
  

  

Abstract — Power transmission and distribution networks 
mostly span across harsh environments and thus, frequent 
faults and failures are observed, increasing the maintenance 
costs, pressing the authorities to provide electricity continuously 
and uninterruptedly. To this end, thorough field inspections 
with skilled personnel are regularly conducted, which are 
labor-intensive, costly and slow, whereby efficiency and staff 
safety cannot be always ensured. UAVs stem as a promising 
solution for power infrastructure inspection; however, their use 
is mostly limited by the fact that a remote pilot is in control of 
flight and mission processes, rendering reliable data acquisition 
in short time interval a tedious task. Despite research efforts for 
automating inspection procedures, these have not been widely 
adopted. In this study, we address this challenge by developing 
a Power Distribution Network Inspection Platform Using UAVs 
(ICARUS), based on a vision-based artificial intelligence toolkit, 
that integrates multiple sensors and automates many tasks, such 
as detection, tracking and identification of infrastructure 
components, gathering reliable spatial/time data associated to 
these components autonomously, safely and fast. 

Index Terms — power line inspection, vision-based 
inspection, autonomous navigation, unmanned aerial vehicles, 
deep learning. 

I. INTRODUCTION 

The heavy dependence of societies on electricity puts 
pressure on Electricity Authorities (EAs) for covering the 
increasing demands [1], [2]. To this end, power transmission 
and distribution networks are operated, including high voltage 
(HV), medium voltage (MV) and low voltage networks, 
which mostly span across harsh environments and are 
frequently exposed to extreme weather conditions [1], [3], [4]. 
In the majority of cases, power infrastructure is aged, 
inevitably leading to degradation, which in turn may cause 
fires and power outages [1], [4]. In the latter case, it has been 
estimated that half-hour and eight-hours blackouts in the US 
resulted in an average loss of about $16,000 and $94,000, 
respectively [4], while for some sectors, e.g. financial, the 
costs may reach the order of millions [5]. Finally, in an 
interconnected power grid, a local power outage is also likely 
to initiate a domino effect, affecting other regions as well [4]. 

To mitigate these effects, EAs proactively conduct 
thorough routine inspections with skilled personnel, which are 
dispatched across the power infrastructure either on foot or 
with helicopters [4]. Inspectors visually assess the condition 
of power components, by primarily employing binoculars and 
less frequently dedicated cameras to detect specific 
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conditions, such as increased temperatures and corona effects 
[1], [4], [6]. While this inspection approach has been mainly 
applied worldwide, there are pros and cons of these 
methodologies, i.e. patrol vs. helicopter-based. The former 
allows for longer evaluation times; thus, increasing detection 
rates at the cost for shorter network coverage, while the latter 
allows the inspection of a larger portion of the network, due to 
the increased speed, at the cost of lower detection rates [1]. 
Both approaches are potentially dangerous for the staff, 
require skilled personnel, i.e. for inspecting the network and 
for flying helicopters, while efficiency depends on the 
observation skills of the inspectors and fatigue levels [4]. 

In this context, UAVs stem as a promising and flexible 
solution for power infrastructure inspection, due to their 
inherent capability of providing high-quality data of power 
components, by being able to carry high-end cameras and to 
fly close to power lines. Moreover, the associated operating 
costs are significantly lower compared to conventional 
helicopter-based approaches [1]. While the concept of using 
UAVs for power infrastructure inspection dates back almost 
20 years ago [7], [8], significant attention has been given the 
last years, due to advances in UAV technology and their 
widespread commercial availability [1], [4]. Of particular 
interest is to build automatic and/or autonomous systems, with 
the ability to acquire data using multiple sensors, for better 
identifying defects in the network; however, such attempts 
had so far limited applicability [4]. These efforts are mainly 
constrained by the fact that a remote pilot is still in control of 
flight processes, e.g. data acquisition, by the ability to attach 
multiple payloads on the UAV, by computational limitations 
for real-time data processing, and by the large navigation and 
positioning error associated with a single Global Navigation 
Satellite System (GNSS), e.g. GPS [9]–[12]. 

