
Optimal Control of a Grid-connected Service Area for Plug-in Electric
Vehicles Fast Charging under uncertain Power Demand

Emanuele DE SANTIS∗, Francesco LIBERATI, Alessandro DI GIORGIO

Abstract— In this paper we consider the problem of control-
ling a service area hosting stations for the provisioning of the
electric vehicles fast charging service, having the support of an
electric energy storage system and local power production from
renewables. Key aspects motivating the work are the hard tem-
poral constraint imposed by drivers requiring the fast charging
service and the impact high aggregated power withdrawal has
on the economic viability of the investment for the service
area operator; consequently key control requirements include a
congestion level driven tracking of the charging power demand
and the flattening of power flow at the point of connection of
the service area to the electricity grid, while keeping stable ESS
operation. These opposing control objectives, together with the
uncertain nature of the power demand and production, brings
to the formulation of a stochastic model predictive control
problem, based on a continuous/finite-time optimal control
problem, for which the explicit form of solution is determined.
Simulations are presented to validate the proposed approach.

I. INTRODUCTION
In recent years the plug-in electric vehicle (PEV) fast

charging has become the subject of huge investments for
operators of the charging infrastructure and car manufactur-
ers, with the trend of enabling the service at continuously
increasing power levels [1][2]. Among the motivations, the
increasing EVs travel range (and then the battery capacity)
and the need of overcoming structural and logistic barriers
for charging at home, that still make drivers skeptical about
the transition to electromobility [3][4]. A key aspects for
operators investing in the fast charging infrastructure is its
economic viability, as the connection of charging stations
(CSs) to the grid is subject to some costs for their instal-
lation and operation, that heavily depends on the nominal
power requested at point of connection (POC). As a key
requirement for the fast charging service is the charging time,
the application of the well known smart charging concept
[5] has to be restricted to situations of power congestion
in the area hosting the CSs, and requires the support of
other systems able to flatten the aggregated CSs power
withdrawal at the POC. In this regard the energy storage
system (ESS) technology can provide the needed additional
degree of freedom, in consideration of its almost technical
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maturity and the potential adoption of second life batteries
for containment of capital expenditure [6]. Consequently, the
combination of CSs, an ESS and potentially local power
generation from renewables in a microgrid, in the following
referred to as “service area”, is at the basis of fast charging
viability for service area operators. In this paper we propose
a control algorithm for PEVs charging power and ESS
charging/discharging process in the service area according
to the following objectives:

1) to flatten the power flowing at the POC, as avoiding
power peaks allows to lower the connection fees payed
by the operator of the service area to the grid, costs
items which are partially transferred to the driver
through the cost of the service;

2) to keep the state of charge (SOC) of the ESS as
close as possible to a desired reference value (usually,
half of the full charge), to ensure the ESS has at
any point in time a sufficient reserve of energy to
charge or discharge, respectively in case the power
generation outbalances the charging power and in case
of congestion;

3) to maintain the aggregated charging power of PEVs
in the service area as close as possible to a certain
reference signal represented by the power demand; the
tracking is required to be stringent in case of low
congestion, so as to serve the drivers in the minimum
time, and more relaxed in case of congestion, so as to
mitigate the ESS control effort for flattening the power
flow at POC.

As these control requirements work in opposition each other,
and in consideration of the fact that the future evolutions
of the charging power demand and power generation from
renewables are in principle uncertain, the problem is here
modeled as an optimal control problem subject to uncertainty
and time-dependent weights, addressed using the machinery
of model predictive control (MPC) and calculus of variation
based finite-time optimal control.

Optimal control is a popular control technique for prob-
lems related to resource management, see, e.g., [7], [8].
Numerous control problems have been formulated in litera-
ture, concerning microgrids equipped with controllable loads,
especially PEVs, storage devices and local generation. The
works found in the literature mainly differ for the specific
requirements of their problems, the methodologies used and
the modelling problems due to specific mathematical issues.
Among the many applications, [9] addressed the issue of
minimizing the voltage deviations in microgrids hosting



