Note on the Odd Perfect Numbers

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Solé and and Planat stated that the Riemann Hypothesis is true if and only if the inequality $\frac{\pi^2}{6} \times \prod_{q \le q_n} \left(1 + \frac{1}{q}\right) > e^{\gamma} \times \log \theta(q_n)$ is satisfied for all primes $q_n > 3$, where $\theta(x)$ is the Chebyshev function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We state the conjecture that $\frac{\pi^2}{6.4} \times \prod_{q \le q_n} \left(1 + \frac{1}{q}\right) > e^{\gamma} \times \log \theta(q_n)$ is satisfied for infinitely many prime numbers q_n . Under the assumption of this conjecture and the Riemann Hypothesis, we prove that there is not any odd perfect number at all.

Keywords: Riemann Hypothesis, Prime numbers, Odd perfect numbers, Superabundant

numbers, Sum-of-divisors function 2000 MSC: 11M26, 11A41, 11A25

1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. As usual $\sigma(n)$ is the sum-of-divisors function of n:

$$\sum_{d|n} d$$

where $d \mid n$ means the integer d divides n, $d \nmid n$ means the integer d does not divide n and $d^k \parallel n$ means $d^k \mid n$ and $d^{k+1} \nmid n$. Define f(n) and G(n) to be $\frac{\sigma(n)}{n}$ and $\frac{f(n)}{\log \log n}$ respectively, such that log is the natural logarithm. We know these properties from these functions:

Proposition 1.1. [1]. Let $\prod_{i=1}^{r} q_i^{a_i}$ be the representation of n as a product of primes $q_1 < \cdots < q_r$ with natural numbers as exponents a_1, \dots, a_r . Then,

$$f(n) = \left(\prod_{i=1}^{r} \frac{q_i}{q_i - 1}\right) \times \prod_{i=1}^{r} \left(1 - \frac{1}{q_i^{a_i + 1}}\right).$$

 ${\it Email address:} \verb| vega.frank@gmail.com| (Frank Vega)$

Proposition 1.2. For every prime power q^a , we have that $f(q^a) = \frac{q^{a+1}-1}{q^a \times (q-1)}$ [2]. If $m, n \ge 2$ are natural numbers, then $f(m \times n) \le f(m) \times f(n)$ [2]. Moreover, if p is a prime number, and a, b two positive integers, then [2]:

$$f(p^{a+b}) - f(p^a) \times f(p^b) = -\frac{(p^a - 1) \times (p^b - 1)}{p^{a+b-1} \times (p-1)^2}.$$

Say Robins(n) holds provided

$$G(n) < e^{\gamma}$$

where the constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The importance of this property is:

Proposition 1.3. Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann Hypothesis is true [3].

The Chebyshev function $\theta(x)$ is given by

$$\theta(x) = \sum_{p \le x} \log p$$

with the sum extending over all prime numbers p that are less than or equal to x [4]. We state the following properties about this function:

Proposition 1.4. [4]. For $x \ge 89909$:

$$\theta(x) > (1 - \frac{0.068}{\log(x)}) \times x.$$

In mathematics, $\Psi = n \times \prod_{q|n} \left(1 + \frac{1}{q}\right)$ is called the Dedekind Ψ function. Say Dedekinds (q_n) holds provided

$$\prod_{q \le q_n} \left(1 + \frac{1}{q} \right) > \frac{e^{\gamma}}{\zeta(2)} \times \log \theta(q_n)$$

where q_n is the nth prime number, $\zeta(x)$ is the Riemann zeta function and $\zeta(2) = \prod_{i=1}^{\infty} \frac{q_i^2}{q_i^2 - 1} = \frac{\pi^2}{6}$. The importance of this inequality is:

Proposition 1.5. Dedekinds(q_n) holds for all prime numbers $q_n > 3$ if and only if the Riemann Hypothesis is true [5].

Let $q_1 = 2, q_2 = 3, \ldots, q_k$ denote the first k consecutive primes, then an integer of the form $\prod_{i=1}^k q_i^{a_i}$ with $a_1 \ge a_2 \ge \cdots \ge a_k \ge 0$ is called an Hardy-Ramanujan integer [6]. A natural number n is called superabundant precisely when, for all natural numbers m < n

$$f(m) < f(n)$$
.