In this study, we capitalize on recent advances in UAV 
technology and embedded hardware to develop ICARUS; a 
UAV-based platform which automates the inspection of 
power infrastructure network, both during data acquisition 
and analysis. With ICARUS, multiple sensors are integrated 
on the UAV, which is programmed to autonomously acquire 
data for mapping and identifying degradation conditions of 
the power distribution network. The developed system 
employs a hybrid navigation approach using multi-frequency 
and multi-constellation GNSSs to minimize navigation error, 
as well as deep learning algorithms for data analysis. 
Specifically, the employed UAV is equipped with an onboard 
embedded platform, which is responsible for real-time data 
processing to identify poles and record their accurate 
positions, since these are not precisely known. During 
inspection, ICARUS gathers data, which are subsequently 
processed with dedicated algorithms to identify insulators and 
their condition, to identify obstacles and assess vegetation 
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near the power line corridor, to detect power lines, as well as 
to generate digital surface models. 

II. RELATED WORK 

A. Vision-Based Inspection 
In [8], the concept of a small autonomous robotic vehicle 

was introduced, which could detect the power lines for 
providing control and guidance feedback, also allowing to 
draw power from the lines [13]. Furthermore, unmanned 
autonomous helicopter (UAH) systems have been developed 
using both visible-light and infrared cameras for providing a 
more complete view of the condition of power components 
[14], [15]. In a similar research line, vision sensors were 
employed to develop UAH with obstacle detection and 
avoidance capabilities, using a stereo camera along with a 
laser scanner [16]. The progress in UAV technology allowed 
for incorporating additional sensors, such as Inertial 
Measurement Unit (IMU) and LIDAR scanner for detecting 
and following power lines [17]. Among vision-based 
approaches for power infrastructure inspection, two main 
categories can be distinguished based on: (i) power line and 
(ii) pole detection methodologies. 

B. Inspection Based on Power Line Detection 
The incentive for developing power line detection 

methods was for the UAV to be able to perform tracking and 
following tasks; thus, traversing the power infrastructure 
without the need of GNSS coordinates. To this end, a 
methodology was developed based on a pulse coupled neural 
filter for creating an edge map by removing noise in the 
background [18]. The resulted edge map was used as a prior to 
the Hough transform and a knowledge-based clustering 
method was applied in the Hough space to detect straight lines 
representing power lines [18]. In another study, power line 
detection was performed using steerable filters followed by a 
line fitting refinement step. Afterwards, a guidance approach 
was applied for generating suitable control commands to align 
the UAV’s position directly above the power lines, with the 
lines being vertically oriented within the image [19]. In [20], a 
circle-based algorithm was developed for detecting power 
lines, which was subsequently expanded to additionally 
estimate their orientation and was employed in the design and 
development of an onboard navigation approach [21]. 
Conventional computer vision approaches, e.g. Hough 
transform, were employed in [22] to achieve real-time 
detection, while efforts in [23] were directed in proposing a 
methodology to automatically select optimal thresholds 
associated to those algorithms, based on certain power line 
characteristics. Apart from the aforementioned approaches, 
machine learning was also employed and a Convolutional 
Neural Network (CNN) was developed for detecting power 
lines in aerial images [24]. Recently, a fast single-shot line 
segment detector (LS-Net) was proposed, based on a 
feed-forward fully CNN to detect power lines, achieving a 
performance of 21.5 frames per second (FPS) on a 
state-of-the-art GPU [25]. A fast segmentation CNN was also 
employed, taking as input four channels, i.e. red, green, blue, 
infrared, leading to real-time detection (24 FPS) on a high-end 
GPU [26]. 

