
10 simple rules for funding scientific open source software

Carly Strasser1*, Kate Hertweck1, Josh Greenberg2‡, Dario Taraborelli1‡, Elizabeth Vu2‡

1 Chan Zuckerberg Initiative, Redwood City, California, USA
2 Alfred P. Sloan Foundation, New York, New York, USA

‡These authors also contributed equally to this work.
*carly@chanzuckerberg.com

Abstract

Scientific research increasingly relies on open source software. Funding open source
software development requires intentional focus on issues of scholarly credit, unique
forms of labor, maintenance, governance, and inclusive community-building. Such issues
cut across different scientific disciplines which makes them of interest to a variety of
funders and institutions, but may present challenges in understanding generalized needs.
Here we present ten simple rules for investing in scientific open source software and the
teams who build and maintain it.

Author summary

J.G. and E.V. are current staff of the Alfred P. Sloan Foundation; D.T., K.H., and C.S.
are current staff of the Chan Zuckerberg Initiative (CZI); and C.S. is former staff of the
Gordon and Betty Moore Foundation. The Moore and Sloan Foundations partnered to
fund three Data Science Environments that focused more attention to the specific needs
of scientific software projects. Since the conclusion of Moore and Sloan funding, the
group has expanded to become the Academic Data Science Alliance (ADSA [1]), which
continues to provide community and support for OSS contributors. Both Sloan and
Moore have also funded a number of high impact OSS projects, including Jupyter,
NumPy, and rOpenSci. More recently, the Sloan Foundation’s Better Software for
Science program [2] explicitly supports OSS, as does the Essential Open Source
Software for Science program (EOSS [3]) at CZI, which has funded more than 100
projects for a total of $28M invested.

Introduction 1

Virtually all of research now relies on computational tools and infrastructure. In many 2

fields, open source software (OSS) represents the foundation of these computational 3

capabilities. This is particularly true in data-intensive scientific disciplines: given the 4

proliferation of large datasets that require domain-specific analyses and complex 5

infrastructure to process, the role of OSS has evolved to critical infrastructure for 6

research. 7

Here we are defining scientific OSS as the source code, algorithms, scripts, 8

computational workflows and executables that are produced with the explicit intention 9

of being used by others [4]. Unlike the majority of software and computational tools 10

used in other areas, scientific OSS is most often produced by academic researchers and 11

June 1, 2022 1/12

developed by globally-distributed communities of scientists and contributors, ranging 12

from students to professionals; this is in contrast to other open source projects that may 13

be supported primarily by software engineers working at commercial / for-profit 14

companies. For the purposes of this paper, we will focus on the particular subset of 15

open source software intentionally developed for research, and will refer to this 16

scientifically oriented software as either OSS or simply software. 17

Despite the critical importance of OSS [5], its maintenance, continued growth, and 18

improvement historically has been deprioritized by institutions, publishers, and funders 19

as a less important byproduct of the research enterprise. Institutions rarely give credit 20

to researchers who invest time and energy in OSS [6]; and funders often focus on novel 21

development of new OSS rather than core support for existing and highly utilized OSS 22

projects (e.g., [7], [8], [9]). 23

The authors are funders who believe that investing in OSS is required to support the 24

research enterprise. By “investing”, we mean increasing overall funding in OSS; making 25

OSS a fundable and recognizable research output; and explicitly designing programs 26

tailored to the needs of scientific OSS communities.This is not necessarily a novel idea; 27

many have argued that government funds [10,11], institutions [12], and publishers [13] 28

should recognize and reward software development. Here we offer ten rules for how to 29

thoughtfully invest in OSS based on our experiences in private philanthropic 30

organizations. 31

The audience for these rules is primarily groups that invest in research. This 32

includes traditional funders (federal, philanthropic, and others), as well as academic 33

institutions and other stakeholders that play a part in research incentive structures. If 34

those in your organization are hesitant to invest in OSS, these rules may help you make 35

a case internally for supporting software development. An additional audience for these 36

rules is OSS developers and maintainers, as the rules provide guidance for ensuring a 37

project is ready for investment. The final audience includes all researchers who use OSS 38

(arguably, anyone currently performing scientific research). As individuals who review 39

grant applications, manuscripts, and promotion and tenure materials, all scientists have 40

the ability to advocate for OSS work as important, meaningful, and worthy of 41

acknowledgement. 42

With these 10 rules, we stand on the shoulders of giants. Groups that blazed the 43

trail in this space – we consider them friends, peers, and fellow travelers – include the 44

Research Software Alliance [14], the Software Sustainability Institute [15], the US 45

