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 Model predictive control has been considered as a powerful alternative 

control method in power converters and electrical drives recently. This paper 

proposes a novel method for finite control set predictive control algorithm for 

an induction motor fed by 11-level cascaded H-Bridge converter. To deal 

with the high computation volume of MPC algorithm applied for CHB 

converter, 7-adjacent vectors method is applied for calculating the desired 

voltage vector which minimizes the cost function. Moreover, by utilizing 

field programmable gate array (FPGA) platform with its flexible structure, 

the total execution time reduces considerably so that the selected voltage 

vector can be applied immediately without delay compensation. This method 

improves the dynamic responses and steady- state performance of the system. 

Finally, experimental results verify the effectiveness of control design. 
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1. INTRODUCTION  

Model predictive control has the potential to improve the performance of fast dynamical system as 

power converters and electrical drives [1]-[7], due to its considerable merits: intuitive concept, ability to 

handle nonlinear MIMO system with input and state variable constraints. The concept of MPC is model base 

control strategy as a typical case of optimal control theory, in which the future behaviour of the system is 

predicted over a predefined horizon to achieve several important goals in cost function. The MPC firstly 

developed in process industry related to its high computation burden, however along with the development of 

micro- processor like DPS or FPGA, the application of MPC has extended for nonlinear system with fast 

dynamic behavior. In electrical drives area, MPC has been successfully applied for some kinds of motor as 

induction motor [8, 9], brushless DC motor (BLDC) [10], permanent magnet motor (PMSM) [11]. Besides, 

power converters which have finite switching states are suitable for FCS-MPC. In this field, MPC has several 

applications for both VSI converter [12, 13] and several structures of multilevel inverters: NPC [14], [15], T-

type [16], [17], CHB [18]-[22], matrix [23]. 

The multilevel converters have been researched widely nowadays due to its high-quality output 

voltage whilst the device voltage stress and switching frequency are significantly reduced, especially in high- 

power and medium voltage application [24]. Among diverse multilevel converter topologies, the CHB 

structure which owns the modularity and flexible construct with different voltage level is the most successful 

https://creativecommons.org/licenses/by-sa/4.0/
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topology. The common problem of multilevel converters is the complex modulator when the number of 

converter level increases. Hence, to implement FCS- MPC for multilevel CHB converter supplied for an 

induction motor, a method using 7-adjacent vectors [25] is applied to reduce the computation volume. In 

combination with eliminating PWM algorithm and utilizing FPGA platform [26-29], the predictive control 

method can be simply solved with small execution time and the selected voltage vector can be employed 

immediately, which improves dynamic response of inner control loop considerably compared to the 

conventional PID controller. Thus, other goals can also be obtained base on the given cost function, such as 

optimal switching devices and minimal common- mode voltage. Various experiment scenarios are 

implemented to evaluate the efficiency of the proposed FCS-MPC control design for IM drive fed by CHB 

inverter.  

 

 

2. SYSTEM DESCRIPTION 

2.1. Multilevel H-bridges cascaded inverter 

2.1.2. Overview of CHB inverter 
A power cell created by single-phase H-Bridge inverter is called as a basic component of cascaded 

H-Bridge converter. In this paper, prototype of eleven-level CHB converter is utilized with typical 

configuration as Figure 1. Each phase consists of five cells in series connection and an dc voltage source Vdc 

is supplied for each cell. The switching states of a phase can generate three cell state Sxi = {1, 0, -1} 

corresponding to three voltage levels {+Vdc, 0, -Vdc}, where x represents phase a, b or c. The voltage level of 

a single phase 11-level inverter is obtained by. 

 

1 2 3 4 5x x x x x xS S S S S S  (1) 

 

 

 
 

Figure 1. Eleven-level CHB converter 

 

 

From (1), the output voltage of each phase is obtained by. 

 
5 5 5

1 1 1

; ;AN dc ai BN dc bi CN dc ci

i i i

v V S v V S v V S  (2) 

 

2.1.3. Cascaded H-Bridge space vector  

A three phase eleven-level CHB inverter is applied in this research. The space vector in αβ 

coordinate of the chosen topology consists of total 1331 combinations of voltage state, Figure 2. To balance 

three phase voltages, all the redandunt states of a voltage vector producing high common mode voltage is 

neglected, which means only 331 candidate voltage vectors are apllied.  
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Figure 2. Space voltage vectors of a three-phase 11-level CHB inverter. 

 

 

2.2. Predictive currents of induction motor 

The mathmetic model of an induction motor in αβ coordinate is presented by. 

