
Developing an automated iterative1

near-term forecasting system for an2

ecological study3

Ethan P. White1,2,3, Glenda M. Yenni1, Shawn D. Taylor4, Erica M.4

Christensen1, Ellen K. Bledsoe4, Juniper L. Simonis1, S. K. Morgan5

Ernest1,3
6

1 Department of Wildlife Ecology and Conservation, University of Florida, Gainesville,7

FL, United States8

2 Informatics Institute, University of Florida, Gainesville, FL, United States9

3 Biodiversity Institute, University of Florida, Gainesville, FL, United States10

4 School of Natural Resources and Environment, University of Florida Gainesville, FL,11

United States12

Abstract13

1. Most forecasts for the future state of ecological systems are conducted once and14

never updated or assessed. As a result, many available ecological forecasts are not15

based on the most up-to-date data, and the scientific progress of ecological16

forecasting models is slowed by a lack of feedback on how well the forecasts17

perform.18

2. Iterative near-term ecological forecasting involves repeated daily to annual scale19
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forecasts of an ecological system as new data becomes available and regular20

assessment of the resulting forecasts. We demonstrate how automated iterative21

near-term forecasting systems for ecology can be constructed by building one to22

conduct monthly forecasts of rodent abundances at the Portal Project, a long-term23

study with over 40 years of monthly data. This system automates most aspects of24

the six stages of converting raw data into new forecasts: data collection, data25

sharing, data manipulation, modeling and forecasting, archiving, and presentation26

of the forecasts.27

3. The forecasting system uses R code for working with data, fitting models, making28

forecasts, and archiving and presenting these forecasts. The resulting pipeline is29

automated using continuous integration (a software development tool) to run the30

entire pipeline once a week. The cyberinfrastructure is designed for long-term31

maintainability and to allow the easy addition of new models. Constructing this32

forecasting system required a team with expertise ranging from field site33

experience to software development.34

4. Automated near-term iterative forecasting systems will allow the science of35

ecological forecasting to advance more rapidly and provide the most up-to-date36

forecasts possible for conservation and management. These forecasting systems37

will also accelerate basic science by allowing new models of natural systems to38

be quickly implemented and compared to existing models. Using existing39

technology, and teams with diverse skill sets, it is possible for ecologists to build40

automated forecasting systems and use them to advance our understanding of41

natural systems.42
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Introduction44

Forecasting the future state of ecological systems is important for management,45

conservation, and evaluation of how well models capture the processes governing46

ecological systems (Clark et al., 2001; Tallis & Kareiva, 2006; Díaz et al., 2015; Dietze,47

2017). In 2001, Clark et al. (2001) called for a more central role of forecasting in48

ecology. Since then, an increasing number of ecological forecasts are being published49

that focus on societally important questions from daily to decadal time scales (Dietze et50

al., 2018). At daily scales, ecological forecasts predict the occurrence of environmental51

issues like toxic algal blooms (Stumpf et al., 2009) and pollen (Prank et al., 2013). At52

monthly scales, forecasts are used to predict the stocks of fisheries (NOAA, 2016) and53

the probability of coral bleaching events (Liu et al., 2018). At decadal time scales,54

ecological forecasts are used to predict how biodiversity will change as it responds to55

anthropogenic influences (Harris et al., 2018). These forecasting examples highlight the56

important role that ecological forecasts play in recasting ecological knowledge in57

societally relevant ways and also improve our understanding of ecological systems by58

testing the ability of our models to predict how systems will change in the future59

(Dietze et al., 2018; Harris et al., 2018).60

While some of the examples given above (e.g., fisheries stock estimates) are regularly61

repeated, most ecological forecasts are made once, published, and never assessed or62

updated (Dietze et al., 2018). This lack of both regular assessment and active updating63

has limited the progress of ecological forecasting and hindered our ability to make64

useful and reliable predictions. The lack of active assessment results in limited65

information on how much confidence to place in forecasts and makes it difficult to66

determine on which forecasting methods to build. Without regular updates, forecasts67

lack the most current data, and the longer a forecast remains out of date, the less68

accurate it becomes (Petchey et al., 2015; Dietze et al., 2018). More regular updating69

and assessment will advance ecological forecasting as a field by accelerating the70

3



identification of the best models for individual forecasts and improving our71

understanding of how to best design forecasting approaches for ecology in general. This72

approach has helped accelerate forecasting ability in other fields such as meteorology73

(Kalnay, 2003; McGill, 2012; Bauer et al., 2015). For ecological forecasting to mature74

as a field, we need to change how we produce and interact with forecasts, creating a75

more dynamic interplay between model development, prediction generation, and76

incorporation of new data and information (Dietze et al., 2018).77

With the goal of making ecological forecasting more dynamic and responsive, Dietze et78

al. (2018) recently called for an increase in iterative near-term forecasting. Iterative79

near-term forecasting is defined as making predictions for the near future and repeatedly80

updating those predictions through a cycle of evaluation, integration of new data, and81

generation of new forecasts. Because forecasts are made ‘near-term’—daily to annual82

time scales instead of multi-decadal—predictions can be assessed more quickly and83

frequently, leading to more rapid model improvements (Tredennick et al., 2016; Dietze84

et al., 2018). Since forecasts are made repeatedly through time, new data can be85

continuously integrated with each iteration (Dietze et al., 2018). By quickly identifying86

how models are failing, facilitating rapid testing of improved models, and incorporating87

the most up-to-date data available, iterative near-term forecasting has the potential to88

promote rapid improvement in the state of ecological forecasting. In addition to89

yielding improved information for guiding policy and management (Clark et al., 2001;90