C. Inspection Based on Pole Detection 
While there were many attempts on detecting power lines, 

pole detection approaches received so far less scientific 
attention [4]. The developed methods rely on identifying the 
position of the pole within each frame and subsequently fixate 
the camera to the detected objects, or estimate real world 
distances. In [27], a corner detection algorithm was employed 
for detecting corners of the top of the pole and a matching 
approach was proposed for tracking the detected features 
across a series of images, ultimately fixating camera on the 
detected pole. On similar grounds, in [28] a detection 
methodology was employed to extract features using 
Histograms of Oriented Gradients, which were subsequently 
fed into two multi-layer perceptrons [29]. The first was 
responsible for separating foreground from background, while 
the second was used to distinguish among four different types 
of poles. Finally, tracking over consecutive frames was 
achieved with a hierarchical tracking method, aiming to 
maintain the detected pole inside camera’s Field of View 
(FOV) during inspection [28]. Pole detection was also 
performed in [30], where the Line Segment Detector (LSD) 
algorithm was employed for detecting line segments on a HV 
tower [31]. Following a matching procedure across a 
sequence of video frames, corresponding line segments were 
used to provide depth estimation based on the UAV’s 
ego-motion. 

D. Inspection Based on Integrated UAV Systems 
The aforementioned vision-based methodologies focused 

on detecting either power lines or poles to facilitate UAV 
navigation and control. Power line detection methods still lack 
sufficient accuracy for employment in real inspection 
scenarios, while pole detection-based navigation received less 
attention by researchers, as pointed out in a recent literature 
review [4]. Consequently, few studies presented an integrated 
approach for addressing power infrastructure inspection 
needs, consisting of detection, mapping and monitoring of 
power components, e.g. poles, insulators, power lines, as well 
as vegetation monitoring [4]. To this direction, in [32] a UAV 
was developed to automatically inspect power components 
and identifying vegetation near the power line corridor, as 
well as poor conductivity and hotspots on these components. 
To accomplish inspection, three computers were employed, 
one for controlling the flight plan, telemetry and commands 
between the UAV and the ground station, one for receiving 
visible-light video feed to measure distance from power lines 
to the surrounding vegetation, and one for receiving video 
feed from the infrared camera for detecting temperature 
differences. Both video feeds were acquired at 4 FPS, while 
inspection was performed in two phases; during the UAV’s 
flight to the designated position, as well as during its return to 
the take-off point. Specifically, the power lines were detected 
by applying basic computer vision algorithms, such as Otsu 
thresholding, morphological operations and Hough transform, 
with the resulting detections being subsequently used to 
estimate the distance between power lines and the UAV. The 
UAV’s height was determined using a laser altimeter, while 
data from the vision sensors along with stereoscopic analysis 
were employed for estimating the distance between power 
lines and vegetation [32]. In a series of studies, a research 
team proposed and applied an autonomous navigation 
approach for HV power infrastructure inspection [9], by 



  

detecting towers using the Faster Region-based CNN 
(Faster-RCNN) and the Kernelized Correlation Filters (KCF) 
for tracking across a sequence of images [10], [11]. In this 
context, Faster-RCNN was used to initially detect the tower 
and to correct tracking results obtained by KCF, due to the 
low processing speed (2 FPS) on the onboard hardware 
embedded module. Additionally, 2D images acquired from a 
monocular camera along with a projective model, were used 
to estimate velocity in 3D space, since GPS was not employed 
for navigation [12]. 

In this context, we capitalize on both pole detection 
methodologies with deep learning on an embedded platform 
to increase real-time processing speed, and multiple GNSSs to 
decrease navigation and positioning error. Consequently, the 
UAV autonomously navigates across the network (the pilot 
intervenes only in case of an emergency) without being 
supplied with the accurate locations of poles. During its 
mission, the UAV identifies each pole and records its accurate 
spatial position. Simultaneously, the integration of multiple 
sensors, facilitates the autonomous acquisition of various 
data, which are processed to identify degraded power 
components, to monitor vegetation and to map the power 
network. Within this framework, the development of all 
algorithms is performed without using dedicated hardware, 
e.g. high-end GPUs, to promote their application in real-time. 