 

; 0
s s

s s s ss r

s s s r r p r

d d
R R jz

dt dt

Ψ Ψ
u Ψ= + = + −i i  (3) 

 
s s s s s s

s s s m r r m s r r
L L L LΨ ; Ψ= + = +i i i i  (4) 

 

where
s s

R L, are stator resistor and inductor, 
r r

R L,  are rotor resistor and inductor, respectively. The 

vector forms of the current and flux of the stator and rotor of the motor is given as (5). 
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Define new variables as (6). 
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The (3) and (4) can be written as. 
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in which 
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For MPC control design, forward- Euler method is applied to transform the continuous-time model 

(8) transformed into discrete-time model. 
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with Ts is sampling time and. 
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The stator currents in N steps ahead can be predicted as. 
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3. CONTROL METHOD 

3.1. Predictive current control design 

The block diagram of control design in this paper is presented in Figure 3, which includes four main 

blocks: 11-level CHB inverter (1), control strategy (2), current measurements (3) and induction motor with 

encoder (4). In control strategy, the d- coordinate reference stator current is generated by the flux regulator, 

meanwhile the speed regulator output is the reference current in q- coordinate. These reference variables are 

transformed into αβ coordinate and applied for inner predictive current control. The appropiate voltage vector 

is selected from the space vector to minimize a cost function of stator current errors. 
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Figure 3. FCS- MPC for 11-level inverter CHB and induction motor 

 

 

As aforementioned, a list of 331 candidate vectors is chosen to maize the common- mode voltage. 

However, because each of these different vector voltages will be used to calculate the predictive load current 
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in the next section, computation volume is still extremely high. In order to deal with this problem, the 7 

adjacent vectors method is used in this paper, where only 7 vectors which are adjacent the employed vector 

in the previous period is used to compute in the cost function [17]. This method reduces considerably the 

volume of calculation for predictive control the 11-level CHB converter. The FCS-MPC algorithm for every 

sampling control period in detail is shown in Figure 4. 

In addition, optimal devices switching in each phase can be achieved by appling the switching 

sequence presented in Figure 5. Phase A is taken for example, when the voltage level Sa of phase A increases 

or decreases by 1, only one cell state Sai is changed in five cells of phase A. This method reduces the number 

of devices switching to reduce the switching losses. 

 

3.2. Cost function selection 

The main purpose of cost function in this paper is minimal error between the predictive current and 

the reference stator current in αβ coordinate.  

In usual, when the calculation time is significant in comparison with control period, the delay 

compensation is applied to enhance the control performance [25]. However, by using FPGA, the calculation 

time in this research is considerably reduced, which allows the chosen voltage vector can be employed 

immediately after finishing calculation in the same control period, instead of waiting and apply at the 

beginning of the next period, as shown in Figure 6. Therefore, the dynamic response of system is improved 

due to the power of FPGA. The cost function in this research is given by. 

 

𝐺 = [𝑖𝛼
∗ (𝑘) − 𝑖𝛼

𝒑
(𝑘 + 1)]2 + [𝑖𝛽

∗(𝑘) − 𝑖𝛽
𝒑
(𝑘 + 1)]2 (12) 

*
)(ki : reference stator currents of IM at instant tk. 

1)(k +i : predictive stator currents of IM at instant tk+1. 

 

 

 
 

Figure 4. Control algorithm for predictive current 

control 

 
 

Figure 5. Optimal switching method 
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Figure 6. Timing control 

 

 

4. IMPLEMENTATION CONTROL METHOD BASED ON FPGA FLATFORM 

An internal circuit (IC) should be programed functionally to deploy a single small step in a 

complicated algorithm. In FPGA, an IC can be packaged into an RTL module with some typical signals: clk, 

rst, init and done, as shown in Figure 7. 

 

 

 
 

Figure 7. An IC built in RTL module 

 

 

In detail, Clk and rst are synchronous clock system and reset signal for all states and variables of an 

IC, respectively. In most of execution time, FPGA computes the control algorithm in parallel. Init signal 

allows the IC to operate while the done signal confirm that IC has finished its operation. To implement 

sequential calculation in FPGA, the init signal of an IC is set by the done signal of the previous IC in only 

one clock system. Since an IC operates in only a small predifined time and will be disable in almost the time, 

this implementation method avoids the propagation of unexpected glitches and reduces the FPGA power 

consumption.  

The algorithm control is built in FPGA with multi ICs as presented in Figure 8 with Zybo Z7-20 

device. The clock system is 100MHz, and the sample time for outer and inner controller are 1ms and 50us, 

respectively. The data for the cost function is calculated sequentially from the measurement signal. Then the 

cost function is implemented in parallel to reduce the calculation time.  

