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Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at

the negative even integers and complex numbers with real part % We state the conjecture that

2 . . . .
I x H0T2BBTS 5 Jog x > €7 xlog(x— K X /x) is satisfied for infinitely many natural numbers

x > 10® where K > 0 is a constant. Under the assumption of this conjecture and the Riemann
Hypothesis, we prove that there is not any odd perfect number at all.
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1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part % As usual o(n) is the sum-of-
divisors function of n:

2,

dln

where d | n means the integer d divides n, d 1 n means the integer d does not divide n and d“ |l n

means d* | n and d**! { n. Define f(n) and G(n) to be  and 1o£§g)gn respectively, such that log

is the natural logarithm. We know these properties from these functions:

Proposition 1.1. [1]. Let [17_, 4" be the representation of n as a product of primes q1 < --- < g

with natural numbers as exponents ai, ..., a,. Then,
(ol
f(n)=( : ]X (1— .1]~
i1 4~ 1 i=1 g
Proposition 1.2. For every prime power ¢°, we have that f(q*) = qff%]q__ll) [2]. If m,n > 2 are

natural numbers, then f(m X n) < f(m) X f(n) [2]. Moreover, if p is a prime number, and a, b
two positive integers, then [2]:

(P =DHx@p’-1
pu+b—1 X (p _ 1)2 :

F@) = f) x f(pP) = -
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Say Robins(n) holds provided
Gn) < e
where the constant y ~ 0.57721 is the Euler-Mascheroni constant. The importance of this prop-

erty is:

Proposition 1.3. Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann
Hypothesis is true [3].

The Chebyshev function 6(x) is given by

0(x) = Z log p

psx

with the sum extending over all prime numbers p that are less than or equal to x [4]. We state the
following properties about this function:

Proposition 1.4. [4]. For x > 89909:

0.068
0x)>(1 - —)xux.
log(x)
Proposition 1.5. [5]. There is a constant K > 0 such that there are infinitely many natural
numbers x:
6(x) < x — K X Vx.

In mathematics, ¥ = 7.x [, (1 + $) is called the Dedekind ¥ function. Say Dedekinds(g,)

holds provided
]_[(1 +l)> 2 logb(g)
q) <@ !

q=qn

2
co 4 2

where ¢, is the nth prime number, {(x) is the Riemann zeta function and {(2) = ]2, o %

The importance of this inequality is:

Proposition 1.6. Dedekinds(g,) holds for all prime numbers g, > 3 if and only if the Riemann
Hypothesis is true [6].

Let g, = 2,9, = 3,...,qr denote the first k consecutive primes, then an integer of the form
le q?" with a; > ap > --- > a; > 0 is called an Hardy-Ramanujan integer [7]. A natural
number 7 is called superabundant precisely when, for all natural numbers m < n
flm) < f(n).

Proposition 1.7. If n is superabundant, then n is an Hardy-Ramanujan integer [8]. Let n be a
superabundant number, then p || n where p is the largest prime factor of n [8]. For large enough
superabundant number n, we have that g% < 2% for q > 11 where g% || n and 2% || n [8].
For large enough superabundant number n, we obtain that logn < (1 + lg;p) X p where p is
the largest prime factor of n [4]. Moreover, for large enough superabundant n, we know that
2% < 2 % p xlog p such that p is the largest prime factor of n where p || n and 2> || n [8]. Let n
be a superabundant number, then f(n) > (1 —&(p)) X [y q%l where e(p) = 1 — —— x (1 + 12

log p log p
and p is the largest prime factor of n [4].
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On the sum of the reciprocals of power prime numbers not exceeding x, we have these results:
Proposition 1.8. [9]. For x > 2278383:

1

1
— >loglogx+B— —
Z g8 5xlog? x

p<x

where B ~ 0.261497212847642 is the Meissel-Mertens constant [10].

Proposition 1.9. [11]. Fory > 108:

Zi<1_ L, 2 2o
& p? " yxlogy yxlog’y yxlog'y yxlog'y’

In addition, we will use these properties:

Proposition 1.10. [6]. Forn > 2:

Proposition 1.11. [72]. For x > 1:

1 1
05 < log(1 + ;).