Luo et al., 2011; Petchey et al., 2015), this iterative approach will help improve our91

basic understanding of ecological systems (Dietze et al., 2018). For example, alternative92

mechanistic models can be compared to determine which model provides the best93

forecasts, thus providing insights into the importance of different ecological processes94

(Dietze et al., 2018). Iterative near-term forecasting provides the more dynamic95

interplay between models, predictions, and data that has been identified as necessary for96

improving ecological forecasting and our understanding of ecological systems more97
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broadly.98

Because iterative near-term forecasting requires a dynamic integration of models,99

predictions, and data, Dietze et al. (2018) highlight approaches to data management,100

model construction and evaluation, and cyberinfrastructure that are necessary to101

effectively implement this type of forecasting (Box 1). Data needs to be released102

quickly under open licenses (Vargas et al., 2017; Dietze et al., 2018) and structured so103

that it can be used easily by a variety of researchers and in multiple modeling104

approaches (Borer et al., 2009; Strasser et al., 2011). Models need to be able to deal105

with uncertainty, in both the predictors and the predictions, to properly convey106

uncertainty in the resulting forecasts (Diniz-Filho et al., 2009). Multiple models should107

be developed, both to assess which models are performing best (Dietze et al., 2018) and108

to facilitate combining models to form ensemble predictions which tend to perform109

better than single models (Araujo & New, 2007; Diniz-Filho et al., 2009; Dormann et110

al., 2018). Ensuring that data and models are regularly updated and new forecasts are111

made requires cyberinfrastructure to automate data processing, model fitting, prediction,112

model evaluation, forecast visualization, and archiving. In combination, these113

approaches should allow forecasts to be easily rerun and evaluated as new data becomes114

available (Box 1; Dietze et al., 2018).115

While iterative near-term forecasting is an important next step in the evolution of116

ecological forecasting, the requirements outlined by Dietze et al. (Box 1) are not trivial117

to implement (e.g., making quality data available in near real-time and automatically118

rerunning forecasts in reproducible ways), and few of their recommendations are in119

widespread use in ecology today (e.g., Wilson et al., 2014; Stodden & Miguez, 2014;120

Yenni et al., 2018). We explored what it would entail to operationalize Dietze et al’s121

recommendations by constructing our own iterative near-term forecasting pipeline for122

an on-going, long-term ecological study that collects high-frequency data on desert123

rodent abundances (Brown, 1998; Ernest et al., 2008). We constructed an automated124
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forecasting pipeline with the goal of being able to forecast rodent abundances and125

evaluate our predictions on a monthly basis. In this paper, we discuss our approach for126

creating this iterative near-term forecasting pipeline, the challenges we encountered, the127

tools we used, and the lessons we learned so that others can create their own iterative128

forecasting systems. For those interested in implementing iterative forecasting, either on129

their own or as part of a team, this paper will provide a roadmap for how to build such a130

system and what skills will be helpful to do so. For readers looking for an introduction131

to automation and continous integration in an ecological context, we recommend our132

paper on data management for continuously collected data, which includes a tutorial on133

how to set up some of the aspects of automation described in this paper (Yenni et al.,134

2018).135

System Background136

Iterative forecasting is most effective with frequently collected data, since it provides137

more opportunities for updating model results and assessing (and potentially improving)138

model performance (Box 1; Dietze et al., 2018). The Portal Project is a long-term139

ecological study situated in the Chihuahuan Desert (2 km north and 6.5 km east of140

Portal, Arizona, US). Researchers have been continuously collecting data at the site141

since 1977, including data on the abundance of rodent and plant species (monthly and142

twice yearly, respectively) and climatic factors such as air temperature and precipitation143

(daily) (Brown, 1998; Ernest et al., 2009, 2016, 2018). The site consists of 24 50m x144