Research Software Sustainability Institute [16], the Research Data Alliance [17] and 46

FORCE11 [18] Software Citation Groups, the Software Heritage Foundation [19], and 47

many others. We credit many of the ideas in this manuscript to discussions among 48

groups in recent years. 49

Rules 50

Rule 1: Distinguish software as a unique scholarly activity. 51

The most fundamental rule for designing effective funding schemes in support of OSS is 52

to treat software as a unique [20] and important [21] scholarly output. Well-intentioned 53

programs aiming to support software development often borrow funding objectives, 54

impact statements, and selection criteria from programs designed to fund research. This 55

forces applicants to describe the impact of their software using language, narratives, and 56

metrics that are not centered on software as a legitimate output and distort the unique 57

contribution [22] software makes to science and scholarship. 58

Centering a program on software requires asking questions in the application process 59

that directly relate to software adoption (e.g., providing space to talk about the impact 60

June 1, 2022 2/12

of their work in a narrative format); and removing questions from the evaluation criteria 61

that primarily assess impact through the lens of journal articles, citations, or other 62

traditional measures of scholarly outputs. Many types of metrics exist that can help 63

quantify the impact and maturity of a software project. For example, in programs run 64

by our two organizations, we ask applicants to provide information about the existence 65

of assets like developer documentation, contribution guidelines, end-user documentation, 66

bug trackers, continuous integration systems, or a code of conduct. In addition, publicly 67

available data from the code repository where a software project is hosted can also 68

provide valuable insights into the volume of contributions, unique number of 69

contributors, level of activity, forks, and dependencies. These types of indicators help 70

provide a data-driven representation of the impact and maturity of a software tool as 71

guidance to funders and reviewers (see Rule 9). 72

Shifting the perception of software as a legitimate scholarly activity also requires 73

institutions and other evaluators to evolve the systems used to assess the impact and 74

productivity of academic staff to include all research outputs, rather than focus on 75

publications in prestige journals. Encourage and promote the adoption of software 76

citation best practices [23] that make it easier for maintainers of scientific OSS to track 77

and surface the impact of their work, and consider funding for roles that lead the 78

development and maintenance of OSS as a recognized and funded type of scholarly 79

activity [24] (See Rules 3 and 5). 80

Rule 2: Incorporate diversity, equity, inclusion, and belonging 81

throughout the project. 82

While OSS aspires to democratize access and reuse of computational methods by all 83

scientists, it is widely known that open source is predominantly created and maintained 84

by a narrowly defined demographic. Open source maintainers are cisgender white 85

men [25], and this pattern carries over to most open source projects widely used in 86

science. This is particularly problematic since these projects often have loosely 87

organized governance, and those shaping the project’s roadmap and priorities by default 88

also determine who the projects serve. Lack of representation perpetuates the lack of 89

diversity. 90

Prioritizing diversity, equity, and inclusion (DEI) in open source projects can help 91

build communities that more accurately represent the people who will ultimately benefit 92

from the work. Having contributions from people of all backgrounds — particularly 93

those who are often underrepresented in OSS — can also support maintainers as they 94

identify issues in their projects or communities, such as inherent bias in the software 95

documentation or project roadmap [26]. Expanding the makeup and diversity of the 96

teams that build these tools is critical to ensure that they can serve everyone, and will 97

inspire the next generation of scientists and developers. 98

Ideally approaches to ensuring diverse representation in a project, as well as 99

inclusive practices, would be a part of the project goals from its inception. 100

Unfortunately, DEI issues are often an afterthought, unintentionally sidelined until a 101

project is well underway. This is particularly true for mature open source projects that 102

began in an era where there was less emphasis on DEI in open source. Considering 103

diverse participation as a secondary goal trivializes the work of underrepresented 104

individuals, and prevents the project from benefiting from diversity of thought 105

throughout the software development cycle. 106

Encourage grantees and projects to think about DEI throughout the project. 107

Specific goals and measures toward progress on DEI can ensure that such efforts are not 108

waylaid by more technical project goals. For both CZI’s EOSS program and Sloan’s 109

programs, a DEI statement is required that must be submitted alongside any proposal. 110

June 1, 2022 3/12

These proposals are evaluated in part based on the statement, and we encourage 111

incorporating metrics to evaluate progress. Rather than requiring that project 112

maintainers learn how to implement DEI best practices themselves, encourage them to 113

partner with organizations that have experience in this space. Groups like Outreachy, 114