Proposition 1.6. If n is superabundant, then n is an Hardy-Ramanujan integer [7]. Let n be a superabundant number, then $p \parallel n$ where p is the largest prime factor of n [7]. For large enough superabundant number n, we have that $q^{a_q} < 2^{a_2}$ for q > 11 where $q^{a_q} \parallel n$ and $2^{a_2} \parallel n$ [7]. For large enough superabundant number n, we obtain that $\log n < (1 + \frac{0.5}{\log p}) \times p$ where p is the largest prime factor of n [4]. Moreover, for large enough superabundant n, we know that $2^{a_2} < 2 \times p \times \log p$ such that p is the largest prime factor of n where $p \parallel n$ and $2^{a_2} \parallel n$ [7]. Let $n \nmid n$ be a superabundant number, then $n \mid n \mid n$ $n \mid n \mid n$ where $n \mid n \mid n$ $n \mid n \mid n$ n

In addition, we will use this property:

Proposition 1.7. [5], [6]. For $n \ge 2$:

$$\prod_{q>q_n} \frac{q^2}{q^2-1} \le e^{\frac{2}{q_n}}.$$

In number theory, a perfect number is a positive integer n such that f(n) = 2. Euclid proved that every even perfect number is of the form $2^{s-1} \times (2^s - 1)$ whenever $2^s - 1$ is prime. It is unknown whether any odd perfect numbers exist, though various results have been obtained:

Proposition 1.8. Any odd perfect number N must satisfy the following conditions: $N > 10^{1500}$ and the largest prime factor of N is greater than 10^8 [8], [9].

Say $Vegas(q_n)$ holds provided

$$\frac{\pi^2}{6.4} \times \prod_{q \le q_n} \left(1 + \frac{1}{q} \right) > e^{\gamma} \times \log \theta(q_n).$$

Conjecture 1.9. Vegas (q_n) holds for infinitely many prime numbers q_n .

Under the assumption of this conjecture and the Riemann Hypothesis, we prove that there is not any odd perfect number at all.

2. Results

Theorem 2.1. Under the assumption of the Conjecture 1.9 and the Riemann Hypothesis, we prove that there is not any odd perfect number at all.

Proof. Suppose that N is the smallest odd perfect number, then we will show its existence implies that the Conjecture 1.9 or the Riemann Hypothesis is false. There is always a large enough superabundant number n such that n is a multiple of N. We would have

$$f(n) \leq f(N) \times f(\frac{n}{N})$$

according to the Proposition 1.2. That is the same as

$$f(n) \le 2 \times f(\frac{n}{N})$$

since f(N) = 2, because N is a perfect number. Hence,

$$\frac{f(n)}{2} = \frac{(2 - \frac{1}{2^{a_2}}) \times f(\frac{n}{2^{a_2}})}{2}$$
$$= f(\frac{n}{2^{a_2}}) \times \frac{(2 - \frac{1}{2^{a_2}})}{2}$$
$$= f(\frac{n}{2^{a_2}}) \times \frac{2^{a_2+1} - 1}{2^{a_2+1}}$$

when $2^{a_2} \parallel n$ due to the Proposition 1.2. In this way, we have

$$\frac{f(\frac{n}{2^{a_2}})}{f(\frac{n}{N})} \le \frac{2^{a_2+1}}{2^{a_2+1}-1}.$$

However, we know that $p < 2^{a_2}$ because of $p > 10^8 > 11$ and the Propositions 1.6 and 1.8, where p is the largest prime factor of n. Consequently,

$$\frac{2^{a_2+1}}{2^{a_2+1}-1} \leq \frac{2 \times p}{2 \times p-1}$$

since $\frac{x}{x-1}$ decreases when $x \ge 2$ increases. In addition, we know that

$$\frac{2 \times p}{2 \times p - 1} \le f(p)$$

where we know that $f(p) = \frac{p+1}{p}$ from the Proposition 1.2. Certainly,

$$2 \times p^2 \le (p+1) \times (2 \times p - 1)$$
$$= 2 \times p^2 + 2 \times p - p - 1$$
$$= 2 \times p^2 + p - 1$$