III. SYSTEM ARCHITECTURE AND INSPECTION STRATEGY 

A. Equipment 
To implement ICARUS, an off-the-shelf UAV is used 

(DJI Matrice 300 RTK) as shown in Fig. 1, which is equipped 
with the multi-sensor (RGB and thermal) DJI Zenmuse H20T 
camera (mounted on the right downward gimbal) and the 
MicaSense Altum multispectral camera with the 
Downwelling Light Sensor (DLS) 2 (mounted on the left 
downward gimbal) [33]–[35]. Moreover, the UAV is capable 
of simultaneously receiving multiple GNSSs (GPS, Galileo, 
GLONASS, BeiDou), leading to improved navigation and 
positioning accuracy. Finally, the NVIDIA Jetson Xavier NX 
embedded platform (Fig. 1-inset), is mounted on top of the 

UAV for implementing deep learning and navigation 
algorithms in real-time, allowing the UAV to perform 
inspection procedures described in the following Section. It 
must be noted that the embedded platform does not affect 
GNSS availability, since the corresponding antennas are 
located on the UAV’s frame arms above the propellers, as 
indicated by the orange dotted arrows in Fig. 1. The red 
dashed arrows in Fig. 1, denote the transmission antennas for 
communication between the UAV and the remote controller. 

B. Inspection Procedure 
The ICARUS toolkit implements a vision-based UAV 

monitoring platform for MV power distribution network 
inspection, as illustrated in Fig. 2. The UAV is programmed to 
autonomously take-off, set a course over the sequence of 
poles to be inspected, collect data and safely return to the 
take-off point. Additionally, the precise locations of the poles 
are not a requirement; hence, the UAV can be supplied with 
the best-known coordinates using e.g. maps, satellite images, 
and the ICARUS toolkit can correct them. In the current 
implementation, pole locations can be provided with a 
tolerance of ±9m. 

1) Pole Detection 
For the pole detection task, the UAV flew at a constant 

height of approximately 50m above ground with the camera 
turned downwards. To identify poles (top-view) in videos 
under different background and lighting conditions, the 
tiny-You-Only-Look-Once (tiny-YOLO) v4 was employed. 

 

 
Fig. 1: Equipment for implementing ICARUS inspection platform, 
consisting of the DJI Matrice 300 RTK UAV, the multi-sensor (RGB and 
thermal) DJI Zenmuse H20T camera (right downward gimbal), the 
MicaSense Altum multispectral camera (left downward gimbal) and the 
NVIDIA Jetson Xavier NX embedded platform (top of UAV; figure inset). 
Orange dotted and red dashed arrows indicate the differential RTK and 
transmission antennas, respectively. 

 
Fig. 2: Process diagram of the ICARUS platform 



  

YOLO is a state-of-the-art, real-time object detection system, 
which was initially created by Darknet, an open source deep 
neural network framework coded in C and CUDA [36]. The 
employed tiny-YOLOv4 model was selected towards 
real-time pole detection and was chosen over its predecessor 
(v3 model), since it has been shown to perform better in terms 
of accuracy and performance [37]. 

The dataset used for training consisted of top-view 
imagery of poles from various locations of the Electricity 
Authority of Cyprus MV network. Several images in the 
dataset were captured across different seasons to account for a 
variety of background and lighting conditions, such as grass 
or ground, cloudy or sunny weather, as well as at different 
heights to account for variations in the UAV’s height during 
inspection; thus, achieving better accuracy. The detection 
model was trained using only one class, to detect the top-view 
of the pole labeled as a “pylon”. For the training, we used 
samples containing the T-shaped bar of the pole with the 
insulators and the top of pole, to minimize detections of other 
structures on the ground, i.e. wooden logs. Table I depicts the 
accuracy of the tiny-YOLOv4 model trained on our dataset, 
using various Intersection Over Union (IOU) thresholds. To 
achieve the reported Mean Average Precision (MAP) and 
IOU percentage values, a static threshold of 0.3 for the 
confidence was used. As can be seen, with a value of 0.25 for 
the IOU threshold, the detector achieved a MAP of 92%. To 
minimize false positives, which might lead in inaccurate 
position correction, a higher confidence threshold of 0.3 was 
selected, after several experimentation trials. It must be 
emphasized that pole detection was performed in real-time, by 
executing tiny-YOLOv4 using the OpenCV library [38] in 