Data Umbrella, and PyLadies are all great examples of communities of practice that 115

specialize in promoting and supporting underrepresented groups. Local communities of 116

practice are also important: they have cultural, geographic, and human language 117

expertise that can make open source interactions more welcoming for new participants 118

from the area. Communities like CABANA [27] in Latin America and H3ABioNet [28] 119

in Africa can not only support training activities, but also promote resilience for 120

individuals contributing to projects hosted in underrepresented countries. 121

Ideally, considerations about DEI should be integrated throughout the grant making 122

process, from initial ideation for a grant opportunity through award selection and 123

reporting requirements. Such integration may represent a substantial shift in mindset 124

from current processes, though, so it may be necessary to center DEI activities in more 125

explicit ways to help promote this transition. One example is to consider earmarking 126

support for training, workshops, and access to resources for grantee cohorts on topics 127

related to DEI, such as code of conduct training, accessibility, human language 128

translation, and best hiring practices. These provide grantees with valuable resources 129

they can apply to their projects, while also specifically targeting the development of 130

DEI-centered values necessary for long-term strategy integration. 131

Rule 3: Elevate non-technical contributions as essential to the 132

project. 133

It’s tempting to focus software funding only on development of new code, specifically for 134

feature enhancements, which reflect other traditional scientific gains. However, one 135

special aspect of building software is the collaborative, distributed work structure, with 136

participating individuals possessing different skills and engaging in separate tasks. This 137

rule encourages funders to acknowledge and support the myriad activities required for 138

OSS to grow sustainably. 139

Traditional roles in which participants may engage in OSS range from software 140

developer, requiring highly technical coding expertise, to users/researchers, who provide 141

feedback about the utility of the software for their own research data and questions. 142

Users with sufficient technical knowledge may also share bug reports and minor fixes. 143

Contributions to the project that directly interface with software development, however, 144

tend to disproportionately receive attention, acknowledgement, and funding. 145

Acknowledge contributions that are not focused on writing code, like improving 146

software design, writing documentation, developing tutorials, advocating for the project, 147

and formal testing of new product features. In practice, this means that OSS projects 148

should be encouraged to advertise structured ways that community members can 149

participate, and provide acknowledgement for contributions that may not include 150

additions to the code base. 151

From a funding perspective, project goals including non-technical contributions 152

should be valued similarly to code development and upkeep, and when assessing 153

grant-funded work, project deliverables resulting from funding can and should include 154

the results of different types of contributions. This line of reasoning also resonates with 155

Rule 1: if we value software as a special type of scholarly activity, then multiple types of 156

contributions to OSS matter in the same ways that different roles (laboratory scientist, 157

data analyst, writer) matter to a research project. Moreover, if we elevate the 158

importance of non-coding roles, we are also highlighting the contributions from roles 159

that are traditionally gendered and/or held by members of otherwise underrepresented 160

June 1, 2022 4/12

groups. As with Rule 3, however, it’s important to remember that these efforts represent 161

a fundamental shift in how work supporting projects and communities is valued. The 162

intention is not to expect only these types of contributions from underrepresented 163

groups, but instead, such that it becomes more of a shared responsibility. 164

Rule 4. Fund work that supports project contributors and 165

community. 166

Having established that diverse roles matter in the context of an OSS project (Rule 3), 167

scalability has the potential to become an issue: more roles (and more diverse 168

participants) requires additional support to connect parts of the project. We propose 169

that the solution to this dilemma is to fund staff that support contributors and the 170

broader community [29]. Many OSS leaders began as scientists who made a second 171

career of coding. A mature OSS project will eventually reach a point at which it is 172

impossible for a single person to adequately manage the code development, apply the 173

code to the scientific questions at hand, and manage the personnel and strategy of the 174

overall project. Specifically funding additional roles related to project and community 175

management is an important part of sustainably growing an OSS project. 176

Open source software is only relevant because of the community surrounding it, and 177

that community requires investments of time, energy, and ideally money to properly 178

develop and thrive. Community managers, sometimes also called community advocates, 179

work externally to the core development team to encourage dialogue with contributors 180

and users (e.g., the work done by CSCCE; [30]. Similarly, project managers work 181

alongside the core staff to help organize, prioritize, triage, and delegate tasks, not just 182

related to code development, but also synthesizing community feedback into actionable 183

tasks. Project management can cover a wide array of tasks, from onboarding personnel 184

to integrating community governance, and is essential for ensuring the core team can 185

work effectively together and with the broader community [31]. This differs from 186

product management, which is more technical in nature and focuses on user stories, use 187

cases, and software requirements, and tends to already be a focus of work for software 188