50m experimental plots. Each plot contains 49 permanently marked trapping stations145

laid out in a 7 x 7 grid, and all plots are trapped with Sherman live traps for one night146

each month. For all rodents caught during a trapping session, information on species147

identity, size, and reproductive condition is collected, and new individuals are given148

identification tags. This information on rodent populations is high-frequency, uses149
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consistent trapping methodology, and has an extended time-series (475 monthly150

samples and counting), making this study an ideal case for near-term iterative151

forecasting. Forecasting of rodent population dynamics in the southwest (and more152

broadly) is important because of their link to zoonotic diseases such as hantavirus and153

plague (Parmenter et al., 1993; Gage & Kosoy, 2005; Springer et al., 2016). In addition,154

this forecasting system is being used to improve population dynamic modeling for this155

community and to explore the utility of incorporating experimental data into ecological156

forecasting models.157

Implementing an automated iterative forecasting system158

Implementation of iterative forecasting requires the regular updating of models with new159

raw data as it becomes available and the presentation of those forecasts in usable forms;160

in our case, this occurs monthly. Updating models in an efficient and maintainable way161

relies on developing an automated pipeline to handle the six stages of converting raw162

data into new forecasts: data collection, data sharing, data manipulation, modeling and163

forecasting, archiving, and presention of the forecasts (Figure 1a). To implement the164

pipeline outlined in Figure 1a, we used a “continuous analysis” framework (sensu165

Beaulieu-Jones & Greene, 2017) that automatically processes the most up-to-date data,166

updates the models, makes new forecasts, archives the forecasts, and updates a website167

with analysis of current and previous forecasts. In this section we describe our approach168

to streamlining and automating the multiple components of the forecasting pipeline and169

the tools and infrastructure we employed to execute each component.170

Continuous Analysis Framework171

A core aspect of iterative near-term forecasting is the regular rerunning of the172

forecasting pipeline. We employed “continuous analysis” (sensu Beaulieu-Jones &173
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Figure 1: A) Stages of the forecasting pipeline. To go from raw data to forecast
presentation involves a number of stages, each of which requires unique tasks, tools and
infrastructure. The stages are interdependent, with outputs from one stage forming the
inputs for the subsequent stage. Tasks in all stages are run using code written in R. B)
Continuous integration system. Each box denotes the core infrastructure used for each
stage of the forecasting pipeline. Continuous integration (denoted by the Travis icon, a
woman wearing safety glasses and hardhat) triggers the code involved in events that link
the stages of the pipeline, such as using the output from the forecasting stage (purple
box) to create an updated website (rose box). Travis also runs tasks within a stage, such
as testing code and adding weather data (icons on arrows originating and ending on the
same box). The code for driving different stages of this pipeline is stored on GitHub
(denoted by the GitHub icon, an “octocat”).

8



Greene, 2017) to drive the automation of both the full pipeline and a number of its174

individual components. Continuous analysis uses a set of tools originally designed for175

software development called “continuous integration” (CI). CI combines computing176

environments for running code with monitoring systems to identify changes in data or177

code. Essentially, CI is a computer helper who watches the pipeline and, when it sees a178

change in the code or data, runs all the computer scripts needed to ensure that the179

forecasting pipeline runs from beginning to end. This is useful for iterative near-term180

forecasting because it does not rely on humans to create new forecasts whenever new181

models or data are added. These tools are common in the area of software development,182

where they are used to automate software testing and integrate work by multiple183

developers working on the same code base. However, these tools can be used for any184

computational task that needs to be regularly repeated or run after changes to code or185

data (Beaulieu-Jones & Greene, 2017). Our forecasting pipeline currently runs on a186

publicly available continuous integration service (Travis CI; https://travis-ci.org/) that is187

free for open source projects (up to a limited amount of computing time). This188

continuous integration integrates directly with GitHub (https://github.com), the online189

repository where we store the associated code and data. Because of the widespread use190

of CI in software development, alternative services that can run code on local or191

cloud-based computational infrastructure also exist (Beaulieu-Jones & Greene, 2017).192

We use CI to quality check data, test code using “unit tests” (Wilson et al., 2014), build193

models, make forecasts, and publicly present and archive the results (Figure 1b).194

To ensure that software pipelines continue to run automatically as software195

dependencies change, a key component of “continuous analysis” is the use of a196

reproducible computational environment (Beaulieu-Jones & Greene, 2017). We197

followed Beaulieu and Greene’s (2017) recommendation to use software containers.198

Software containers are standalone packages that contain copies of everything needed to199

run a given piece of software, including the operating system (Boettiger, 2015). Once200

9

https://travis-ci.org/
https://github.com


created, a software container is basically a time capsule, containing all the software201

dependencies in the exact state used to develop and run the software (Boettiger, 2015).202

If those dependencies change (or disappear) in the wider world, they still exist,203

unchanged, in the container. We use an existing platform, Docker (Merkel, 2014), to204

store an exact image of our complete software environment by adding our project205

specific code to a container created by the Rocker project, which is a Docker image with206

many important R packages (i.e., the tidyverse packages; Wickham, 2017) pre-installed207

(Boettiger & Eddelbuettel, 2017). We implemented this system because we experienced208

issues with external dependencies breaking our pipeline (e.g., when the tscount209

package (Liboschik et al., 2015), was temporarily removed from CRAN and could not210

be installed in the usual way). In combination, the automated running of the pipeline211