C++, on the Jetson Xavier NX, achieving an average 
performance of 20 FPS, during real inspection tasks (top left 
of Fig. 3). A representative example of the detection is shown 
in Fig. 3a, where the green cross indicates the center of the 
current frame, and the light blue bounding box marks the 
position of the pole within each frame. 

2) Position Correction 
Following pole detection, the ICARUS toolkit online 

generated suitable flight control commands, according to the 
control procedure shown in Fig. 4, for aligning UAV directly 
above the pole, i.e. the image center (green cross) coincides 
with the center of the bounding box (light blue) with a 
tolerance of 50cm, as shown in Fig. 3b. To define this 
tolerance, we performed a different experiment by instructing 
the UAV to navigate to a specific location and hover for 
approximately 5 minutes, where position (latitude, longitude) 
was recorded at a frequency of 5Hz. Analysis of the data 
indicated that the error (μ±σ) from the target location was 
47±7.64cm; hence, we chose a value of 50cm for position 
correction. The control procedure (Fig. 4) consisted of 
identifying the position of pole using tiny-YOLOv4 in terms 
of its center coordinates (xt, yt), which were compared with 
 

 

  
(a) (b) 

Fig. 3: (a) Pole detection using the tinyYOLOv4 to process, in real-time, video frames on the NVIDIA Jetson Xavier NX embedded platform, and (b) Position 
correction by aligning the image center (green cross) to the center of bounding box (light blue). 

TABLE I.  TINY-YOLOV4 ACCURACY FOR POLE DETECTION TASK 

IOU Threshold Performance 
MAP (%) IOU (%) 

0.25 92 92 
0.5 62 84 

0.75 66 32 

 
Fig. 4: High level control procedure to align UAV directly above the 
detected pole, i.e. center of the image (xm, ym) with the center of the 
bounding box (xt, yt). 



  

the coordinates of the image’s center (xm, ym) to yield the 
position error (xe, ye), which in turn was minimized using a 
PID controller generating appropriate commands for the 
UAV to follow. At this adjusted position, spatial coordinates 
were recorded as the accurate coordinates of the current pole. 
To obtain high accuracy in recording spatial coordinates, 
multiple GNSSs such as GPS, Galileo, GLONASS, and 
BeiDou were enabled. 

3) Multispectral Imaging 
An important component of power infrastructure 

inspection, is the vegetation near and along the power line 
corridor, which if left unmonitored may result in electrical 
discharges, causing fires and damages to the network and the 
environment. To facilitate vegetation monitoring, a 
multispectral camera with five bands, i.e. blue, green, red, red 
edge, near infrared (NIR) was employed, and geotagged 
images of the power line corridor were acquired, as shown in 
Fig. 5. The acquired dataset was subsequently processed for 
estimating Normalized Difference Vegetation Index (NDVI) 
and Soil Adjusted Vegetation Index (SAVI) to assess 
vegetation condition near the power lines [39], [40]. 
Moreover, these images were used to create dense 3D models 
by employing photogrammetric techniques. To this end and 
to promote accurate 3D modelling, the multispectral camera 
was programmed to capture images with forward overlap 
≥85% during UAV navigation and maximal side overlap. 

NDVI is a classic approach for assessing the condition of 
vegetation in the inspected regions, while SAVI is an 
improved index accounting for different soil background 
conditions. Both indices are shown in (1), where L is an 
adjustment factor and was set to 0.5 [40]. Examples of both 
indices are illustrated in Fig. 6 using corresponding images 
shown in Fig. 5.  

