Advancing the science of complex adaptive human-Earth systems through MultiSector Dynamics

Antonia Hadjimichael Penn State University

Escuela de Gobierno y Transformación Pública del Tecnológico de Monterrey February 2022

Navigating climate risks and transitions in an increasingly interconnected and rapidly changing world requires deep interdisciplinary integration and new modes of scientific inquiry

Besides the environmental hazard, these impacts were due to several institutional, infrastructural and socioeconomic reasons:

- Texas operates on an isolated power grid
- Power generation systems were not sufficiently weatherized
- Insufficient planning for high demands

Human response:

- Increased energy demands
- Buying additional fuel and generators
- Storing food and water
- Electricity scarcity pricing

Risk emerged as a result of many dynamic processes and actions across many systems and across different scales

Winter storms are only one type of hazard potentially facing a region

Flood Risk

Globally, we are facing interconnected, multisectoral risks.

There are several promising frameworks to help us understand these interactions.

A framework for complex climate change risk assessment

Systemic failures, extreme events and 'hyperrisks' emerge as a result of the **highly complex and highly interconnected** human-Earth systems

Dynamic relationships between agents, systems and sectors transmit risk for one to another

Drivers can amplify or buffer existing threats

Need for **fundamental innovations** in risk assessment

A scientific grand challenge:

Better understand how interdependent global-to-local challenges are shaping critical pathways of societal change

Deep integration of diverse perspectives and technical capabilities

These challenges have been articulated by several communities

Contents lists available at ScienceDirect

Environmental Innovation and Societal Transitions

journal homepage: www.elsevier.com/locate/eist

The role of inter-sectoral dynamics in sustainability transitions: A comment on the transitions research agenda

Allan Dahl Andersen^{a,*}, Markus Steen^b, Tuukka Mäkitie^a, Jens Hanson^a, Taran M. Thune^a, Birthe Soppe^{c,d}

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: http://www.elsevier.com/locate/envsoft

Socio-technical scales in socio-environmental modeling: Managing a

Perspective

Societal Transformations in Models

for Energy and Climate Policy: The Ambitious Next Step

system-of-systems modeling approach

Evelina Trutnevyte, ^{1,*} Léon F. Hirt, ¹ Nico Bauer, ² Aleh Cherp, ^{3,4} Adam Hawkes, ⁵ Oreane Y. Edelenbosch, ^{6,7} Simona Pedde, ⁸ and Detlef P. van Vuuren ^{9,10}

Understanding Dynamics and Resilience in Complex Interdependent Systems Prospects for a Multi-Model Framework and Community of Practice

nature

About the journal v Publish with us v

nature > perspectives > article

Published: 01 May 2013

Globally networked risks and how to respond

Dirk Helbing ☑

Nature 497, 51-59 (2013) | Cite this article

21k Accesses | 589 Citations | 167 Altmetric | Metrics

Vincent A. W. J. Marchau Warren E. Walker Pieter J. T. M. Bloemen Steven W. Popper Editors **Decision Making** under Deep Uncertainty From Theory to Practice

OPEN

MODELLING TRANSITIONS

VIRTUES, VICES, VISIONS OF THE FUTURE

Edited by Enayat A. Moallemi and Fjalar J. de Haan

Opportunity for this research to coalesce

Federal obligations for basic research, by agency (FY 2019)

US Dollars in Billions

Department of
Energy Office of
Science has created
the Multisector
Dynamics research
program to fund
research in this area

They have committed initial and sustained funding to create a **Community of Practice** around this challenge

CoP goal and activities

Communication

- Website
- Newsletter
- Webinars
- Outreach

Conceptual Framework

- · Vision report and journal article
- Review process

Technical coordination

Working groups

Goal:

Bring together currently dispersed research teams and communities that are working on related challenges, both nationally and internationally.

Establish mechanisms for collaboration and synthesis to accelerate discovery and add value to individuals and projects.

