, Cambridge). https://www.inference.org.uk/itila/
book.html. First publ. 1995.

Müller, P., Quintana, F. A. (2004): Nonparametric Bayesian data analysis. Stat. Sci. 191, 95–110.
http://www.mat.puc.cl/~quintana/publications/publications.html.

Murphy, K. P. (2012): Machine Learning: A Probabilistic Perspective. (MIT Press, Cambridge,
USA). https://probml.github.io/pml-book/book0.html.

Neal, R. M. (1993): Probabilistic inference using Markov chain Monte Carlo methods. Tech.
rep. CRG-TR-93-1. (University of Toronto, Toronto). http://www.cs.utoronto.ca/
~radford/review.abstract.html, https://omega0.xyz/omega8008/neal.pdf.

Neal, R. M., Zhang, J. (2006): High dimensional classification with Bayesian neural networks and

Dirichlet diffusion trees. In: Guyon, Gunn, Nikravesh, Zadeh (2006): ch. 10:265–296. doi:
10.1007/978-3-540-35488-8_11.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., et al.
(2019): PyTorch: an imperative style, high-performance deep learning library. Adv. Neural

51

https://doi.org/10.1186/s13321-017-0226-y
https://www.rdkit.org
https://doi.org/10.5281/zenodo.268688
https://doi.org/10.1214/aos/1176345331
https://doi.org/10.1007/978-1-4899-7687-1_181
https://doi.org/10.1016/j.zemedi.2018.11.002
http://www.inference.phy.cam.ac.uk/mackay/PhD.html
https://doi.org/10.1162/neco.1992.4.5.720
https://doi.org/10.1162/neco.1992.4.5.720
http://www.inference.phy.cam.ac.uk/mackay/PhD.html
http://www.inference.phy.cam.ac.uk/mackay/PhD.html
https://doi.org/10.1162/neco.1992.4.3.415
http://www.inference.phy.cam.ac.uk/mackay/PhD.html
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://www.inference.org.uk/itila/book.html
https://www.inference.org.uk/itila/book.html
http://www.mat.puc.cl/~quintana/publications/publications.html
https://probml.github.io/pml-book/book0.html
http://www.cs.utoronto.ca/~radford/review.abstract.html
http://www.cs.utoronto.ca/~radford/review.abstract.html
https://omega0.xyz/omega8008/neal.pdf
https://doi.org/10.1007/978-3-540-35488-8_11
https://doi.org/10.1007/978-3-540-35488-8_11


Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Inf. Process. Syst. (NIPS) 32, 8026–8037. https://papers.nips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library. https:
//pytorch.org.

Pearl, J. (1988): Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
rev. 2nd pr. (Kaufmann, San Francisco). doi:10.1016/C2009-0-27609-4.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., et al. (2011): Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 1285, 2825–2830. https://www.jmlr.org/papers/v12/pedregosa11a.html.
https://scikit-learn.org.

Porta Mana, P. G. L. (2019): A relation between log-likelihood and cross-validation log-scores.
Open Science Framework doi:10.31219/osf.io/k8mj3, hal:hal-02267943, arXiv doi:
10.48550/arXiv.1908.08741.

Pratt, J. W., Raiffa, H., Schlaifer, R. (1996): Introduction to Statistical Decision Theory, 2nd pr.
(MIT Press, Cambridge, USA). First publ. 1995.

Provost, F. (2000): Machine learning from imbalanced data sets 101. Tech. rep. WS-00-05-001.
(AAAI, Menlo Park, USA). https://aaai.org/Library/Workshops/2000/ws00-05-
001.php.

R Core Team (2023): R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. https://www.R-project.org. First released 1995.

Raiffa, H. (1970): Decision Analysis: Introductory Lectures on Choices under Uncertainty, 2nd
pr. (Addison-Wesley, Reading, USA). First publ. 1968.

Raiffa, H., Schlaifer, R. (2000): Applied Statistical Decision Theory, repr. (Wiley, New York).
First publ. 1961.

Rasmussen, C. E. (1999): The infinite Gaussian mixture model. Adv. Neural Inf. Process.
Syst. (NIPS) 12, 554–560. https://www.seas.harvard.edu/courses/cs281/papers/
rasmussen-1999a.pdf.

Rizvi, M. H., Rustagi, J. S., Siegmund, D., eds. (1983): Recent Advances in Statistics: Papers in

Honor of Herman Chernoff on His Sixtieth Birthday. (Academic Press, New York).
Rogers, D., Hahn, M. (2010): Extended-connectivity fingerprints. J. Chem. Inf. Model. 505,

742–754. doi:10.1021/ci100050t.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

et al. (2015): ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 1153,
211–252. doi:10.1007/s11263-015-0816-y. https://www.image-net.org.

Russell, S. J., Norvig, P. (2022): Artificial Intelligence: A Modern Approach, Fourth Global
ed. (Pearson, Harlow, UK). http://aima.cs.berkeley.edu/global-index.html,
https://archive.org/details/artificial-intelligence-a-modern-approach-
4th-edition. First publ. 1995.