Additionally, the dense 3D model of the inspected power line 
corridor was obtained by implementing different 
photogrammetric techniques on the acquired dataset, using 

the Agisoft Metashape software [41]. A snapshot of the 3D 
model is presented in Fig. 7 and can be used for identifying 
potential obstacles within the power line corridor. Both 
vegetation indices and 3D model were estimated offline, after 
inspection mission. 

4) Power Line Detection 
Power line detection has been previously employed as a 

method for navigation; however, due to inaccuracies as a 
result of different background conditions, it was rendered not 
suitable for fully autonomous navigation [4]. In this study, we 
used power line detection for counting the number of lines 
between each pair of poles, estimating an obstacle indication 
factor (Obstacle Index; OI). This index complements the 
analysis of 3D model for detecting obstacles, and was 
estimated for each pair of poles by counting whether all three 
lines in between were detected or not. Low OI values indicated 
that all three lines were continuously detected in the video 
feed, suggesting that vegetation does not obstruct the power 
line corridor. Conversely, high OI values create an alarm that 
lines could not be detected and then the operator can manually 
inspect the corresponding part of the video to make the final 
decisions. 

To identify power lines, we used the prior knowledge that 
these would be approximately vertical in the video feed, and 
developed an algorithm based on basic image filtering and 
morphological operations. The vertical direction of power 
lines was achieved by turning the UAV to the next pole’s yaw 
before navigating from the current to the next pole. Since, the 
UAV was flying 50m above ground, RGB video from the DJI 
Zenmuse H20T was acquired, which has optical zoom 
capabilities, in an attempt to better distinguish power lines 
from the background. 

 

     
Fig. 5: Multispectral imaging of the power line corridor. From left to right the blue (475±32nm), green (560±27nm), red (668±14nm), red edge 
(717±12nm), and near infrared (842±57) channels are shown [35]. 

NDVI = (NIR – Red) / (NIR + Red) 

SAVI = (1 + L) * (NIR – Red) / (NIR + Red + L) 
(1) ALGORITHM 1: ALGORITHM TO IDENTIFY POWER LINES IN RGB VIDEO 

1: procedure LINE DETECTION (frame) 

2: Convert frame from RGB to grayscale 

3: Detect edges with Laplacian kernel Lk 

4: Apply hit-miss transform to discard noisy lines using 
structuring elements B1 and B2 

5: Apply morphological opening to filter detected lines with 
structuring element B3 

6: Identify lines using probabilistic Hough transform [42] 

7: Discard lines which have length shorter than 50 pixels, and 
keep lines whose angle of orientation is between 85° and 95° 

with 

 

  
Fig. 6: NDVI (left) and SAVI (right) using images shown in Fig. 5. 



  

The algorithm was applied to each one frame as described in 
Algorithm 1. Specifically, following conversion of RGB 
image to grayscale, edges were detected using the Laplacian 
operator, without applying filtering, e.g. Gaussian smoothing, 
to avoid blurring the power lines. We opted for Laplacian 
instead of alternative first-order-difference operators, e.g. 
Sobel, Prewitt, to detect the edges using a single kernel instead 
of two as in the latter case, for minimizing processing time, 
despite the fact that currently these algorithms are applied 
offline. The incentive for such approach was to ultimately 
perform real-time power line detection on the NVIDIA Jetson 
Xavier NX platform. 

The result of edge detection consisted of noisy edges as 
well; hence, we applied the hit-miss transform to discard any 
spurious lines, according to (2). 

 (2) 
where    is the erosion operator, Ac denotes the complement 
and B = (B1, B2), where B1 and B2 operate on the foreground 
and background, respectively, and are defined in Algorithm 1. 
The motivation for defining such a kernel, is that we aimed at 
identifying those pixels in the foreground which are vertically 
connected (hit with structuring element B1) and at the same 
time their adjacent pixels belong to the background (miss with 
structuring element B2). Following the hit-miss transform, a 
morphological opening operation with a vertical structuring 
element was additionally applied, to refine the detected power 
lines as described in (3). 

