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Introduction
The study of texts using a qualitative approach remains the dominant modus operandi in
humanities research (D. Nguyen et al., 2020). While most humanities researchers
emphasize the critical examination of texts, digital research methodologies are gradually
being adopted as complementary options (Levenberg et al., 2018). These computational
practices allow researchers to process, aggregate and analyze large quantities of texts.
Analytical techniques can help humanities scholars uncover principles and patterns that
were previously hidden or identify salient sources for further qualitative research (Bod, 2013;
Aiello & Simeone, 2019). However, to support these and more advanced use cases such as
Natural Language Processing (NLP), sources must be digitized and transformed into a
machine-readable format through Optical Character Recognition (OCR) (Lopresti, 2009).

Despite the fact that OCR software is frequently used to convert analogue sources into
digital texts, off-the-shelf OCR tools are usually less adapted to historical sources leading to
errors in text transcription (Martínek et al., 2020; Nguyen et al., 2021; Smith & Cordell,
2018). Another disadvantage to these models is that they are very susceptible to noise,
resulting in relatively low text detection accuracy. Methods of digital text analysis have the
potential to further expand the field of humanities (Blevins & Robichaud, 2011; Kuhn, 2019;
Nguyen et al., 2021). However, as OCR quality has a profound impact on these methods, it
is important that OCR-generated text is as accurate as possible to avoid bias (Traub et al.,
2015; Strien et al., 2020). Adapting OCR systems to distinct historical sources is not only
expensive and time-consuming, but the technical knowledge required to (re)train OCR
models is often perceived as a hurdle by humanists (Nguyen et al., 2021; Smith & Cordell,
2018). Consequently, research efforts are often geared towards improving the output of the
off-the-shelf OCR tools through a process of error analysis and post-correction (Nguyen et
al., 2019). These efforts have resulted in streamlined, domain-specific OCR workflows
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including OCR4all, Escriptorium and OCR-D (Reul et al., 2019; Kiessling et al., 2019;
Neudecker et al., 2019). Despite these efforts, there are limited OCR workflows for
non-English and multilingual texts (Strien et al., 2020; Reynaert et al., 2020).

In this short paper we present our OCR workflow approach that proposes a user-friendly
solution for bilingual historical texts. We test this on a corpus of art exhibition catalogs from
INSERT EXACT PERIOD. These texts from the 19th and 20th century, a time period marked
by a major expansion of the printed word, a context that makes OCR highly meaningful as
manually processing these texts would be very laborious (Taunton, 2014). This is a corpus of
catalogs that record works present at specific exhibitions, the so-called
salontentoonstellingen, which were held from 1792 to 1914 in Antwerp, Ghent and Brussels.
The catalogs are bilingual - French and Dutch -  printed texts.

Approach
This approach aims to develop a workflow that brings together a number of off the shelf tools
and newly developed methods to enhance the quality of OCR on historical materials.

Figure 1: Overview of the OCR workflow

Firstly, we evaluated the performance of a Tesseract-based OCR workflow compared to
manually created ground truth (GT) using the OCR-D Ground Truth Guidelines1. Secondly,
the OCR evaluation tool CLEval was used to examine the OCR output.2 The choice for
CLEval was motivated by the fact that it shows both the text detection accuracy alongside
the text recognition accuracy. This allows for a more clear interpretation of end-to-end
accuracy of an OCR workflow.

2 https://github.com/clovaai/CLEval
1 https://ocr-d.de/en/gt-guidelines/trans/
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To ensure that the user-generated OCR remains accessible and is easy to share with others,
we convert the OCR output to IIIF-compliant format, which can be linked to the manifests
(i.e. HOCR, ALTO). IIIF is a set of open standards for storing both images and metadata
related to particular digital objects.

This open source approach emphasizes the need for preprocessing techniques to account
for the specific characteristics of historical documents such as noise and text skew. The first
results, as shown in Table 1, indicate that it outperforms the off-the-shelf version of Tesseract
in terms of detection already and we expect that recognition can be even further improved
with post-correction pipelines such as PICCL.

Detection Recognition

P R F1 P R F1 CER

Tesseract 92.5% 97.04 % 94.72% 90.44% 93.56% 91.97% 4.14%

OCR workflow 95.64% 96.09% 95.87% 91.81% 92.47% 92.14% 4.93%

Table 1: Comparison of our workflow with off-the-shelf Tesseract (P: Precision, R: Recall, F1:
F1-score, CER: Character Error Rate)
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Appendices

Appendix 1: Art catalog, salontentoonstelling.
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