developers. 189

Funders can encourage a robust and welcoming community by supporting capacity 190

building as a critical component of an OSS project’s life cycle. Grantees may not even 191

be aware that funding is possible for such positions, but when properly integrated with 192

the software development process, these roles can yield significant gains to the project 193

as a whole. By providing opportunities for growth and learning, and ensuring 194

coordination among various aspects of the project, the community can expand in the 195

longer term to ensure sustainability [32]. The goal for this type of funding is 196

acknowledging and increasing visibility of the roles that the project most needs at any 197

given time, which ultimately amplifies the work of software developers. 198

Rule 5: Promote research software engineering as an academic 199

career. 200

As research teams are becoming increasingly dependent on software to do their work, 201

new types of roles within those teams have risen in profile. In particular, the Research 202

Software Engineer (RSE) has become a more recognized professional role focused on 203

combining software engineering expertise with experience in specific research disciplines. 204

These roles are seen as valued methodological collaborators to researchers across 205

disciplines, bringing value to specific research projects by enabling the software 206

ecosystem needed to spur scientific advances. With a specific role focused on building 207

robust software, the durability of methods and findings produced by research labs is no 208

June 1, 2022 5/12

longer dependent on the capabilities and timelines of other less stable sources of 209

research software laborers, i.e., the rotating graduate student or overstretched principal 210

investigator. 211

RSEs represent a new role for academia, requiring new job codes, updated pay 212

scales, and changes to longstanding hiring and promotion practices. Further, there are 213

tensions with RSE work and the incentives in academic environments. RSEs may see 214

themselves as researchers with software skills that don’t serve them well as someone 215

working towards tenure. Alternatively, they may choose to engage in software 216

engineering full-time within their research labs, and thereby choose to spend time on 217

software which isn’t yet considered a first-order research output (see Rule 1). As 218

funders invested in creating healthy research ecosystems, it is important that we give 219

talented individuals the opportunity to build their skills as a RSE, should they decide 220

they want to take it, with the assurance that their career isn’t completely invalidated. 221

A number of institutions and groups exist that recognize and elevate the importance 222

of an RSE role in academia. Some examples include the Society of RSE in the UK [33], 223

US-RSE [34], and other national RSE associations [35]. Funders can support these 224

efforts by encouraging equal leadership representation of lead software developers as 225

principal investigators on grant applications with significant OSS components. 226

Rule 6. Ensure that software is usable into the future. 227

Funders want to maximize the value created by their investments, including OSS 228

projects. While nothing is a guarantee, there are a number of ways to set up projects 229

for long term viability. This is particularly important for software that is in some form 230

foundational - that is, software that is depended upon by others rather than those 231

directly developing it. 232

With regard to technical choices, encourage OSS maintainers to build on existing 233

technical successes, adding to the ecosystem rather than creating a new one. Every 234

idiosyncrasy can narrow the number of future users as well as contributors. Grantees 235

should have clear justifications for deviations from mainstream languages, libraries, and 236

technologies. Beyond technical details, the number of future contributors to a project 237

can be heavily dependent on the clarity of its governance and, while different models are 238

appropriate to different projects [36, 37], funders should at a minimum ensure that 239

project governance is clearly articulated. 240

In order to be used, software needs to be maximally accessible and open for the long 241

term. Open source licenses [38] can lock in openness, though they come with tradeoffs 242

(viral licenses are more robust in those protections, but less restrictive licenses may 243

enable greater use). Beyond which license is chosen, it’s important that the code itself 244

remains accessible. Projects should maintain an active code repository (ideally on a 245

mainstream platform), and also commit to a plan for longer-term archiving and 246

stewardship. Good documentation practices can also lower barriers for both users and 247

contributors, and should be an activity directly funded for both new and existing OSS 248

projects. 249

Following a popular analogy, investing in an open source software project can be like 250

adopting a “free” puppy [39,40], with the ongoing costs of care and feeding far 251

surpassing any initial development costs. It is likely that funders will want to transition 252

projects to other sources of support for maintenance costs; these can include direct 253

institutional or consortial funding, or cross-subsidies in the form of volunteer 254

contributors. 255

Every software project is rife with tradeoffs between the present and the future, and 256

it’s important for funders to encourage frank discussion in proposals and reports of 257

when technical debt is accrued and when it is paid down [41]. Software is subject to a 258

form of entropy, drifting out of sync with dependencies and technology stacks over time, 259