 (3) 

where    is the dilation operation and B3 is defined in 
Algorithm 1. The procedure is illustrated in Fig. 8, including 
the initial RGB (Fig. 8a) and the corresponding grayscale 
image (Fig. 8b). The application of Laplacian operator yielded 
in a very noisy result (Fig. 8c) due to the absence of 
smoothing; nevertheless, the structure of interest (power lines) 
can be still visually identified (they are vertically oriented in 
the image). The extraction of power lines was achieved by 
applying the hit-miss transform (Fig. 8d) using properly 
designed structuring elements B1 and B2, while the application 
of morphological opening (Fig. 8e) aimed at refining the 
obtained results for providing probabilistic Hough transform 
with best estimates of the lines. Finally, the identified power 
lines are shown in green in Fig. 8f after applying two filtering 
criteria with respect to the length and orientation of lines, as 
mentioned in Algorithm 1 (step 7). Additional power line 
detection results are shown in Fig. A1 of the Appendix. 

Apart from the aforementioned algorithm to detect power 
lines, we also examined alternative algorithms commonly 
employed for power line detection, such as the use of Canny 
edge detector instead of Laplacian (step 3 in Algorithm 1), the 
LSD and Edge Drawing (ED) algorithms [31], [43]. In this 
case, comparisons were made in terms of OI, since in the 
inspected region no obstacles were within the power line 
corridor, as well as in terms of processing time. 

 

 
Fig. 7: Dense 3D model resulted by implementing photogrammetric algorithms on the multispectral dataset. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 8: Procedure for detecting power lines including the (a) initial RGB image, (b) corresponding grayscale image, (c) application of Laplacian operator to 
detect edges, (d) application of hit-miss transform to identify power lines, (e) application of morphological opening to refine results of hit-miss transform 
and (f) the finally detected lines, shown in green, using the probabilistic Hough transform. 



  

The corresponding results are illustrated in Table II, where 
inspected poles are identified by their unique IDs, i.e. G2, G3, 
G4, G5 and G6. Algorithms were executed offline, on the 
same reference computer with an Intel i5-7300 CPU, 8GB 
RAM running Ubuntu Linux operating system. As can be 
seen for the inspected poles, the Laplacian approach yielded 
similar, and marginally better results in some cases, for the 
OI, to the other methods at a significantly lower processing 
time.

 

5) Pole Inspection 
Following identification and adjustment of the spatial 

coordinates of a set of poles, the UAV initiated a “Return 
Back” command using the corrected coordinates, to navigate 
to each pole for performing a more fine-grained inspection, 
acquiring high-quality data from the vision sensors. In this 
case, the navigation path differed from the path followed 
during the previous tasks, by following a cyclical trajectory 
above each pole, to acquire video footages from RGB and 
thermal sensors to provide a 360° view, for identifying power 
components and conditions of increased temperature. An 
example of the 2D trajectory is shown in Fig. 9a-b for 
position correction and pole inspection, respectively, while 
Fig. 9c illustrates the 3D trajectory during pole inspection, 
where the UAV navigated above each pole in a circular 
motion, also considering changes in terrain height. The 
locations of the poles are not disclosed due to confidentiality 
reasons.  

The acquired thermal and RGB video footages were both 
processed offline. Analyzing thermal videos, assists in 
identifying faulty power components, by recognizing 
increased temperature of the T-shaped bar on each pole. In 
Fig. 10-bottom panel, a representative example of image from 
the thermal camera is illustrated. On the other hand, RGB 
videos were processed to identify the power components, e.g. 
insulators and the pole itself, for detecting defects. 

 
(a) (b) 

 
(c) 

Fig. 9: 2D trajectories during (a) position correction and (b) pole inspection, 
and (c) 3D trajectory for inspecting each pole separately. Red marks indicate 
the position of poles, also identified by their IDs, while in (a) movements 
near the poles demonstrate position correction. The locations of the poles are 
not disclosed due to confidentiality reasons. 