distributed generation, while [10] proposes microgrid recon-
figuration as a way to reduce operational costs and enhance
security. In [11], an application to the problem of smart home
energy management in a microgrid environment is presented.
Several control methodologies, such as sliding mode control
[12], MPC [13], [14], [15], [16] [17] [18], machine learning
[19] were studied for many applications. Also the Pontryagin
minimum principle (PMP) and the calculus of variations
have been successfully applied in several problems related
to optimal power control, in particular concerning hybrid
vehicles [20], [21], [22] and microgrids [23], [24]. One of
the main issues that make difficult to apply such control
techniques is the impossibility, in some cases, to derive a
closed-loop or a causal solution. To address this issue, some
simplifications on the costate calculation from the necessary
optimality conditions are proposed in the literature. In [20],
the authors proposes that the costate of the system can be as-
sumed constant for their hybrid vehicle control problem, with
a resulting simplification on the optimal solution derivation.
In [22], the authors combine PMP and MPC methodologies
for the management of a PEV bus. Similar approach is used
in [23], in this case to compute the optimal energy flow
in a microgrid equipped with ESSs and Renewable Energy
Sources, with the goal of minimizing the control effort for
the ESS and the deviation of the SOC from a reference value;
the costate has been considered constant also in [23]. Finally,
some recent contributions also apply the PMP theory to the
problem of optimal fast charging of Li-ion batteries, see [25]
in particular.

This paper reconsiders the work [26], where the deter-
ministic fast charging control problem has been faced, under
milder assumptions and extending the results in several
directions. The distinctive aspects of this work are as follows.
First, we formulate the control problem for service area fast
charging as a stochastic finite-time optimal control problem,
in which the charging power and the local power gener-
ation from renewables are assumed uncertain; we embed
the problem in the framework of MPC to take advantage
of the real time update of information about the plant to
reduce the effect of uncertainty. Second, in order to properly
meet the power tracking requirement, we introduce a cost
term in the cost function which linearly depends on the
level of power congestion in the service area; this choice,
combined with the uncertain nature of the charging demand,
is at the basis of the statistical properties of the charging
demand which have to be known for the determination of
the optimal control. Third, we provide the optimal control
in an explicit form, which is useful in scenarios where the
control is computed by local equipment characterized by
low computational capabilities; the achieved control assumes,
over the control window, the knowledge of the expected
value and variance of the charging power demand and the
expected value of local power generation in the service area,
which are generally known by the service area operator in
view of the availability of historical data. Finally, to the best
of the authors’ knowledge, this is one of the first works
on the application of the theory of calculus of variation to

Fig. 1. Service area architecture considered in the paper.

the control of ESS and charging PEVs in a service area
subject to the requirements presented above and also subject
to uncertainty.

The reminder of the paper is as follows. Section II presents
the service area architecture considered in this work and the
proposed open loop stochastic optimal control problem at
the basis of the MPC framework. Section III presented the
explicit MPC optimal control calculation. Section IV presents
and analyzes the simulations in a simplified (even if realistic)
charging scenario. Section V provides the conclusions and
outlines possible future developments of the work.

II. PROBLEM FORMALIZATION

The architecture of the service area considered in this
paper is presented in Fig. 1. In this setup, the ESS, the
CSs and the power generation are directly connected to the
POC. In what follows p(t) denotes the power flowing at
the POC at time t, uess(t) the ESS charging power, x(t)
the relative ESS SOC with respect to a reference value
(typically, 50% of the total charge), uev(t) the actual cumu-
lative power withdrawn by the PEVs, ûev(t) the cumulative
PEVs power demand, unom(t) the nominal cumulative power
that can be delivered by the CSs in the service area (i.e.,
ûev(t) ≤ unom(t), ∀t), wpv(t) the power generated in
the area, assumed in the following to be provided by a
photovoltaic plant. The ESS dynamics is given by ẋ(t) =
uess(t). Further, as consequence of the previously described
electrical connection scheme, the obvious balance equation
p(t) = uess(t) + uev(t)− wpv(t) holds at the POC.

In this work we propose to control the plant according
to the well known MPC methodology principle [27]. Stan-
dard discrete-time MPC implementations are based on the
periodic solution of an open loop optimal control problem,
which is defined over a pre-defined future control window
and leverages the knowledge, at the current time ti, of the
state and possibly the future evolution of other exogenous
signals (in most cases forecasts). The open loop optimal
control problem typically takes the form of an optimization
problem that, depending on its nature, can be handled using
proper solvers. The first sample in the computed optimal
control sequence is actually applied to the plant for the
entire sampling period before a new optimization takes
place. In this work we take a slightly different perspective,
motivated by the interest in finding a methodological solution



that can be used in a scenario characterized by very low
computational capabilities. We still assume to update the
control on a periodic basis, but we formulate the open loop
optimal control problem as a continuous-time optimal control
problem subject to uncertainty and provide an explicit closed
loop control law. Then, based on the control requirements
introduced in Section I, the following open loop optimal
control problem at the basis of the MPC framework is
defined, in which E[·] denotes the expected value operator.