where this inequality is satisfied for every prime number p. So,

$$\frac{f(\frac{n}{2^{a_2}})}{f(\frac{n}{N})} \le f(p)$$

where we know that $p \parallel n$ from the Proposition 1.6. Under the assumption of the Riemann Hypothesis, we have that

$$\begin{split} e^{\gamma} &> G(n) \\ &= \frac{f(\frac{n}{p}) \times f(p)}{\log \log n} \\ &\geq \frac{f(\frac{n}{p}) \times f(\frac{n}{2^{n_2}})}{f(\frac{n}{N}) \times \log \log n} \end{split}$$

since f(...) is multiplicative and as a consequence of the Propositions 1.3. This is equivalent to

$$\frac{f(\frac{n}{p})}{f(\frac{n}{N})} < \frac{e^{\gamma}}{f(\frac{n}{2^{d_2}})} \times \log \log n.$$

Under the assumption of the Conjecture 1.9:

$$\frac{\pi^2}{8} \times \prod_{q \le p} \left(1 + \frac{1}{q} \right) > e^{\gamma} \times \log((\theta(p))^{0.8}).$$

From the Propositions 1.1 and 1.6, we know that

$$f(\frac{n}{2^{a_2}}) = \left(\prod_{i=2}^k \frac{q_i}{q_i - 1}\right) \times \prod_{i=2}^k \left(1 - \frac{1}{q_i^{a_i + 1}}\right)$$

where $q_k = p$ and $q_1 = 2$. We know that

$$\frac{q_i}{q_i - 1} = \frac{q_i + 1}{q_i} \times \frac{q_i^2}{q_i^2 - 1}.$$

Using the previous inequality and the Conjecture 1.9, we obtain that

$$e^{\gamma} \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}} \right) \times \log((\theta(p))^{0.8}) < \frac{\pi^2}{8} \times \prod_{q \le p} \left(1 + \frac{1}{q} \right) \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}} \right)$$

$$= f(\frac{n}{2^{a_2}}) \times \frac{3}{2} \times \prod_{q > p} \frac{q^2}{q^2 - 1}$$

$$\leq f(\frac{n}{2^{a_2}}) \times \frac{3}{2} \times e^{\frac{2}{p}}$$

according to the Proposition 1.7. Taking into account that $p > 10^8 > 3$ and n is superabundant:

$$\frac{\frac{3}{2} \times e^{\frac{2}{p}}}{\log((\theta(p))^{0.8})} > \frac{e^{\gamma}}{f(\frac{n}{2^{\alpha_2}})} \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right).$$

We use the previous inequality to show that

$$\frac{f(\frac{n}{p})}{f(\frac{n}{N})} \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) < \frac{\frac{3}{2} \times e^{\frac{2}{p}}}{\log((\theta(p))^{0.8})} \times \log\log n.$$

For large enough superabundant number n and $p > 10^8$, then

$$\frac{\frac{3}{2} \times e^{\frac{2}{p}}}{\log((\theta(p))^{0.8})} \times \log\log n \le \frac{\frac{3}{2} \times e^{\frac{2}{108}}}{\log\left(((1 - \frac{0.068}{\log 10^8}) \times 10^8)^{0.8}\right)} \times \log\left((1 + \frac{0.5}{\log 10^8}) \times 10^8\right)$$

because of the Propositions 1.4 and 1.6. We obtain that

$$\frac{\frac{3}{2} \times e^{\frac{2}{108}}}{\log\left(\left(\left(1 - \frac{0.068}{\log 10^8}\right) \times 10^8\right)^{0.8}\right)} \times \log\left(\left(1 + \frac{0.5}{\log 10^8}\right) \times 10^8\right) < 1.87811.$$

Thus,

$$\frac{f(\frac{n}{p})}{f(\frac{n}{N})} \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) < 1.87811.$$