(continuous integration) and the guarantee it will not stop working unexpectedly due to212

software dependencies (via a software container) allows continuous analysis to serve as213

the glue that connects all stages of the forecasting pipeline.214

Data Collection, Entry, and Processing215

Iterative forecasting benefits from frequently updated data so that state changes can be216

quickly incorporated into new forecasts (Dietze et al., 2018). Both frequent data217

collection and rapid processing are important for providing timely forecasts. Since we218

collect data monthly, ensuring that the models have access to the newest data requires a219

data latency period of less than 1 month from collection to availability for modeling. To220

accomplish this, we automated components of the data processing and quality221

assurance/quality control (QA/QC) process to reduce the time needed to add new data222

to the database [Yenni et al. (2018); Figure 1].223

New data is double-entered into Microsoft Excel using the “data validation” feature.224

The two versions are then compared using an R script to control for errors in data entry.225

Quality control (QC) checks using the testthat R package (Wickham, 2011) are run226
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on the data to test for validity and consistency both within the new data and between the227

new and archived data. The local use of the QC scripts to flag problematic data greatly228

reduces the time spent error-checking and ensures that the quality of data is consistent.229

The cleaned data is then uploaded to the GitHub-based PortalData repository230

(https://github.com/weecology/PortalData). GitHub (https://github.com/) is a software231

development tool for managing computer code development, but we have also found it232

useful for data management. On GitHub, changes to data can be tracked through the Git233

version control system which logs all changes made to any files in the repository, giving234

us a record of exactly of when specific lines of data were changed or added. All updates235

to data are processed through “pull requests,” which are notifications that someone has a236

modified version of the data to contribute. QA/QC checks are automatically run on the237

submitted data using continuous integration to ensure that no avoidable errors reach the238

official version of the dataset (Yenni et al., 2018).239

We also automated the updating of supplementary data tables, including information on240

weather and trapping history, that were previously updated manually. As soon as new241

field data is merged into the repository, continuous integration updates all242

supplementary files. Weather data is automatically fetched from our cellular-connected243

weather station, cleaned, and appended to the weather data table. Supplementary data244

tables related to trapping history are updated based on the data added to the main data245

tables. Using CI for this ensures that all supplementary data tables are always246

up-to-date with the core data (Yenni et al., 2018).247

Data Sharing248

The Portal Project has a long history of making its data publicly available so that anyone249

can use it for forecasting or other projects. Historically, the publication of the data was250

conducted through data papers (Ernest et al., 2009, 2016), the most common approach251

in ecology; this approach, however, caused years of data latency. With the recent switch252
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to posting data directly to a public GitHub repository (Figure 1) with a CC0 waiver253

(i.e. no restrictions on data use; https://creativecommons.org/publicdomain/zero/1.0/),254

data latency for everyone has been reduced to less than one month, making meaningful255

iterative near-term forecasting possible for not only our group but other interested256

parties, as well (Ernest et al., 2018; Yenni et al., 2018).257

Data Manipulation258

Once data is available, it must be processed into a form appropriate for modeling259

(Figure 1). For many ecological datasets, this requires not only simple data260

manipulation but also a good understanding of the data to facilitate appropriate261

aggregation. Data manipulation steps are often conducted using custom one-off code to262

convert the raw data into the desired form (Morris & White, 2013), but this approach263

has several limitations. First, each researcher must develop and maintain their own data264

manipulation code, which is inefficient and can result in different researchers producing265

different versions of the data for the same task. Subtle differences in data processing266

decisions have led to confusion when reproducing results for the Portal data in the past.267

Second, this kind of code is rarely robust to changes in data structure and location.268

Based on our experience developing and maintaining the Data Retriever (Morris &269

White, 2013; Senyondo et al., 2017), these kinds of changes are common. Finally, this270

kind of code is generally poorly tested, which can lead to errors based on mistakes in271

data manipulation. To avoid these issues for the Portal Project data, the Portal team has272

been developing an R package (portalr; http://github.com/weecology/portalr) for273

acquiring the data and handling common data cleaning and aggregation tasks. As a274

result, our modeling and forecasting code only needs to install this package and run the275

data manipulation and summary functions to get the appropriate data (Figure 1b). The276

package undergoes thorough automated unit testing to ensure that data manipulations277

are achieving the desired results. Having data manipulation code maintained in a278
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separate package that focuses on consistently providing properly summarized forms of279

the most recent data has made maintaining the forecasting code itself much more280

straightforward.281

Modeling and Forecasting282

Iterative near-term forecasting involves regularly updating a variety of different models283

(Figure 1). Ideally, new models should be easy to incorporate to allow for iterative284

improvements to the general modeling structure and approach. We use CI to update the285

models and make new forecasts each time the modeling code changes and when new286

data becomes available (Figure 1b). We use a modular plugin infrastructure to allow287

new models to be easily added to the system. This approach treats each model as an288

interchangable black box; all models have access to the same input data and generate289

the same structure for model outputs (Figure 2). Details of how to add a new model to290

the system are provided in the core GitHub repository291

(https://github.com/weecology/portalPredictions/wiki/Adding-a-new-model). During292

each run of the forecasting code, all existing models are run and the standardized293

outputs are combined into a single file to store the results of the different models’294

forecasts. A weighted ensemble model is then added with weights based on how well295