In number theory, a perfect number is a positive integer n such that f(n) = 2. Euclid proved

that every even perfect number is of the form 25! x (2* — 1) whenever 2° — 1 is prime. It is
unknown whether any odd perfect numbers exist, though various results have been obtained:

Proposition 1.12. Any odd perfect number N must satisfy the following conditions: N > 101°%
and the largest prime factor of N is greater than 108 [13], [14].

Say Vegas(x) holds provided

2

a X 60'0712132519795 X IOg)C > e’ X log(x - KX \/;)

where K > 0 is a constant.
Conjecture 1.13. Vegas(x) holds for infinitely many natural numbers x > 10%.

Under the assumption of this conjecture and the Riemann Hypothesis, we prove that there is
not any odd perfect number at all.

2. Numerical Calculations

Theorem 2.1.

1
Z ] <0.380503927189989469441
\gx (g+0.5)
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Proof. Using the Proposition 1.9, we check by computer that,

g<108 q=108

< 0.380503926673572 + !

2 2.07

108 x log 105 108 x log? 108
< 0.380503927189989469441.

3. Central Lemma

Lemma 3.1. For all prime numbers q, > 108, we have that
1_[ (1 + l) > QOTI2I3SIN5 o o0 4
4=qn 4
is satisfied.
Proof. We apply the logarithm to the both sides of the inequality,
1
D" log(1 + =) > 0.0712132519795 + log log 4.
q=qn q

We use the Proposition 1.11,

1
Z 7705 > 0.0712132519795 + log log g,,.

4<qn
This is the same as

1 1

q<qn q=qn

We know that
1 1 1

g q+05 2xgx(g+05)

Hence,
1
> (—) ~ loglog g, > 0.0712132519795 +
q<qn q<qn
We use that Proposition 1.8,

1
> 0.0712132519795 + Z (

5 x 10g*(gn) Z

that is equivalent to

+ 3 - 4
108 x log® 108 108 x log™* 108

O

|
D (5) -y (5 - 0_5) > 0.0712132519795 + log log g,.

1
(2><q><(q+0.5))'

2><q><(q+0.5))

1 1
B> 0.07121325197
> 0.0712132519 95+q;(2qu(q+0.5))
4

+ 3 .
5 X log”(gn)



Using the numerical computation in the Lemma 2.1, we only need to prove that

B> 0.0712132519795 + 0.3805039271289989469441 N — 10;3(108)
since m decreases as g, increases. In this way, we obtain that
B > 0.261497212847634
and thus, the proof is done. O

4. Main Insight

Lemma 4.1. Under the assumption of the Conjecture 1.13, we prove that

2 1
gj X 1—[ (1 + Z]) > e’ x log 6(q,)

q=4n
is satisfied for infinitely many prime numbers q, > 108.

Proof. We know there is a constant K > 0 such that there are infinitely many prime numbers
gn > 108:
0(qn) < gn = K X \gn

according to the Proposition 1.5. Hence, it is enough to show there are infinitely many prime
numbers ¢, > 108 such that

1 Y
1—[(1+6—1)>ileog(qn—l(x Van) -

q=qn 6.4

The previous inequality will be satisfied when

e
LOTI2IISINS oo g > = 10g (¢ — K X \Gn)

6.4

due to the Lemma 3.1. That is equivalent to

60'07121325 19795

X x log g, > €7 x1log (g, — K X \/qy)

6.4

which is true for infinitely many prime numbers ¢, > 10® under the assumption of the Conjecture
1.13. O
5. Main Theorem

Theorem 5.1. Under the assumption of the Conjecture 1.13 and the Riemann Hypothesis, we
prove that there is not any odd perfect number at all.