June 1, 2022 6/12

and funders should encourage and fund continued attention to business and/or 260

community models that will support ongoing maintenance. At a minimum, a good 261

software management plan can guarantee long-term access by relying on code archives 262

like Software Heritage, as well as platforms like Emulation-as-a-Service 263

Infrastructure [42] to ensure executability via emulation. 264

Rule 7. Beware the novelty bias. 265

Novelty is a desirable goal for traditional research funding, but a less useful metric when 266

funding OSS. As Andreas Mueller, a core developer on the scikit-learn project, noted: 267

Funding programs designed to support “projects that do not exist yet... or to extend 268

projects that are developed and used within a single research lab” are at odds with the 269

reality of OSS [43]. By and large, successful open source projects that underpin the 270

computational needs of science are built and maintained by communities and a large 271

collective of contributors. Contributors to OSS, particularly OSS, are a limited resource 272

(see Rule 5). Funding schemes that support new software where credible and well 273

established alternatives already exist at best create new projects in an already crowded 274

and unsustainable space [44], and, at worst, fragment an existing and limited pool of 275

potential contributors. 276

Funders have the power to direct the attention of the broader community toward 277

critical activities that may otherwise be neglected or overlooked. In the context of OSS, 278

investments should therefore focus on directing new contributors’ attention and 279

resources to projects that are mature, largely adopted, and have implemented robust 280

governance and community management practices (see rules 6, 7, and 8). We are not 281

suggesting that there is no need to ever fund new projects; supporting new research and 282

computational methods will always be important. However the novelty bias has the 283

potential to result in a million flowers blooming, and almost as many dying. 284

Funders can ask for information and metrics at the proposal stage to ensure that 285

new projects are good investments, or that existing projects are working towards 286

robustness and sustainability. Examples of such metrics may include number of 287

contributors; age of repository; availability of code, documentation, and contributor 288

guidelines; the presence of a code of conduct; and dependencies. Many funders ask 289

about existing research in the area of the proposal, however consider explicitly 290

requesting a landscape analysis describing how the applicants’ OSS project stacks 291

against similar software tools, or leverages existing tools in their novel approach. 292

Similarly, metrics for OSS can help identify a project’s stage (see Rule 9); evidence of 293

adoption and usage, both quantitative and qualitative, can help assess if a research 294

software project is the de facto standard in the field or one among many. 295

Rule 8. Advocate for explicit, transparent governance and 296

roadmaps. 297

OSS developed in the process of research has the potential to be less sustainable than 298

other types of OSS as a direct result of its origins: often these tools are developed to 299

solve a specific problem or answer a nuanced question that a researcher encounters. 300

Because they are designed as a means to an end, OSS projects developed for research 301

(especially relatively immature projects) are more susceptible to poor documentation, a 302

lack of transparent governance, and a lack of planning for the long term. Non-technical 303

elements of the OSS project are likely to be neglected for work that contributes to 304

obtaining research results (see Rule 3), especially since much of the incentives for 305

academia are not aligned with best practices for software (see Rule 1). 306

Funders should consider these pitfalls when funding projects, and ask questions at 307

the beginning of the funding process to ensure that maintainers are thinking about 308

June 1, 2022 7/12

sustainability and the long term (see Rule 6). This can be done formally by requesting a 309

software management plan (e.g., [45], or more informally by using a checklist to start 310

conversations about governance and management (e.g., [46]. These approaches can 311

ensure that the right decisions are made and a project is set up for long term success 312

and sustainability. 313

Rule 9. Recognize that projects have different needs depending 314

on maturity. 315

In supporting OSS projects, it is important to take into account their different stages of 316

maturity. Projects may be at a prototype stage, in a growth phase, in maintenance 317

mode, or simply be an idea sketched on paper. Understanding and appreciating these 318

various stages will inform how to best support project owners and communities as they 319

navigate the various stages of maturity. 320

Recognizing these different stages will also help identify where support is best 321

aligned with a funder’s goals, and where other colleagues or organizations may 322

potentially provide complementary support. For example, some funding programs may 323

be more inclined to directly support the technical development of new software (and 324

often it is easier to make a case for innovation-driven research; see Rule 7), whereas 325

other programs may prioritize community engagement or maintenance. Relatedly, 326

funder coalitions can play a unique role in supporting OSS by engaging in a 327

community-informed consideration of needs through the early to late stages of a project, 328

playing to the strengths and priorities of each philanthropic group. 329

Having a finger on the pulse of the different stages of OSS project maturity can also 330

enable funders to help projects when unexpected changes or challenges arise. Software 331

is not static, and a successful OSS project will evolve with user needs and as the 332

broader context of the tool shifts. OSS projects may merge or fork depending on the 333

