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Abstract: In this paper, based on Jumarie type of Riemann Liouville (R-L) fractional calculus, we mainly study the 
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important role in this article. Some examples are provided to illustrate our methods. In fact, these results we 

obtained are natural generalizations of those in traditional calculus.  
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I.   INTRODUCTION 

Fractional calculus deals with the derivatives and integrals of any real or complex order. In recent years, fractional 

calculus has been widely popularized and valued because of its applications in various fields such as mechanics, 

dynamics, elasticity, electronics, physics, modeling, economics, and control theory [1-8]. Fractional calculus is different 

from classical calculus. There is no unique definition of fractional derivative and integral. Commonly used definitions 

include Riemann Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald Letnikov (G-L) fractional 

derivative, conformable fractional derivative, and Jumarie's modified R-L fractional derivative [9-11]. On the other hand, 

the application of fractional calculus in fractional differential equations can be referred to [12-14]. 

Based on Jumarie’s modification of R-L fractional calculus, this paper studies how to calculate the curvature of plane 

fractional analytic curve. A new multiplication of fractional analytic functions plays an important role in this paper. We 

give two examples to illustrate our methods. In fact, the new multiplication is a natural operation of fractional analytic 

functions, and the results we obtained are generalizations of the results in classical calculus. 

II.   PRELIMINARIES 

In this section, the fractional calculus used in this article and some properties are introduced. 

Definition 2.1 ([15]): Let      , and    be a real number. The Jumarie′s modified Riemann-Liouville (R-L)  -

fractional derivative is defined by 
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And the Jumarie type of R-L  -fractional integral is defined by 
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Where  ( )  is the gamma function. Furthermore, we define (     
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Proposition 2.2 ([16]):  Suppose that            are real numbers and        then 
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Next, we introduce the fractional analytic function. 

Definition 2.3 ([17]): Let     , and    be real numbers for all  ,    (   ), and      . If the function    [   ]  

  can be expressed as   ( 
 )  ∑
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(    )

   
    , an  -fractional power series on some open interval containing 

  , then we say that   ( 
 ) is  -fractional analytic at   . Furthermore, if    [   ]    is continuous on closed interval 

[   ] and it is  -fractional analytic at every point in open interval (   ), then    is called an  -fractional analytic 

function on [   ]. 

             In the following, a new multiplication of fractional analytic functions is introduced. 

Definition 2.4 ([18]): If      , and    is a real number. Let   ( 
 )  and    ( 

 )  be two  -fractional analytic 

functions defined on an interval containing    , 
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In other words, 
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Definition 2.5 ([19]): Let        and   ( 
 ),    ( 

 ) be two  -fractional analytic functions defined on an interval 

containing    , 
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The compositions of   ( 
 ) and   ( 

 ) are defined by 
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Definition 2.6 ([19]): Let        If   ( 
 ),   ( 

 ) are two  -fractional analytic functions at     satisfies 
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Then   ( 
 ),   ( 

 ) are called inverse functions of each other.    

The followings are some fractional analytic functions. 

Definition 2.7([20]): If      , and   is a real number. The  -fractional exponential function is defined by 

                                                               ( 
 )  ∑

   

 (    )
 ∑

 

  
(

 

 (   )
  )

  

  
   

 
                                                          (14) 

And the  -fractional logarithmic function    ( 
 ) is the inverse function of   ( 

 )  In addition, the  -fractional cosine 

and sine function are defined respectively as follows: 
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In the following, the power of fractional analytic function is introduced. 

Definition 2.8 [21]: Let      , and   be a real number. The  -th power of the  -fractional analytic function   ( 
 ) 

is defined by  [  ( 
 )]     (     (   ( 

 ))). 

Theorem 2.9 ([22]):  Let         and   be a real number, then                   
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 )]    ,                                                                     (17) 

Definition 2.10: The smallest positive real number    such that   (   )   , is called the period of   (  
 ). 

III.   RESULTS AND EXAMPLES 

In the following, the definition of curvature of parametric plane fractional analytic curve is provided.  

Definition 3.1: Let      . If the parametric equation of plane  -fractional analytic curve is  
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Where   ( 
 ) and   ( 

 ) are  -fractional analytic functions at     . Then the curvature of this curve is defined by 
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Where         are constants such that  
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Remark 3.2: If    , then the curvature of this curve becomes the curvature of classical parametric plane analytic curve. 

Next, we give the formula of the curvature of plane fractional analytic function. 

Theorem 3.3: Suppose that      . Then the curvature of  -fractional analytic function       ( 
 )  is  
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Where     are constants such that  
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Proof The  -fractional analytic function       ( 
 ) can be expressed as 
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Therefore, by Definition 3.1, we obtain the curvature of this curve  
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Remark 3.4: If    , then the curvature of this curve is that of classical analytic function. 

In the following, we provide two examples to illustrate how to calculate the curvature. 

Example 3.5: Assume that      , and        Find the curvature of parametric  -fractional elliptic curve  
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Where      (  )
 

  . 

Solution  By Definition 3.1, we obtain the curvature of this curve 
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Example 3.6: Let      , and      Evaluate the curvature of the  -fractional analytic curve  
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Where      . 

Solution  Using Theorem 3.3 yields the curvature of this curve is 
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IV.   CONCLUSION 

The purpose of this paper is to study how to evaluate the curvature of plane fractional analytic curve based on Jumarie’s 

modified R-L fractional calculus. In addition, a new multiplication plays an important role in this article. The results we 

obtained are generalizations of those in classical calculus. In fact, the new multiplication we defined is a natural operation 

of fractional analytic functions. In the future, we will continue to use Jumarie type of R-L fractional calculus and the new 

multiplication to study problems in engineering mathematics and fractional differential equations.  
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