Facilitation Team

Richard Moss, PNNL
Patrick Reed, Cornell University
Erwan Monier, UC Davis
Antonia Hadjimichael, Penn State University

Scientific Steering Group

Nathalie Voisin, PNNL

Klaus Keller, Dartmouth

Megan Konar, UIUC

Jen Morris, MIT

Jim Yoon, PNNL

Christa Brelsford, ORNL

Stuart Cohen, NREL

Ana Dyreson, MTU

Casey Burleyson, PNNL

Vivek Srikrishnan, Cornell

Jordan Macknick, NREL

Current Working Groups

MultiSector Impacts of Energy Transitions

Urban Systems

Human System Modeling

Uncertainty Quantification and Scenario Development

Education and Professional Development

Facilitating FAIR Data

MSD Vision Report

Outline a vision for MSD as an emerging transdisciplinary field

Clarify core definitions, share research questions, highlight scientific opportunities, and provide steps for improving our community's capacity to support needed scientific progress.

https://multisectordynamics.org/vision

What is MSD?

Sector:

"Complex systems of systems that deliver services, amenities, and products critical to society."

What is MSD?

Dynamics:

Pathways of change that result from transitions and shocks. Shaped by interconnectedness, alternative perspectives, cross-scale influences, and deep uncertainties.

What is MSD?

The study of how complex built, natural, and socio-economic systems co-evolve in response to change.

A transdisciplinary research area that seeks to advance our understanding of how human-Earth systems and feedbacks shape pathways of change across scales and uncertainties.

This framing is not entirely new but draws inspiration from several disciplines

Multisector dynamics emerge from complex adaptive systems of systems

Complex adaptive systems can be conceptualized in terms of cycles of growth and disruption

Multisector dynamics emerge from complex adaptive systems of systems

Complex adaptive systems can be conceptualized in terms of cycles of growth and disruption

Growth phase – accumulation of resources and capital

Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy:

understanding transformations In human and natural systems. Island press.

Multisector dynamics emerge from complex adaptive systems of systems

Complex adaptive systems can be conceptualized in terms of cycles of growth and disruption

- Growth phase accumulation of resources and capital
- 2. Disruption phase occurrence of system shock, subsequent reorganization

Key system properties

Connectedness: Increases as the system grows, becomes more aggregated and organized

Capital: system potential, reflects monetary assets or natural or human capacities that accumulate as the system develops

Resilience: the capacity of a system to absorb a shock and adapt to maintain essentially the same function and identity

Bridging Risk and Resilience

Hazards can cascade between systems and interact with drivers of vulnerability, exposure and response.

System organization and aggregation can shape resilience to hazards in both positive and negative ways through the presence of drivers and their interactions

Adaptive system cycles across scales

Multi-scale feedbacks are critical for understanding how systems co-evolve to:

- Shape path dependencies
- Amplify or dampen dynamics
- Lead to emergent behaviors

A research example...

 How vulnerable are these water users to future climatic stress, increasing water demands and other uncertain drivers?

 Can we identify which stressors are most consequential for these users and under what conditions?

Are there asymmetries in impacts across users?

Department of Natural Resources

Assessing future impacts: are 42510 possible futures representative?

Water demand forecasts for Seattle, Washington

A Community Guide for Evaluating Future Urban Water Demand (2016). Pacific Institute

Exploratory modeling

Sampling over ensembles of computational experiments that represent a large number of plausible assumptions about the future.

Exploratory experiment

+0%

-20%

+50%

-50%

How does this experiment affect water users?

Different users experience different impacts

Exploratory experiment

Latin Hypercub Sample:

10000 model simulations of uncertain conditions

Which of these uncertain drivers are affecting each user?

Different kinds of drivers shape impacts

Socio-economic

systems

Irrigation demand

Transbasin demand

M&I demand

Currently expanding...

Previous work has focused more on impacts, by accounting for (some) drivers of hazard, vulnerability and exposure.

But what about **human** response?

Create 600 exploratory adaptive demand scaling rules tailored to each user

Effects on water availability

Preliminary results show positive effect on increasing available water, especially during droughts

Effect is limited under increasingly stressed conditions

Thank you for your attention!

MultiSector Dynamics Community Building Webinar February 22nd 12-2PM CST

Registration and info:

https://multisectordynamics.org/community-webinar/

https://multisectordynamics.org/