Problem 1. (Fast charging optimal control problem in ser-
vice area under uncertain charging demand and PV power
production). Given an initial time ti and a final time ti+MT
of problem definition (where T is the MPC time step and M a
positive integer), given uncertain {ûev(t), t ∈ [ti, ti+MT ]}
and {wpv(t), t ∈ [ti, ti +MT ]} find

min
u

{
J(u) = E

[
S(x(ti +MT ))+

+

∫ ti+MT

ti

L
(
x(t), uess(t), uev(t), t

)
dt

]}
,

(1)

with
S(x(ti +MT )) =

1

2
sx(ti +MT )2 (2)

L
(
x(t), uess(t), uev(t), t

)
=

=
1

2

[
qx(t)2 + rp(t)2 + c(ûev(t))

(
uev(t)− ûev(t)

)2] (3)

in which

c(ûev(t)) = cnom
(
1 + unom(t)− ûev(t)

)
, (4)

subject to
x(ti) = xi, (5)

ẋ(t) = uess(t), ∀t ∈ [ti, ti +MT ], (6)

p(t) = uess(t) + uev(t)−wpv(t), ∀t ∈ [ti, ti +MT ], (7)

where s, q, r, cnom are positive real numbers.

Once the optimal solution u(t)∗ = col(uess(t)∗, uev(t)∗)
of Problem 1 is found, the control actuated on the plant is
simply u(t)∗|[ti,ti+T ). At time ti+T the control is computed
again moving the control window one step forward, based
on the new available information.

It is straightforward for the reader to map the three terms
appearing in the Lagrangian function (3) to the three control
requirements stated in Section 1. The box constraints on
p(t), uess(t) and x(t) are not considered here; though several
works in literature (e.g., [28], [29]) show how such kind of
constraints can be handled in the context of a deterministic
formulation of the addressed problem, the solution of an
extended version of Problem 1 to the box constrained case
is left to future works, for which the results reported in this
paper are instrumental.

The following remarks are at the basis of the proposed
contribution of this work and the development which follows.
Remark 1. As the charging power demand ûev(t) and the
power production wpv(t) are uncertain, the cost function

J(u) is expressed in terms of an expected value. This will
bring, in the following section, to the identification of the
set of statistical quantities which have to be known for the
determination of the optimal control. For the same reason,
and bearing in mind (7), the optimal trajectory of the power
flowing at the POC can be given in terms of its expected
value only.
Remark 2. The weight c(ûev(t)) appearing in the third
term of (3) depends on the difference between the nominal
charging power demand unom, namely the maximum power
that can be delivered by the CSs in the service area, and the
actual demand ûev . This choice is motivated by the idea to
let the demand add an additional degree of freedom to the
control of the area which progressively increases with the
level of congestion; the parameter cnom represents the weight
in the case of maximum congestion. As the actual demand is
assumed time dependent and uncertain, this weight will have
a significant impact on the structure of the optimal control.

III. THE OPTIMAL CONTROL

Problem 1 can be solved by using standard techniques
from calculus of variations, provided that proper assump-
tions are made regarding the uncertain variable ûev . As a
preliminary step, notice that, using the linearity property of
the expected value and the fact that the ESS dynamics is not
directly affected by uncertainty, the cost function assumes
the form

J(u)=S(x(ti+MT ))+

∫ ti+MT

ti

L̃
(
x(t), uess(t), uev(t), t

)
dt

(8)
in which

L̃
(
x(t), uess(t), uev(t), t

)
=

1

2

[
qx(t)2 + rE[p(t)2]+

+E[cnom
(
1+unom(t)−ûev(t)

)(
uev(t)−ûev(t)

)2
]
]
.

(9)

Tedious but simple calculations show that the Hamiltonian
of the system is

H := L̃
(
x(t), uess(t), uev(t), t

)
+ λ(t)uess(t) =

=
1

2
qx(t)2+

+
1

2
r

(
uess(t)2 + uev(t)2 +E[wpv(t)2]+

+ 2uess(t)uev(t)− 2uess(t)E[wpv(t)]+

− 2uev(t)E[wpv(t)]

)
+

+
1

2
cnom

(
uev(t)2 + unom(t)uev(t)2 −E[ûev(t)3]+

+E[ûev(t)2] + unom(t)E[ûev(t)2] + 2uev(t)E[ûev(t)2]+

+ 2uev(t)E[ûev(t)] + 2unom(t)uev(t)E[ûev(t)]+

+ uev(t)2E[ûev(t)]

)
+ λuess(t).