individual models fit the training data. This plugin infrastructure makes it easy to add296

and compare very different types of models, from the basic time-series approaches297

currently implemented to the more complex state-space and machine learning models298

we hope to implement in the future. As long as a model script can load the provided299

data and produce the appropriate output, it will be run and its results incorporated into300

the rest of the forecasting system. This means that anyone can add a new model to the301

existing system by: 1) creating their own copy of the project (typically by forking the302

project on GitHub); 2) developing a new model; and 3) submitting a pull request to our303

repository.304
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Figure 2: Demonstration of plugin infrastructure. All model scripts (represented here by
the example AR1.R) are housed in a single folder. Each model script uses data provided
by the core forecasting code (represented here by rodent.csv) and returns its forecast
outputs in a predefined structure that is consistent across models (represented here by
the example 2017_12_08forecasts.csv). Outputs from all models run on a particular date
are combined into the same file (i.e. 2017_12_08forecasts.csv) to allow cross-model
evaluations. Model output files are housed in a folder containing all forecast outputs
from all previous dates to facilitate archiving and forecast assessment.
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In addition to flexibility in what model structures can be supported, we also wanted to305

support flexibility in what the models predict. Allowing models to make forecasts for306

system properties ranging from individual species’ population abundances to total307

community biomass facilitates exploration of differences in forecastability across308

different aspects of ecological systems. We designed a forecast output format to support309

this. Each forecast output file contains the date being forecast, the collection date of the310

data used for fitting the models, the model name, the date the forecast was made, the311

state variable being forecast (e.g., rodent biomass, the abundance of a species), and the312

forecast value and associated uncertainty of that forecast (Figure 2). This allows us to313

store a variety of different forecasts in a common format and may serve as a useful314

starting point for developing a standard for storing ecological forecasts more generally.315

Forecasts are currently evaluated using root mean square error (RMSE) to evaluate316

point forecasts and coverage to evaluate uncertainty. We plan to add additional metrics,317

like deviance, that incorporate both accuracy and uncertainty and better match the318

calibration method (Hooten & Hobbs, 2015; Dietze et al., 2018). In addition to319

evaluating the actual forecasts, we also use hindcasting (forecasting on already collected320

data; Jolliffe & Stephenson, 2003) to gain additional insight into the methods that work321

best for forecasting this system. For example, a model is fit using rodent observations322

up to June 2005, then used to make a forecast 12 months out to May 2006. The323

observations of that 12-month period can immediately be used to evaluate the model.324

Since hindcasting is conducted using data that has already been collected, it allows325

model comparisons to be conducted on large numbers of hindcasts and provides insight326

into which models make the best forecasts without needing to wait for new data to be327

collected (Harris et al., 2018). It can also be used to quickly evaluate new models328

instead of waiting for an adequate amount of data to accumulate. As the performance of329

different models is understood through evaluation of forecasts and hindcasts, models330

can be refined or removed from the system or ensemble to iteratively improve the331

15



resulting forecasts.332

Archiving333

Publicly archiving forecasts before new data is collected allows the field to assess,334

compare, and build on forecasts made by different groups (McGill, 2012; Tredennick et335

al., 2016; Dietze et al., 2018; Harris et al., 2018) (Figure 1). Archiving serves as a form336

of pre-registration for model predictions because the forecasts cannot be modified once337

the data to assess them has been collected. This helps facilitate an unbiased338

interpretation of model performance. To serve this role, archives should be publicly339

accessible and be a permanent record that cannot be changed or deleted. This second340

criterion means that GitHub is not sufficient for archival purposes because repositories341

can be changed or deleted (Bergman, 2012; White, 2015). We explored three major342

repositories for archiving forecasts: FigShare (https://figshare.com/), Zenodo343

(https://zenodo.org/), and Open Science Framework (https://osf.io/). While all three344

repositories allowed for easy manual submissions (i.e., a human uploading files after345

each forecast), automating this process was substantially more difficult. Various346

combinations of repositories, APIs (i.e., interfaces for automatically interacting with the347

archiving websites), and associated R packages had issues with: 1) integrating348

authorization with continuous integration; 2) automatically making archived files public;349

3) adding new files to an existing location; or 4) automatically permanently archiving350

the files. Our eventual solution was to leverage the GitHub-Zenodo integration351

(https://guides.github.com/activities/citable-code/) and automatically push forecasts to a352

GitHub repository from the CI server and release them via the GitHub API. The353

GitHub-Zenodo integration is designed to automatically create versioned archives of354

GitHub repositories. We created a repository for storing forecasts355

(https://github.com/weecology/forecasts) and linked this repository with Zenodo (a356

one-time manual process). Each time a new forecast is created, our pipeline adds the357
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new forecasts to the GitHub repository and uses the GitHub API to create a new358