Sammut, C., Webb, G. I., eds. (2017): Encyclopedia of Machine Learning and Data Mining,
2nd ed. (Springer, Boston). doi:10.1007/978-1-4899-7687-1. First publ. 2011.

Self, M., Cheeseman, P. C. (1987): Bayesian prediction for artificial intelligence. In: Proceedings

of the third conference on uncertainty in artificial intelligence (uai’87), ed. by J. Lemmer,
T. Levitt, L. Kanal (AUAI Press, Arlington, USA): 61–69. Repr. in arXiv doi:10.48550/
arXiv.1304.2717.

Sink, R., Gobec, S., Pečar, S., Zega, A. (2010): False positives in the early stages of drug discovery.
Curr. Med. Chem. 1734, 4231–4255. doi:10.2174/092986710793348545.

Smith, J. E., Winkler, R. L. (2006): The optimizer’s curse: skepticism and postdecision surprise in

decision analysis. Manag. Sci. 523. doi:10.1287/mnsc.1050.0451.

52

https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://pytorch.org
https://pytorch.org
https://doi.org/10.1016/C2009-0-27609-4
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://scikit-learn.org
https://doi.org/10.31219/osf.io/k8mj3
https://hal.archives-ouvertes.fr/hal-02267943
https://doi.org/10.48550/arXiv.1908.08741
https://doi.org/10.48550/arXiv.1908.08741
https://aaai.org/Library/Workshops/2000/ws00-05-001.php
https://aaai.org/Library/Workshops/2000/ws00-05-001.php
https://www.R-project.org
https://www.seas.harvard.edu/courses/cs281/papers/rasmussen-1999a.pdf
https://www.seas.harvard.edu/courses/cs281/papers/rasmussen-1999a.pdf
https://doi.org/10.1021/ci100050t
https://doi.org/10.1007/s11263-015-0816-y
https://www.image-net.org
http://aima.cs.berkeley.edu/global-index.html
https://archive.org/details/artificial-intelligence-a-modern-approach-4th-edition
https://archive.org/details/artificial-intelligence-a-modern-approach-4th-edition
https://doi.org/10.1007/978-1-4899-7687-1
https://doi.org/10.48550/arXiv.1304.2717
https://doi.org/10.48550/arXiv.1304.2717
https://doi.org/10.2174/092986710793348545
https://doi.org/10.1287/mnsc.1050.0451


Dyrland, Lundervold, Porta Mana Probability transducer for classifiers

Sox, H. C., Higgins, M. C., Owens, D. K. (2013): Medical Decision Making, 2nd ed. (Wiley,
New York). doi:10.1002/9781118341544. First publ. 1988.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., Feuston, B. P. (2003): Random

forest: a classification and regression tool for compound classification and QSAR modeling. J.
Chem. Inf. Comput. Sci. 436, 1947–1958. doi:10.1021/ci034160g.

Thorburn, D. (1986): A Bayesian approach to density estimation. Biometrika 731, 65–75.
Wald, A. (1949): Statistical decision functions. Ann. Math. Stat. 202, 165–205. doi:10.1214/

aoms/1177730030.
Walker, S. G. (2013): Bayesian nonparametrics. In: Damien, Dellaportas, Polson, Stephens

(2013): ch. 13:249–270.
Wolpert, D. H., ed. (2018): The Mathematics of Generalization, repr. (CRC Press, Boca Raton,

USA). doi:10.1201/9780429492525. First publ. 1995.

53

https://doi.org/10.1002/9781118341544
https://doi.org/10.1021/ci034160g
https://doi.org/10.1214/aoms/1177730030
https://doi.org/10.1214/aoms/1177730030
https://doi.org/10.1201/9780429492525

	1 The inadequacy of common classification approaches
	2 An output-to-probability transducer
	2.1 Main idea: algorithm output as a proxy for the features
	2.2 Calibration data
	2.3 Calculation of the probabilities

	3 Utility-based classification
	4 Demonstration
	4.1 Overview
	4.2 Probability-transducer curves
	Random forest
	Convolutional neural network

	4.3 Results on demonstration data
	Confusion matrices – and a peculiar situation
	Utility yields

	4.4 From `inactive vs active' to more general decisions

	5 Additional uses of the probability-transducer: an overview
	5.1 Variability of the transducer's probability curve
	5.2 Expected utility of the classifying algorithm
	5.3 Discriminative and generative modes

	6 Summary and discussion
	Future directions

	Author contributions
	Thanks
	A Algorithms and data used in the demonstration
	A.1 Data
	A.2 Pre-processing
	A.3 Prediction
	A.4 Chosen classifiers
	Random Forest
	Convolutional Neural Network

	A.5 Dateset split

	B Mathematical details and computation of the transducer
	B.1 Exchangeability and expression for the probability transducer
	B.2 Conditional probabilities
	B.3 Representation of the long-run distribution and Markov-chain Monte Carlo sampling
	B.4 Assessment of the possible variability of the probability
	B.5 Assessment of the augmented algorithm's long-run utility yield

	Bibliography