(10)



Problem 1 is convex, and the resulting sufficient optimality
conditions are

λ̇(t) = − ∂H
∂x(t)

= −qx(t), (11)

∂H
∂uess(t)

= 0

⇔ ruess(t) + ruev(t)− rE[wpv(t)] + λ(t) = 0

⇔ uess(t) = −1

r
λ(t)− uev(t) +E[wpv(t)],

(12)

∂H
∂uev(t)

= 0

⇔ r

(
uev(t) + uess(t)−E[wpv(t)]

)
+

+ cnom
(
uev(t) + unom(t)uev(t) +E[ûev(t)2]+

+E[ûev(t)]− unom(t)E[ûev(t)]− uev(t)E[ûev(t)]

)
= 0

⇔ uev(t) =
1

c(t)
λ(t)+

− 1

c(t)
cnom

(
E[ûev(t)2]− (1 + unom)E[ûev(t)]

)
,

(13)

λ(ti +MT ) =
∂S

∂x(ti +MT )
= sx(ti +MT ). (14)

where c(t) = cnom(1+unom(t)−E[ûev(t)]) and where the
last step in (13) is achieved by substituting uess(t) as in
(12). Equation (11) is the costate equation, (12) and (13) the
equations of the control, and (14) the transversality condition.

By plugging (13) into (12), we rewrite the latter as

uess(t) =− 1

r′(t)
λ(t) +

cnom

c(t)

(
E[ûev(t)2]+

−
(
1 + unom(t)

)
E[ûev(t)]

)
+E[wpv(t)],

(15)

in which

r′(t) :=

[
1

r
+

1

c(t)

]−1

. (16)

It is possible to notice that (15) is a generalization of
equation (12) in [26], having dropped the assumption of exact
knowledge of wpv(t) and ûev(t).

After plugging (12) into the state dynamics, the state
and the costate dynamics define the following two-point
boundary value problem[

ẋ(t)

λ̇(t)

]
=

[
0 − 1

r′(t)

−q 0

]
︸ ︷︷ ︸

:=A(t)

[
x(t)
λ(t)

]
+

[
−1
0

]
︸ ︷︷ ︸
:=B

w(t) (17)

with boundary conditions x(ti) = xi and λ(tf ) = sx(tf ),
and where we have defined

w(t) :=− cnom

c(t)

(
E[ûev(t)2]+

−
(
1 + unom(t)

)
E[ûev(t)]

)
−E[wpv(t)].

(18)

Notice that (19) is a time varying system, because r′(t)
depends on E[ûev(t)]. Its explicit solution can be however
computed in the present case provided that a proper as-
sumption on E[ûev(t)] is made. Specifically we assume that
E[ûev(t)] is piece-wise constant over the same time periods
characterizing the MPC framework. This assumption is rea-
sonable, as in practice this signal may be built starting from
historical sampled metering data. As a consequence of this
assumption the time-dependent dynamical matrix of system
(19) is piece-wise constant. Based on this assumption, the
following lemma summarizes the main result of the previous
work [26], which is instrumental to the determination of the
dynamics of system (19) and, consequently, the solution of
Problem 1 and the optimal control of the MPC scheme.

Lemma 1.1. Consider a system of the form[
ẋ(t)

λ̇(t)

]
= A(t)

[
x(t)
λ(t)

]
+Bw(t) (19)

defined over the time interval [ti, tf ], in which x(t) ∈ R,
λ(t) ∈ R, w(t) ∈ R, A(t) ∈ R2×2, B ∈ R2, and assume
that x(t) = xi, λ(tf ) = sx(tf ) for a given positive real
number s. Consider the time instants ti = t1 < t2 < ... <
tN = tf , with N ≥ 2, such that, for any n ∈ {1, ..., N − 1},
the matrix A(t) is constant over the time interval [tn, tn+1).
Then the state of the system at the generic time t in the
interval [tn, tn+1) is given by[

x(t)
λ(t)

]
= eAn(t−tn)

[
x(tn)
λ(tn)

]
+

∫ t

tn

eAn(t−τ)Bw(τ)dτ, (20)

in which [
x(tn)
λ(tn)

]
=

( n−1∏
k=1

eAn−k∆tn−k

)[
x(t1)
λ(t1)

]
+

+

n−1∑
h=1

[ n−1−h∏
j=1

eAn−j∆tn−j

]
[ ∫ th+1

th

eAh(th+1−τ)Bw(τ)dτ

]
,

(21)

where An denotes the matrix A evaluated over the time
interval [tn, tn+1) and ∆tj := tj+1−tj . The initial condition
λ(ti) is given by