needs of their communities, and funders should maintain awareness of the landscape of 334

relevant projects in order to avoid duplication of effort or projects that drift out of sync 335

with community priorities. Conversely, a real risk for OSS projects is more rapid 336

adoption and scaling sooner than anticipated, resulting in something that has been 337

called “catastrophic success” leading to “scalar debt” [47]. It is important to be 338

cognizant of these possible scenarios and consider larger initial investments in promising 339

projects to ensure they are nurtured through successive stages of growth. 340

Rule 10. Be intentional to minimize harm when ending funding. 341

Not all projects can or should be supported by philanthropic funding into perpetuity, so 342

it is also valuable to understand what conditions should be in place as funders exit a 343

funding relationship. No software project is ever actually finished; project maintainers 344

simply run out of money, time, or interest. Grant funds can perpetually solve the first 345

problem, but perhaps not the second or third, so be aware of “brittle” projects that are 346

overdependent on any one individual. When deciding whether to continue active 347

funding, pay attention to signals of demand from users, which can be a better indication 348

of ongoing value and need for additional features than the views of the developers 349

themselves. 350

That said, avoid the sunk cost fallacy – just because an OSS project has been 351

funded in the past doesn’t mean that it should continue to be forever. In a context of 352

finite grant making resources you can only fund new things if you stop funding old ones. 353

Funder “exits” should aim to minimize disruption and harm to the project, and many of 354

the rules outlined above when well-applied will set a project up for success beyond any 355

one grant or funder. A continued emphasis on sustainability, institutionalization, 356

development of community and financial models, and integration with platforms, 357

June 1, 2022 8/12

companies, and other projects can ensure the resilience of software projects as 358

individual funders’ priorities and strategies change. And when it is time for active 359

development on a project to end, long-term archiving strategies from source code to 360

virtual machines and emulation mean that a dormant project can be resurrected on 361

demand should the need arise. 362

Conclusion 363

As datasets and computational power continue to grow, the role of OSS will also grow. 364

Funders can help ensure that these projects are as useful, stable, and sustainable as 365

possible by following the 10 rules above. A common thread in our rules is that support 366

for OSS is not simply about funding a research project’s software development; instead, 367

when supporting OSS funders should support people, not projects. The 368

communities–and the people that compose them–are foundational to the projects (see 369

Fig 1). The roles required to accomplish work for a project go beyond a standard 370

software engineer or a self-taught scientist who codes. Successfully running an impactful 371

OSS project requires thoughtful community development, careful attention to diversity, 372

equity, and inclusion, and considerations for governance, management, and 373

sustainability. Supporting OSS effectively and with an eye to the long term requires a 374

holistic, people-centered approach. 375

Fig 1. Ten simple rules for funding open source scientific software, grouped
by themes. Numbers reference the order in which rules occur in the narrative.

Acknowledgments 376

The authors are grateful for early reads of this manuscript from Chris Mentzel, Chris 377

Holdgraf, and Nicholas Sofreniew; and for assistance from the CZI Brand and 378

Communications team in creating Figure 1. In-kind support was provided by the Alfred 379

P. Sloan Foundation and the Chan Zuckerberg Initiative. 380

References

1. The Academic Data Science Alliance (ADSA). Available from:
https://academicdatascience.org/.

2. Alfred P. Sloan Foundation. Better Software for Science. Available from:
https://sloan.org/programs/digital-technology/
better-software-for-science.

3. Chan Zuckerberg Initiative. Essential Open Source Software for Science.
Available from: https://chanzuckerberg.com/eoss/.

4. Barker M, Katz DS. Overview of research software funding landscape. Zenodo.
2022. doi:10.5281/zenodo/6102487.

5. Barker M, Katz DS, Gonzalez-Beltran A. Evidence for the importance of research
software. Zenodo; 2020. doi:10.5281/zenodo/3884311.

6. Howison J, Bullard J. Software in the scientific literature: Problems with seeing,
finding, and using software mentioned in the biology literature. Journal of the

June 1, 2022 9/12

https://academicdatascience.org/
https://sloan.org/programs/digital-technology/better-software-for-science
https://sloan.org/programs/digital-technology/better-software-for-science
https://chanzuckerberg.com/eoss/

Association for Information Science and Technology. 2016;67(9):2137–2155.
doi:10.1002/asi.23538.

7. Timmes FX, Townsend R, Bildsten L. Digital Infrastructure in Astrophysics.
Bulletin of the AAS. 2020; 52(2). doi:10.3847/25c2cfeb.13af6a03.