“release” for that repository. This triggers the GitHub-Zenodo integration, which359

automatically archives the resulting forecasts under a top-level DOI that refers to all360

archived forecasts (https://doi.org/10.5281/zenodo.839580). Through this process, we361

automatically archive every forecast made with a documented time-stamp. In addition,362

we also archive the full state of the modeling and forecasting repository363

(https://doi.org/10.5281/zenodo.833438). Through a similar process, the raw data in the364

data repository is also archived on a Zenodo whenever data is added or changed (Yenni365

et al., 2018), allowing retrieval of older versions of the data used for forecasting366

(https://doi.org/10.5281/zenodo.1219752). This ensures that every forecast is fully367

reproducible since the exact code and data used to generate every forecast is preserved.368

Early forecasts from this system are archived in the modeling and forecasting code369

archive, not in the newer repository ‘forecasts’.370

Presentation371

Each month, we present our forecasts on a website that displays monthly rodent372

forecasts, model evaluation metrics, monthly reports, and information about the study373

site (Figure 3; http://portal.naturecast.org). The website includes a graphical374

presentation of the most recent month’s forecasts (including uncertainty) and compares375

the latest data to the previous forecasts. Information on the species and the field site are376

also included. The site is built using Rmarkdown (Allaire et al., 2017), which naturally377

integrates into the pipeline and is automatically updated after each forecast. The knitr378

R package (Xie, 2015) compiles the code into HTML, which is then published using379

Github Pages (https://pages.github.com/). The files for the website are stored in a380

subdirectory of the forecasting repository. As a result, the website is also archived381

automatically as part of archiving the forecast results.382
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Figure 3: Screen capture of the homepage of the Portal Forecasting website (http:
//portal.naturecast.org). This site contains information on the most current forecasts,
evaluation of forecast performance, and general information about the species being
forecast.
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Discussion383

Following the recommendations of Dietze et al (2018), we developed an automated384

iterative forecasting system (Figure 1) to support repeated forecasting of an ecological385

system. Our forecasting system automatically acquires and processes the newest data,386

updates the models, makes new forecasts, publicly archives those forecasts, and387

presents both the current forecast and information on how previous forecasts performed.388

Every week, the forecasting system generates a new set of forecasts with no human389

intervention, except for the entry of new field data. Our forecasting system ensures that390

forecasts based on the most recent data are always available and is designed to allow391

rapid assessment of the performance of multiple forecasting models for a number of392

different states of the system, including the abundances of individual species and393

community-level variables such as total abundance. To create this iterative near-term394

forecasting system, we used R to process data and conduct analyses and leveraged395

existing tools and services (i.e. GitHub, Travis, Docker) for more complicated396

cyberinfrastructure tasks. Thus, our approach to developing iterative near-term397

forecasting infrastructure provides an example for how short-term ecological398

forecasting systems can be developed.399

We designed this forecasting system with the goal of making it relatively easy to build,400

maintain, and extend. We used existing technology for both running the pipeline and401

building individual components, which allowed us to build the system relatively cheaply402

in terms of both time and money. This included the use of tools like Docker for403

reproducibility, Travis CI continuous integration for automatically running the pipeline,404

Rmarkdown and knitr for generating the website, and the already existing integration405

between Github and Zenodo to archive the forecasts. By using this “continuous analysis”406

approach (Beaulieu-Jones & Greene, 2017), where analyses are automatically rerun407

when changes are made to data, models, or associated code, we have reduced the time408

required by scientists to run and maintain the forecasting pipeline. To make the system409
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extensible so that new models could be easily incorporated, we used a plugin-based410

infrastructure so that adding a new model to the system is as easy as adding a single file411

to the ‘models’ folder in our repository (Figure 2). This should substantially lower the412

barriers to other scientists contributing models to this forecasting effort. We also413

automatically archive the resulting forecasts publicly so that the performance of these414

forecasts can be assessed by both us and other researchers as new data is collected. This415

serves as a form of pre-registration by providing a quantitative record of the forecast416

before the data being predicted was collected.417

While building this system was facilitated by the use of existing technological solutions,418

there were still a number of challenges in making existing tools work for automated419

iterative forecasting. Continuous integration is designed primarily for running420

automated tests on software, not for running a coordinated forecasting pipeline. As a421

result, extra effort was sometimes necessary to figure out how to get these systems to422

work properly in non-standard situations, like running code that was not part of a423

software package. In addition, hosted continuous integration solutions, like Travis,424

provide only limited computational resources. As the number and complexity of the425

models we fit has grown, we have had to continually invest effort in reducing our total426

compute time so we can stay within these limits. Finally, we found no satisfactory427

existing solution for archiving our results. All approaches we tried had limitations when428

it came to automatically generating publicly-versioned archives of forecasts on a429

repeated basis, and our eventual solution was difficult to configure to such a degree that430

it will remain an impediment for most researchers. Overall, we found existing431

technology to be sufficient to the task of creating an iterative forecasting pipeline, but it432

required greater expertise and a greater investment of time than is ideal. Additional tool433

development to reduce the effort required for scientists to set up their own short-term434

forecasting systems would clearly be useful. Our efforts, however, show that it is435

possible to use existing tools to develop initial iterative systems as a method for both436

20



advancing scientific understanding and developing proof of concept forecasting systems.437