λ(ti) = s1x(ti) +

N−1∑
h=1

[ h−1∏
j=1

dj

]∫ th+1

th

Hh(th+1−τ)w(τ)dτ,

(22)
in which

Hh(th+1 − τ) =
Φh,21(th+1 − τ)− sh+1Φh,11(th+1 − τ)

Φh,22(∆th)− sh+1Φh,12(∆th)

dj =
1

Φj,22(∆tj)− sj+1Φj,12(∆tj)

sh = −Φh,21(∆th)− sh+1Φh,11(∆th)

Φh,22(∆th)− sh+1Φh,12(∆th)

sN = s h = 1, ..., N − 1 j = 1, ..., N − 2.
(23)



where Φh,ij denotes the (i, j) entry of the state transition
matrix eAht.

Based on the above mentioned result, it is straightforward
to determine the solution of Problem 1. In particular, the
optimal state and costate trajectories are determined by (20)
after substitution of (21) and the initial costate (22), in which
the time interval ∆th is equal to the MPC time step T , N −
1 = M . and Φh,ij is the (i, j) entry of the transition matrix

eAh(t−th) :=

[
Φh,11(t− th) Φh,12(t− th)
Φh,21(t− th) Φh,22(t− th)

]
=

=

 cosh

(√
q
r′
h
(t− th)

)
− 1√

qr′
h

sinh

(√
q
r′
h
(t− th)

)
−
√

qr′hsinh

(√
q
r′
h
(t− th)

)
cosh

(√
q
r′
h
(t− th)

)
.

(24)

Consequently, plugging (20) into (13) and (15) provides
the optimal solution of Problem 1. Finally, the optimal
trajectory of the expected value of the power flowing at the
POC is found evaluating the expected value of both sides of
(7), In the light of the above, the MPC optimal control is
given by

uess(t)∗ =
1

r′(t)

[
−Φi,21(t− ti)x(ti)−Φi,22(t− ti)λ(ti)+

+

∫ t

ti

Φi,21(t− ti)w(τ)dτ

]
+E[wpv(t)]+

+
cnom

c(t)

[
E[ûev(t)2]− (1 + unom(t))E[ûev(t)]

]
,

(25)

uev(t)∗ =
1

c(t)

{
Φi,21(t− ti)x(ti) + Φi,22(t− ti)λ(ti)+

−
∫ t

ti

Φi,21(t− ti)w(τ)dτ ]+

− cnom
[
E[ûev(t)2]− (1 + unom(t))E[ûev(t)]

]}
,

(26)

where

Φi,21(t− ti) = −
√

qr′isinh

(√
q

r′i
(t− ti)

)
Φi,22(t− ti) = cosh

(√
q

r′i
(t− ti)

)
,

(27)

which holds ∀t ∈ [ti, ti + T )1.
Remark 3. The optimal control depends on E[ûev(t)],

E[ûev(t)2] (or equivalently on the variance σ[ûev(t)]) and
E[wpv(t)]. Specifically the need of knowing the expected
value and variance of the charging demand comes from the
chosen lagrangian function, and more in particular from the
weight (4), which linearly depends on unom(t) − ûev(t). It
is straightforward to see that higher grade dependence of
the form (unom(t) − ûev(t))m (for a given positive integer

1With little abuse of notation, in (25)(26)(27) the subscript i has been
used to indicate that Φi,21, Φi,22 and r′i refer to time period [ti, ti + T ).

TABLE I
PARAMETERS OF THE ALGORITHM

q r s cnom unom(t) T MT

1 2 10 1 550 5m 4h

m), motivated for example by potential better control tuning,
would require the knowledge of E[ûev(t)m+1].