 
 

 
Fig. 10: Power components detection (insulators, pole; top-panel) and 
thermal imaging (bottom-panel) 

TABLE II.  PERFORMANCE OF ALGORITHMS IN IDENTIFYING POWER 
LINES, IN TERMS OF OBSTACLE INDEX (OI) AND EXECUTION TIME 

Method Pole Pair OI (%) Average Execution Time 
(ms/frame) 

Laplacian 

G2-G3 10.70 58 
G3-G4 15.15 52 
G4-G5 10.49 52 
G5-G6 12.01 60 

Canny 

G2-G3 10.36 184 
G3-G4 15.76 153 
G4-G5 8.71 157 
G5-G6 12.01 187 

LSD [31] 

G2-G3 11.31 143 
G3-G4 21.26 178 
G4-G5 6.57 172 
G5-G6 10.78 199 

ED [43] 

G2-G3 17.45 183 
G3-G4 82.42 188 
G4-G5 0 174 
G5-G6 30.12 204 



  

To this end, a new detection model was trained based on the 
full YOLOv4 model instead of the tiny-YOLOv4, to achieve 
superior accuracy. Training dataset consisted of 1000 images, 
which were exported from the corresponding RGB videos, 
from various poles during testing of the implementation. The 
model was trained to detect the pole and different kinds of 
insulators, as shown in Fig. 10-top panel, using IOU and 
confidence thresholds of 0.5, achieving a MAP of 79.2%. 
Post-processing of detection results can provide further 
information on the condition of insulators by identifying 
defects, such as cracks. 

6) System Output 
The output of the inspection procedure was analyzed to 

provide actionable decisions related to proactive maintenance 
of the power network, and consisted of a status report with the 
accurate spatial coordinates of the poles, the detection of 
power components (Fig. 10-upper panel), such as different 
types of insulators and the pole itself, which along with 
thermal imaging data (Fig. 10-lower panel) were employed to 
identify degraded material. Moreover, the multispectral 
dataset was processed to calculate vegetation indices (Fig. 6) 
and generate 3D models of the power line corridor (Fig. 7), 
which along with power line detection were used for 
identifying potential obstacles near the power lines. In the 
status report all visited poles are documented and identified 
by their unique ID (as provided by EAs) and their accurate 
coordinates with 10 digits precision. Additional information 
includes whether the pole could be detected during the “Pole 
Detection” task, as well as the estimated OI values, 
corresponding to the detection of power lines. 

IV. CONCLUSIONS AND FUTURE WORK 
In this study we presented ICARUS; an automatic 

autonomous power infrastructure inspection approach using 
UAV. ICARUS integrates multiple vision sensors, is 
equipped with a state-of-the-art embedded platform to 
facilitate real-time data processing, and is based on a hybrid 
navigation approach (multiple GNSSs and vision-based) to 
perform inspection. With this approach, acquisition of 
high-quality data was facilitated in a safe and fast manner, 
and was applied for autonomously inspecting part of the MV 
distribution network in Cyprus with a promising outlook. A 
video demonstration of ICARUS can be found at 
https://youtu.be/MgzHVPYRyfU.  

As a future work, we aim to implement algorithms for 
processing visible-light data in order to detect both faulty 
insulators and poles, as well as to detect increased 
temperatures using the thermal video feeds. Importantly, in 
the latter case, a change in the trajectory of the UAV is 
deemed necessary for acquiring thermal data such that power 
components are better visible, since resolution of thermal 
camera is quite low. Moreover, algorithms will be 
implemented for processing the 3D surface models to identify 
and record the exact location of obstacles that likely exist 
within the power line corridor. 

APPENDIX 
Fig. A1 presents additional examples of power line 

detection (indicated in green) of the proposed method based 
on the Laplacian operator. 

  
(a) (b) 

  
(c) (d) 

Fig. A1: Additional examples of the power line detection algorithm based on 
the Laplacian operator. The successful detection of lines is indicated by the 
green color, while in each case the total number of lines is counted. 
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