8. Turner J. Open source has a funding problem. Stack Overflow, 2021. Available
from: https:
//stackoverflow.blog/2021/01/07/open-source-has-a-funding-problem/.

9. Berry E. Why Funding Open Source is Hard. HackerNoon, 2017. Available from:
https:
//hackernoon.com/why-funding-open-source-is-hard-652b7055569d.

10. Barker M, Katz DS, Chue Hong NP, Mentzel C, Ram K, Jones C, et al. Response
to US RFI: Public Access to Peer-Reviewed Scholarly Publications, Data and
Code Resulting From Federally Funded Research. Zenodo, 2020.
doi:10.5281/zenodo/3828148.

11. Australian Research Data Commons. A National Agenda for Research Software.
Zenodo, 2022. doi:10.5281/zenodo/6378082.

12. McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, et al. How open
science helps researchers succeed. eLife. 2016; 5:e16800. doi:10.7554/eLife.16800.

13. Cousijn H, Kenall A, Ganley E, Harrison M, Kernohan D, Lemberger T, et al. A
data citation roadmap for scientific publishers. Scientific Data. 2018; 5(1):180259.
doi:10.1038/sdata.2018.259.

14. Research Software Alliance (ReSA). Available from:
https://www.researchsoft.org/.

15. The Software Sustainability Institute. Available from:
https://www.software.ac.uk/.

16. US Research Software Sustainability Institute. Available from:
https://urssi.us/.

17. Rauber A, Asmi A, van Uytvanck D, Pröll S. Identification of Reproducible
Subsets for Data Citation, Sharing and Re-Use. Bulletin of the IEEE Technical
Committee on Digital Libraries. 2016; 12(1). doi:10.5281/zenodo.4048304.

18. Data Citation Synthesis Group. Joint Declaration of Data Citation Principles -
FORCE11; 2014. Available from: https://force11.org/info/
joint-declaration-of-data-citation-principles-final/.

19. Software Heritage Foundation. Available from:
https://www.softwareheritage.org/.

20. Knowles R, Mateen BA, Yehudi Y. We need to talk about the lack of investment
in digital research infrastructure. Nature Computational Science. 2021.
1(3):169-171. doi:10.1038/s43588-021-00048-5.

21. Garcia L, Barker M, Chue Hong N, Psomopoulos F, Harrow J, Katz DS, et al.
Software as a first-class citizen in research. Fachrepositorium
Lebenswissenschaften. 2022. doi:10.4126/FRL01-006423290.

June 1, 2022 10/12

https://stackoverflow.blog/2021/01/07/open-source-has-a-funding-problem/
https://stackoverflow.blog/2021/01/07/open-source-has-a-funding-problem/
https://hackernoon.com/why-funding-open-source-is-hard-652b7055569d
https://hackernoon.com/why-funding-open-source-is-hard-652b7055569d
https://www.researchsoft.org/
https://www.software.ac.uk/
https://urssi.us/
https://force11.org/info/joint-declaration-of-data-citation-principles-final/
https://force11.org/info/joint-declaration-of-data-citation-principles-final/
https://www.softwareheritage.org/

22. Nunez-Iglesias J. Why citations are not enough for open source software. 2019.
Available from: https://ilovesymposia.com/2019/05/28/
why-citations-are-not-enough-for-open-source-software/.

23. Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working Group.
Software citation principles PeerJ Computer Science 2:e86; 2016.
doi:10.7717/peerj-cs.86.

24. Hershberg E. How Software in the Life Sciences Actually Works (And Doesn’t
Work). 2022. Available from: https://newscience.org/
how-software-in-the-life-sciences-actually-works-and-doesnt-work/.

25. Finley K. Diversity in Open Source Is Even Worse Than in Tech Overall WIRED
2017. Available from: https://www.wired.com/2017/06/
diversity-open-source-even-worse-tech-overall/.

26. GitHub. Open Source Survey. 2017. Available from:
https://opensourcesurvey.org/2017/.

27. CABANA: Capacity building for bioinformatics in Latin America. Available from:
https://www.cabana.online/index.

28. H3ABioNet - Pan African Bioinformatics Network. Available from:
https://www.h3abionet.org/.

29. Teperek M, Cruz M, Kingsley D. Time to re-think the divide between academic
and support staff. Nature. 2022 doi:10.1038/d41586-022-01081-8.

30. Center for Scientific Collaboration and Community Engagement - CSCCE.
Available from: https://www.cscce.org/.

31. Managing Research Software Projects. Available from:
https://codebender.org/.

32. Eghbal N. Working in Public: The Making and Maintenance of Open Source
Software. San Francisco: Stripe Press; 2020. Available from:
https://stripe.com/working-in-public.