IV. NUMERICAL SIMULATIONS

The simulations have been run in Matlab R2021a and
consider an operation period of the service area of 12 hours
(from 6:00 to 18:00, i.e., the hours when the photovoltaic
plant is operative). The parameters characterizing the optimal
control problem are reported in table I. The parameters q,
r and s have been chosen so to have good peek shaving
for power p(t) at POC while reaching as much as possible
the reference value for the final state of ESS stored energy
x(ti+MT ). Moreover, the cnom parameter has been chosen
to have a small weight on the EV power tracking term of
(9) in case of congestion. The maximum charging power
for each PEV has been set to 50 kW and a total number
of 10 charging points has been considered. Moreover, the
expected value E[ûev(t)] and the actual value ûev(t) (this
latter was unknown a priori) considered for the simulations
are represented in Figure 2. The parameter unom(t) has
been fixed to the constant value of 550 kW (i.e., 50 kW
more than the maximum aggregated power of the PEVs)
in order to have a smaller weight for the tracking term of
(3) if E[ûev] is near to the maximum aggregated power of
the PEVs (i.e., almost all the CSs occupied and charging at
max power), while having a greater weight if few CSs are
occupied and/or the PEVs are charging at low power (e.g.,
because of overheated batteries or almost-charged batteries).
The simulations considered a photovoltaic power production
from the PV plant as depicted in Figure 3, where the
solid line represents the actual value of wpv(t), while the
dotted line represents the expected value E[wpv(t)]. The
algorithm runs at each time step ti and is fed with the
expected curves for the aggregated PEV demand E[ûev(t)]
and the PV power production E[wpv(t)] for the time window
[ti, ti + MT ); as the power demand and production are
know at ti, it is reasonable to put E[ûev(t)] = ûev(t) and
E[wpv(t)] = wpv(t) for all t ∈ [ti, ti + T ). Indeed, at each
time step ti, the actual values ûev(t) and wpv(t) are assumed
unknown for any time t ≥ ti+T , while are known only their
expected values E[ûev(t)] and E[wpv(t)] and the variance
term E[ûev(t)2]. This means that at each time step the MPC
algorithm takes the actual measures of ûev and wpv , while
uses their estimated values for the rest of the time window to
compute the optimal control signals as in (25) and (26). In
correspondence of the actual measured values, the variance
is considered 0.

Figure 4 shows the charging power reference ûev as
dashed line, while the actual power allocated to the PEVs
uev is indicated as solid line. From this figure it is possible to
notice that the actual power is almost equal to the reference



Fig. 2. Power demand from electric vehicles: E[ûev(t)] (continuous line),
ûev(t) (dashed line)

Fig. 3. Photovoltaic power production profile: wpv(t) (solid line),
E[wpv(t)] (dotted line)

one, except for the cases with high load, where there is a
small mismatch between the reference and the actual power
for the PEVs. Where the load of the PEVs is lower, the
reference is tracked with high fidelity, due to the shape of
the weight c(ûev). Based on the shape of this weight, it is
also possible trade-off tracking performances of uev in favour
of power shaving of power p at POC and/or of ESS power
uess.

Figures 5 and 6 show respectively the ESS charg-
ing/discharging power and the ESS SOC evolution. As the
simulation begins, the ESS pre-charges in prevision of the
first load peak, that is the only visible to the algorithm (the
time window for the MPC is set to 4 hours). After the

Fig. 4. uev(t) (continuous line), ûev(t) (dashed line)

Fig. 5. ESS charging/discharging power.

Fig. 6. ESS SOC.

first demand peak, it continues pre-charging (even more than
before) in prevision of the second peak, also thanks to the
peak of power production from the PV plant, that are both
now visible to the MPC controller.

This results in a shaved power profile at POC. Indeed,
even during the second charging peak, the power requested
to the main grid is about 1/5 of the charging power, even
if the PV plant contributes with only 20-60 kW, thanks to
the effort of the ESS. Moreover, the control law for the ESS
power is able to bring back the ESS state-of-charge to the
reference value at the end of the simulation, so no additional
power is required for the ESS to reach the reference SOC
value.

The results presented above then show the effectiveness of

Fig. 7. Power flow at the connection with the grid.



the proposed control even with uncertainties on charging de-
mand and solar power production, with the only assumptions
of knowing the expected charging demand (and its variance)
and the expected PV plant power production.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposed an optimal control algorithm for
controlling the charging of PEVs in a service area hosting an
ESS with uncertainties on the power demand from the PEVs
and on the power production of the PV plant. The goal of
this work is to control the PEV charging process and the ESS
power in order to serve the PEV users as fast as possible,
while shaving the power profile at the POC with the grid
(which results in lower operation costs of the charging area).
Moreover, the optimal control is re-optimized at each time
step in order to reduce the uncertainties and to perform better
tracking performances and flatter power profile at POC with
the main grid.

Future works will focus on the inclusion of physical
constraints for the involved equipment (ESS charging power,
POC, ESS state-of-charge, etc.), as well as of the PEVs’
charging dynamics, in order to capture in a finer way the
charging process. Also, an assessment of the economical
benefits due to the flattening of the power profile at the POC
will be carried out.
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