For every prime p_i that divides N such that $p_i^{a_i} \parallel N$ and $p_i^{a_i+b_i} \parallel n$ for a_i , b_i two natural numbers, we have that

$$f(p_i^{a_i+b_i}) - f(p_i^{a_i}) \times f(p_i^{b_i}) = -\frac{(p_i^{a_i} - 1) \times (p_i^{b_i} - 1)}{p_i^{a_i+b_i-1} \times (p_i - 1)^2}$$

in the Proposition 1.2. This is equal to

$$\frac{f(p_i^{a_i+b_i})}{f(p_i^{b_i})} = f(p_i^{a_i}) - \frac{(p_i^{a_i}-1)\times(p_i^{b_i}-1)}{f(p_{\underline{j}}^{b_i})\times p_i^{a_i+b_i-1}\times(p_i-1)^2}.$$

Hence,

$$\begin{split} \frac{f(\frac{n}{p})}{f(\frac{n}{N})} \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) &= \prod_{i} \left(\frac{f(p_i^{a_i+b_i})}{f(p_i^{b_i})}\right) \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) \\ &= \prod_{i} \left(f(p_i^{a_i}) - \frac{(p_i^{a_i} - 1) \times (p_i^{b_i} - 1)}{f(p_i^{b_i}) \times p_i^{a_i+b_i-1} \times (p_i - 1)^2}\right) \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) \\ &\approx \prod_{i} \left(f(p_i^{a_i})\right) \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) \\ &= f(N) \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) \\ &= 2 \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) \\ &> 2 \times \left(1 - \frac{1}{\log p} \times (1 + \frac{1.5}{\log p}) - \log(1 - \frac{1}{2^{a_2+1}})\right) \\ &> 2 \times \left(1 - \frac{1}{\log p} \times (1 + \frac{1.5}{\log p}) - \log(1 - \frac{1}{4 \times p \times \log p})\right) \\ &> 2 \times \left(1 - \frac{1}{\log 10^8} \times (1 + \frac{1.5}{\log 10^8}) - \log(1 - \frac{1}{4 \times 10^8 \times \log 10^8})\right) \\ &> 1.88 \\ &> 1.87811 \end{split}$$

using the Propositions 1.6 and 1.1 since we know that the expression

$$\frac{(p_i^{a_i} - 1) \times (p_i^{b_i} - 1)}{f(p_i^{b_i}) \times p_i^{a_i + b_i - 1} \times (p_i - 1)^2}$$

tends to 0 as b_i tends to infinity for every odd prime p. Certainly, the fraction $\frac{f(\frac{n}{p})}{f(\frac{n}{N})}$ gets closer to 2 as long as we take n bigger and bigger. However,

$$1.87811 < \frac{f(\frac{n}{p})}{f(\frac{n}{N})} \times \prod_{i=2}^{k} \left(1 - \frac{1}{q_i^{a_i+1}}\right) < 1.87811$$

is a contradiction. By contraposition, the number N does not exist under the assumption of the Conjecture 1.9 and the Riemann Hypothesis. The smallest counterexample N must comply that $N > 10^{1500}$ and therefore, we will always be capable of obtaining a large enough superabundant number n that is multiple of N. Note that, this proof fails for even perfect numbers.

Acknowledgments

The author would like to thank his mother, maternal brother and his friend Sonia for their support.

References

- [1] A. Hertlein, Robin's Inequality for New Families of Integers, Integers 18, (2018).
- [2] R. Vojak, On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds, arXiv preprint arXiv:2005.09307, (2020).
- [3] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl 63 (2) (1984) 187–213.
- [4] S. Nazardonyavi, S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, arXiv preprint arXiv:1211.2147, (2012).
- [5] P. Solé, M. Planat, Extreme values of the Dedekind ψ function, Journal of Combinatorics and Number Theory 3 (1) (2011) 33–38.
- [6] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357–372. doi:doi:10.5802/jtnb.591.
- [7] L. Alaoglu, P. Erdős, On highly composite and similar numbers, Transactions of the American Mathematical Society 56 (3) (1944) 448–469. doi:doi:10.2307/1990319.
- [8] P. Ochem, M. Rao, Odd perfect numbers are greater than 10¹⁵⁰⁰, Mathematics of Computation 81 (279) (2012) 1869–1877. doi:doi:10.1090/S0025-5718-2012-02563-4.
- [9] T. Goto, Y. Ohno, Odd perfect numbers have a prime factor exceeding 10⁸, Mathematics of Computation 77 (263) (2008) 1859–1868.