33. Society of Research Software Engineering. Available from:
https://society-rse.org/.

34. US-RSE. Available from: https://us-rse.org/.

35. Research Software Engineers. Available from: http://researchsoftware.org/.

36. Red Hat. Red Hat Resources: A guide to open source project governance models.
2020. Available from: https://www.redhat.com/en/resources/
guide-to-open-source-project-governance-models-overview.

37. Open Source Guides: Leadership and Governance. Available from:
https://opensource.guide/leadership-and-governance/.

38. Peterson SK. Is open source software licensing broken? 2020. Available from:
https://opensource.com/article/20/2/open-source-licensing.

39. Cotton B. Free as in puppy: The hidden costs of free software Opensource.com.
2017. Available from:
https://opensource.com/article/17/2/hidden-costs-free-software.

June 1, 2022 11/12

https://ilovesymposia.com/2019/05/28/why-citations-are-not-enough-for-open-source-software/
https://ilovesymposia.com/2019/05/28/why-citations-are-not-enough-for-open-source-software/
https://newscience.org/how-software-in-the-life-sciences-actually-works-and-doesnt-work/
https://newscience.org/how-software-in-the-life-sciences-actually-works-and-doesnt-work/
https://www.wired.com/2017/06/diversity-open-source-even-worse-tech-overall/
https://www.wired.com/2017/06/diversity-open-source-even-worse-tech-overall/
https://opensourcesurvey.org/2017/
https://www.cabana.online/index
https://www.h3abionet.org/
https://www.cscce.org/
https://codebender.org/
https://stripe.com/working-in-public
https://society-rse.org/
https://us-rse.org/
http://researchsoftware.org/
https://www.redhat.com/en/resources/guide-to-open-source-project-governance-models-overview
https://www.redhat.com/en/resources/guide-to-open-source-project-governance-models-overview
https://opensource.guide/leadership-and-governance/
https://opensource.com/article/20/2/open-source-licensing
https://opensource.com/article/17/2/hidden-costs-free-software

40. Wrubel J. The Puppy Paradigm for Software Development Estimation. 2020.
Available from: https://medium.com/@jameswrubel/
the-puppy-paradigm-for-software-development-estimation-69316e0a00ea.

41. Ernst N, Kazman R, Delange J. Technical Debt in Practice: How to Find It and
Fix It. Cambridge, MA, USA: MIT Press; 2021.

42. Software Preservation Network. Emulation-as-a-Service Infrastructure. Available
from: https://www.softwarepreservationnetwork.org/
emulation-as-a-service-infrastructure/.

43. Mueller A. Don’t fund Software that doesn’t exist. 2020. Available from:
https://peekaboo-vision.blogspot.com/2020/01/
dont-fund-software-that-doesnt-exist.html.

44. Gordon R. Six things to know about successful open-source software. 2013.
Available from: https://knightlab.northwestern.edu/2013/07/24/
six-lessons-on-success-and-failure-for-open-source-software/.

45. Alves R, Bampalikis D, Castro LJ, González JMF, Harrow J, Kuzak M, et al.
ELIXIR Software Management Plan for Life Sciences. BioHackrXiv; 2021.
doi:10.37044/osf.io/k8znb.

46. Jackson Me. Checklist for a Software Management Plan, Version 0.2. 2018.
Available from: https://zenodo.org/record/1460504#.YoKwQRPMIeY.

47. Geiger RS, Howard D, Irani L. The Labor of Maintaining and Scaling Free and
Open-Source Software Projects. Proceedings of the ACM on Human-Computer
Interaction. 2021; 5(CSCW1):1–28. doi:10.1145/3449249.

June 1, 2022 12/12

https://medium.com/@jameswrubel/the-puppy-paradigm-for-software-development-estimation-69316e0a00ea
https://medium.com/@jameswrubel/the-puppy-paradigm-for-software-development-estimation-69316e0a00ea
https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/
https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/
https://peekaboo-vision.blogspot.com/2020/01/dont-fund-software-that-doesnt-exist.html
https://peekaboo-vision.blogspot.com/2020/01/dont-fund-software-that-doesnt-exist.html
https://knightlab.northwestern.edu/2013/07/24/six-lessons-on-success-and-failure-for-open-source-software/
https://knightlab.northwestern.edu/2013/07/24/six-lessons-on-success-and-failure-for-open-source-software/
https://zenodo.org/record/1460504#.YoKwQRPMIeY

