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1. Introduction  

Integers involving in factorial functions or factorials [1-8] are non-negative numbers. These have 

several applications in computing, science, and engineering.  

 

Definition: Factorial of any non-negative integer n, denoted by n!, is defined as a product of all 

nonnegative integers less than or equal to n.  

 

For example, 5! =1×2×3 ×4 ×5 = 120. Note that zero factorial is always one, that is, 0! =1.    

 

2. A Theorem in Factorials    

The theorem [1-8] states that the factorial of sum of any two nonnegative integers is equal to 

multiple of a product of factorials of the same two nonnegative integers. 

 

Let N = {0, 2, 3, 4, . . ., } be a set of natural number including zero. 

    

Theorem: For any two integers 𝑚, 𝑛 ≥ 0, (𝑚 + 𝑛)!  =  k × m! × 𝑛!, (𝑘 ≥ 0  &  𝑘 ∈ 𝑁). 
 

𝑃𝑟𝑜𝑜𝑓. (𝑚 + 𝑛)!  =  k × m! × 𝑛!  can be proved by mathematical induc𝑡𝑖𝑜𝑛. 
 

Basis. Let m = 2 and n = 3.  (2 + 3)! = 720 = 60 × 2! × 3! is obviously true. 
 

Inductive hypothesis. Let us assume that it is true for  (𝑚 − 𝑏) 𝑎𝑛𝑑  (𝑛 − 𝑐), 

that is, ((𝑚 − 𝑏) + (𝑛 − 𝑐))!  =  h × (m − b)! × (𝑛 − 𝑐)!, 
where 𝑚 ≥ 𝑏 ≥ 0 and 𝑛 ≥ 𝑐 ≥ 0  & 𝑏, 𝑐 ∈ 𝑁 . 
 

Inductive Step. We must show that the hypothesis is true for  (m − b + b) and (𝑛 − 𝑐 + 𝑐). 

((𝑚 − 𝑏 + 𝑏) + (𝑛 − 𝑐 + 𝑐))! = ℎ × (𝑚 − 𝑏 + 𝑏)!  × (𝑛 − 𝑐 + 𝑐)!, (ℎ ≥ 0  &  ℎ ∈ 𝑁). 

By simplifying this result, we get (𝑚 + 𝑛)! =  k × m! × 𝑛!, (ℎ = 𝑘).   
Hence, theorem is proved. 
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Corollary: For any 𝑘 nonnegative integers 𝑛1, 𝑛2, 𝑛3, ⋯ 𝑎𝑛𝑑 𝑛𝑘, 
(𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑘)!  =  (𝑎1 × 𝑎2 × 𝑎3 × ⋯ × 𝑎𝑘−1) × 𝑛1! × 𝑛2! × 𝑛3! × ⋯ × 𝑛𝑘!, 

that is, ( ∑ 𝑛𝑖

𝑘

𝑖=1

) ! = 𝐴 ∏ 𝑛𝑖

𝑘

𝑖=1

!, 

where A = 𝑎1 × 𝑎2 × 𝑎3 × ⋯ × 𝑎𝑘−1 and  𝐴, 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑘−1 are coefficients. 
 

For instance,  

If 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘 = 𝑛. Then, (𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑘)! = (𝑘 × 𝑛)!. 
If 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘 = 0. Then, (𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑘)! = (𝑘 × 0)! = 0! = 1. 
If 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘 = 1. Then, (𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑘)! = (𝑘 × 1)! = 𝑘!. 
If 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘 = 2. Then, (𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑘)! = (𝑘 × 2)! = (2𝑘)!. 
If 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘 = 𝑘. Then, (𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑘)! = (𝑘 × 𝑘)! = 𝑘2!. 
 

This novel idea can help to the researchers working in computational science, management, 

science, and engineering.   

 

3. Conclusion 

In this article, an innovative combinatorial technique and theorem are introduced and the 

theorem states that the factorial of sum of any k nonnegative integers is equal to multiple of the 

product of factorials of the k nonnegative integers. This methodological advance can enable the 

researchers working in  computational science, management, science and engineering to solve 

the most real life problems and meet today’s challenges [9].  
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