Expanding the community of ecological forecasters using continous analysis438

approaches will require both an expansion of the current toolkit and the development of439

standards to facilitate interoperability of forecasts and forecasting systems. One of the440

major challenges for our current forecasting system is supporting computationally441

intensive forecasts. Projects involving larger datasets and/or complex modelling442

approaches will require either hosted solutions that provide infrastructure for running443

continuous integration and allow long-running distributed jobs or solutions that involve444

the user setting up their own continuous analysis sytem on cloud infrastructure or high445

performance computing centers. Event-driven serverless cloud platforms like446

OpenWhisk (https://openwhisk.apache.org/) and AWS Lambda447

(https://aws.amazon.com/lambda/) provide potential as hosted solutions, and open448

source continuous integrations systems like Jenkins (https://jenkins.io/) can be449

integrated with either cloud or high performance computing centers. However, both450

solutions are currently more complicated to set up than the hosted continuous451

integration approach we have employed using Travis. In addition to scalability issue for452

more computationally intensive projects, the toolkit for continuous analysis needs be453

made more researcher friendly. To broaden the user-base that can use continuous454

analysis for forecasting, we recommend the development of tools that make setting up455

continuous analysis easier by automating configuration steps. We also recommend the456

development of tools or data repository infrastructure to support the easy automated457

archiving of regularly generated data and forecasts (see Yenni et al., 2018). Finally, the458

development of standards for ecological forecasting to allow interoperability among459

forecasting systems will be essential for the growth of this field (see discussions of data460

standards, meta-data, and ontologies in ecology more broadly Jones et al., 2006; Madin461

et al., 2008; Michener & Jones, 2012). Now is an opportune time for developing these462

standards while the community of ecological forecasters is still small. While we have463
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developed an initial format for storing and sharing forecasts, it is still lacking in several464

areas. Most notably, our approach to storing information on models and their associated465

uncertainty is insufficient for all but the simplest models. Improving this framework466

will require capturing both covariances between state variables and the full uncertainty467

in the models, by either storing full model objects or additional information like full468

ensembles of predictions (e.g., from Monte Carlo based approaches). This is469

challenging due to a lack of general standards for reporting uncertainty (Dietze et al.,470

2018).471

Because of the breadth of expertise needed to set up our forecasting pipeline, our effort472

required a team with diverse skills and perspectives, ranging from software473

development to field site expertise. It is rare to find such breadth within a single474

individual, and our system was developed as a collaboration between the lab collecting475

and managing the data and a computational ecology lab. When teams have a breadth of476

expertise, communication can be challenging (Winowiecki et al., 2011). We found a477

shared base of knowledge related to both the field research and computational skills was478

important for the success of the group. The two labs are part of a joint interdisciplinary479

ecology group that has a mission of breaking down barriers between field and480

computational/theoretical ecologists (http://weecology.org). Everyone on the team had481

received training in fundamental data management and computing skills through a482

combination of university courses, Software and Data Carpentry workshops (Teal et al.,483

2015), and lab training efforts. In addition, everyone was broadly familiar with the484

study site and methods of data collection, and most team members had participated in485

field work at the site on multiple occasions. This provided a shared set of knowledge486

and vocabulary that actively facilitated interdisciplinary interactions. All members of487

the team actively participated in the development of the forecasting pipeline. Given the488

current state of tools for automated iterative forecasting, forecasting teams require some489

experience in working with continuous integration and APIs. This means either490
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interdisciplinary teams or additional training will often be required for creating these491

pipelines until tool development improves. To improve the success of these diverse492

groups, we believe efforts at providing ‘team science’ training to scientists interested in493

forecasting will be beneficial for the success of iterative forecasting attempts for the494

foreseeable future (Read et al., 2016).495

We developed infrastructure for automatically making iterative forecasts with the goals496

of making accurate forecasts for this well-studied system, learning what methods work497

well for ecological forecasting more generally, and improving our understanding of the498

processes driving ecological dynamics. The most obvious application of automated499

iterative ecological forecasting is for speeding up development of forecasting models by500

using the most recent data available and by quickly iterating to improve the models used501

for forecasting. By learning what works best for forecasting in this and other ecological502

systems, we will better understand what the best approaches are for ecological503

forecasting more generally. By designing the pipeline so that it can forecast many504

different aspects of the ecological community, we also hope to learn about what aspects505

of ecology are more forecastable. Finally, automated forecasting infrastructures like this506

one also provide a core foundation for faster scientific inquiry because new models can507

quickly be applied to data and compared to existing models. The forecasting508

infrastructure does the time-consuming work of data processing, data integration, and509

model assessment, allowing new research to focus on the models being developed and510

the inferences about the system that can be drawn from them (Dietze et al., 2018). We511

plan to use this pipeline to drive future research into understanding the processes that512

govern the dynamics of individual populations and the community as a whole. By513

regularly running different models for population and community dynamics, a near-term514

iterative pipeline such as ours should also make it possible to rapidly detect changes in515

how the system is operating, which should allow the rapid identification of ecological516