The execution time to read ADC and implement control algorithm is measured exactly by software 

for each IC shown in Figure 9. The total execution time for the controller is 3.85us as shown in oscilloscope, 

which is negligible in comparison with the sampling time of 50us.  
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Figure 8. FPGA implementation of control algorithm 

 

 

 
 

Figure 9. Total execution time 

 

 

5. EXPERIMENT VERIFICATION 

5.1. Experiment system 

An experiment system is built to validate the FCS-MPC control algorithm for induction motor fed 

by 11-level CHB converter as shown in Figure 10. In detail, the force board of a single cell and the 

measurement circuit is presented Figure 11 (a) and Figure 11 (b), respectively. The control design is 

embedded in a FPGA card called ZYBO-27 and the control object is a Siemens induction motor with the 

parameter given by Table 1. 
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Figure 10. Experiment system 
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Figure 11. (a) cell circuit, (b) measurement circuit 

 

 

Table 1. IM parameter 
Nominal power 𝑃𝑑𝑚 2,2 kW 

Nominal load 𝑀𝑑𝑚 7,3 N.m 

Nominal current 𝐼𝑑𝑚 2,7A 

Nominal voltage 𝑈𝑑𝑚 690 V 

Frequency 𝑓 50 Hz 

Rotor resistor 𝑅𝑟 6 Ω 

Inductance 𝐿𝑚 1,094 H 

Stator inductor 𝐿𝑠 1,134 H 

Rotor inductor 𝐿𝑟 1,134 H 

Nominal speed 𝑛𝑑𝑚 2880 rpm 

Vdc supply 𝑉𝑑𝑐 50V 

 

 

5.2. Result and discussion 

Various experiment scenarios are conducted to evaluate the proposed FCS-MPC applied to IM 

drive. The experimental results are collected and displayed by software and ossiloscope. First, the dynamic 

current response of the controller is verified by sudden change the q- reference current value of {1A, 0A,  

-1A} at various moment, while d-reference current is set at 1.5A. The result illustrates that current in q- 

coordinate isq can track the reference quickly in 2.35ms in Figure 12. At the same time, isd keeps constant at 

1.48A and iαβ tracks the reference in 6.5ms with 1.5% current ripple, presented in Figure 13 and Figure 14, 

correspondingly.  

In the second scenario, the transient response of the control system with the constant load is tested. 

The reference of rotor speed changes among several values from 0 to 200rad/s and including speed reversal. 
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As can be observed in Figure 15 the rotor speed also quickly tracks the reference in 0.1s with negligible 

tracking error. The current in αβ is controlled stably with small current ripple, as shown in Figure 16. 
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Figure 12. isq response in scenario 1 

 

Figure 13. isd response in scenario 1 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time(s)

-2

-1

0

1

2

i α
β
[A

]

0.479 0.48

0.38

0.39

0.4

0.123 0.129

0

0.5

1

1.5 iα ref

 iβ ref 
iα 

iβ

 

 

Figure 14. iαβ response in scenario 1 
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Figure 15. Speed motor response 
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Figure 16. iαβ response in scenario 2 
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Figure 17. Phase voltage Van, (a) 11 levels, (b) 9 levels  

 

 

In addition, while the motor speed changes from 1800 rpm to 1200 rpm, the phase voltage vector Van 

changes from 11 downto 9 voltage levels in Figure 17, respectively. Other performances of cost function are 

evaluated. Figure 18 compares two-pulse pattern for two below valves S2 and S4 of all 5 cells in phase A. The 

results prove the efficiency of method in reduce switching amount as well as the switching losses. 

Finally, Figure 19 validates the effectiveness of using 331 candidate voltage vectors. The peak value 

of Vzn is only about 30.4V, approximately to 
2

3
𝑉𝑑𝑐, which ensures the voltage balance among three phase and 

increases the stability for the system. 

 

 

 
(a) 

 

 
(b) 

 

Figure 18. Pulse pattern Van, (a) without optimal switching, (b) optimal method 
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Figure19. Common- mode voltage 

 

 

6. CONCLUSION 

In this research, a novel solution to implement the predictive current control for IM drive fed by 11-

level CHB inverter is proposed. In every consecutive sampling period, a subset of 7-adjacent voltage vector 

of the previous employed vector is utilized to predict the future stator current in one step ahead. Due to the 

parallel computation ability and flexible structure of FPGA, the calculation time is reduced significantly 

(only 3.85us). The selected vector for minimizing cost function can be employed as soon as finishing 

execution time for control algorithm. Achieved experimental results verify good performance of proposed 

method not only in dynamic response but also in steady-state. 
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