transitions or even possibly allow them to be prevented (Pace et al., 2017). By building517
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an automated iterative near-term forecasting infrastructure, we can improve our ability518

to forecast natural systems, understand the biology driving ecological dynamics, and519

detect or even predict changes in system state that are important for conservation and520

management.521
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Box 1. Key practices for automated iterative near-term542

ecological forecasting543

A list of some of the key practices developed by Dietze et al (2018) for facilitating544

iterative near-term ecological forecasting and discussion of why these practices are545

important.546

Data547

1. Frequent data collection548

Frequent data collection allows models to be regularly updated and forecasts to be549

frequently evaluated (Dietze et al., 2018). Depending on the system being studied, this550

frequency could range from sub-daily to annual, but typically the more frequently the551

data is collected the better.552

2. Rapid data release under open licenses553

Data should be released as quickly as possible (low latency) under open licenses so that554

forecasts can be made frequently and data can be accessed by a community of555

forecasters (Vargas et al., 2017; Dietze et al., 2018).556

3. Best practices in data structure557
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To reduce the time and effort needed to incorporate data into models, best practices in558

data structure should be employed for managing and storing collected data to ensure it559

is easy to integrate into other systems (interoperability) (Borer et al., 2009; Strasser et560

al., 2011; White et al., 2013).561

Models562

4. Focus on uncertainty563

Understanding the uncertainty of forecasts is crucial to interpreting and understanding564

their utility. Models used for forecasting should be probabilistic to properly quantify565

uncertainty and to convey how this uncertainty increases through time. Evaluation of566

forecast models should include assessment of how accurately they quantify uncertainty567

as well as point estimates (Hooten & Hobbs, 2015; Harris et al., 2018).568

5. Compare forecasts to simple baselines569

Understanding how much information is present in a forecast requires comparing its570

accuracy to simple baselines to see if the models yield improvements over the naive571

expectation that the system is static (Harris et al., 2018).572

6. Compare and combine multiple modeling approaches573

To quickly learn about the best approaches to forecasting different aspects of ecology,574

multiple modeling approaches should be compared (Harris et al., 2018). Different575

modeling approaches should also be combined into ensemble models, which often576

outperform single models for prediction (Weigel et al., 2008).577

Cyberinfrastructure578

In addition to improvements in data and models, iterative near-term forecasting requires579

improved infrastructure and approaches to support continuous model development and580
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iterative forecasting (Dietze et al., 2018).581

7. Best practices in software development582

Best practices should be followed in the development of scientific software and583

modeling to make it easier to maintain, integrate into pipelines, and build on by other584

researchers. Key best practices include open licenses, good documentation, version585

control, and cross-platform support (Wilson et al., 2014; Hampton et al., 2015).586

8. Support easy inclusion of new models587

To facilitate the comparison and ensembling of different modeling approaches, code for588

fitting models and making forecasts should be easily extensible, to allow models589

developed by different groups to be integrated into a single framework (Dietze et al.,590

2018).591

9. Automated end-to-end reproducibility592

Each forecast iteration involves acquiring new data, updating the models, and making593

new forecasts. This should be done automatically without requiring human intervention.594

Therefore, the process of making forecasts should emphasize end-to-end reproducibility,595

including data, models, and evaluation (Stodden & Miguez, 2014), to allow the596

forecasts to be easily rerun as new data becomes available (Dietze et al., 2018).597

10. Publicly archive forecasts598

Forecasts should be openly archived to demonstrate that the forecasts were made599

without knowledge of the outcomes and to allow the community to assess and compare600

the performance of different forecasting approaches both now and in the future (McGill,601

2012; Tredennick et al., 2016; Dietze et al., 2018; Harris et al., 2018). Ideally, the602

forecasts and evaluation of their performance should be automatically posted publicly in603

a manner that is understandable by both scientists and the broader stakeholder604

community.605
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Box 2. Glossary of terms606

CI. ‘Continuous Integration.’ The practice of continuouslly building and testing a code607

base as it is developed. Data latency. The time it takes for data to be available for use.608

Docker. An open-source Linux program for containerization (see software container).609

git. An open-source version control system. GitHub. A web-based host for git projects.610

Other options for a similar service include GitLab or Bitbucket. PortalData. The git611

repository for the Portal data, found on GitHub. portalPredictions. The git repository612

for the forecasts made using Portal data, found on GitHub. portalr. An R package for613

using the Portal data. QA/QC. ‘Quality Assurance.’ Testing the quality of a product.614

‘Quality Control.’ The process of ensuring the quality of a product. Rocker. A project615

making it easy to use Docker containers in the R environment. Software container.616

Allows a developer to package up an application with all of the parts it needs to run617

reliably. testthat. R package used to set up automated testing for QA/QC. Travis. A618

continuous integration service that integrates easily with GitHub and R. Examples of619

similar programs are Jenkins or CodeShip. Unit test. A component of quality control in620

which each smallest testable part of software is formally tested. Zenodo. An open data621

archive that integrates easily with GitHub.622
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