Proof. Suppose that N is the smallest odd perfect number, then we will show its existence implies
that the Conjecture 1.13 or the Riemann Hypothesis is false. There is always a large enough
superabundant number 7 such that » is a multiple of N. We would have

£(n) < F(N) x f(%)

according to the Proposition 1.2. That is the same as

n
<2X f(=
fln) <2x f( N)
since f(N) = 2, because N is a perfect number. Hence,

f) 2= 55) X f(F)
2 2
oon . (2-35)
“IGe T
2a2+l_]
2a2+l

n
= f (ﬁ) X
when 2 || n due to the Proposition 1.2. In this way, we have

f(ZZZ - 2a2+1
[ a1

However, we know that p < 2% because of p > 10% > 11 and the Propositions 1.7 and 1.12,
where p is the largest prime factor of n. Consequently,

Dar+l 2><p
<
2041 1 T 2xp-1

since ﬁ decreases when x > 2 increases. In addition, we know that

2Xp
—r <
I p—1° f(p)
where we know that f(p) = pT“ from the Proposition 1.2. Certainly,

2xpP<(p+Dx2xp-1)
=2xp*+2xp-p-1
=2xp’+p-1

where this inequality is satisfied for every prime number p. So,

fG5)
F(m <f(p)




where we know that p || n from the Proposition 1.7. Under the assumption of the Riemann
Hypothesis, we have that

e’ > G(n)
S f(p)
~ loglogn
FEYX f(25)
~ f(§) xloglogn
since f(...) is multiplicative and as a consequence of the Propositions 1.3. This is equivalent to
f(%) ey
n < n
& fGR)

Under the assumption of the Conjecture 1.13 and using the Lemma 4.1 and the Proposition 1.12:

x loglogn.

”—2 X 1_[ 1+ 1 > ¢ x log((0(p))"*)
8 q '

q<p

From the Propositions 1.1 and 1.7, we know that

rfile -

where g; = p and ¢, = 2. We know that

qi zqz‘+1x q;
gi—1 qgi ¢-1

Using the previous inequality and the Conjecture 1.13, we obtain that

Hxnb—JJXMW@WK xﬂ@+)[ﬁ[ HJ
p @

i qsp i=2
2

_n 3 q
_f(zaz)xzanz—l

q>p

n 3 2
Sf(ﬁ)XEXE‘P

according to the Proposition 1.10. Taking into account that p > 108 > 3 and n is superabundant:

Ixer EA 1
1-—.
Tog((0(p)%) ﬂ%fﬂ][ ﬂ“)

= l
We use the previous inequality to show that
2

f() ¢ ixd
II 7“<wwmmx%%”

N =2
7




For large enough superabundant number 7 and p > 108, then

2 x e logl 3% e 1 ( 0.5 108
L EXe xlog((1+ 2 x
Tog(@p)™) " " Jog (((1 - ) 107y0%) T\ log 10F

because of the Propositions 1.4 and 1.7. We obtain that

3 2
3 X e 108
xlog((l +

log (((1 - A6 ) X 108)0%)

1Og)x 108) < 1.87811.

Thus,

G £ [ 1 J
X 1- < 1.87811.
f($) ll;l q} +
For every prime p; that divides N such that p;’" || N and p?’*h’ || n for a;, b; two natural numbers,
we have that

a,+h a; (pfh - 1) X (pf‘ B 1)
f(P )Xf(P )_ p{li+bi_l X(pi_])2

1

f(p

in the Proposition 1.2. This is equal to
SOy W= DX @D
f(P,bl) i f([),b') % p?i+bi—1 % (pl _ 1)2

Hence,

f(")

o k
:H[ﬂpf f(p(l;x;o“l'ibx pr(p—lﬂ]xl,:[( “*‘]
<[ [eh)~] (1 - qgﬂ]

e

-2

1

1. 1
>2x(1- 1+ 22 Clog(l - ——)
logp log p 2+l
15
2x(1- 2 log(le ————
g X( logp) og( 4><p><logp))
1.5
2x(lo —— x(1+—>)—log(l = ——
” X( 10g108x(+10g108) o 4><108><log108))
> 1.88
> 1.87811



using the Propositions 1.7 and 1.1 since we know that the expression

P =D X} = 1)
F@ % pix (pi= 12

n

tends to 0 as b; tends to infinity for every odd prime p. Certainly, the fraction % gets closer to
N
2 as long as we take n bigger and bigger. However,

n k

5 1

1.87811 < —2~ x 1- —|[<1.87811
f(%) 1_2[( ‘?f“]

i=

is a contradiction. By contraposition, the number N does not exist under the assumption of the
Conjecture 1.13 and the Riemann Hypothesis. The smallest counterexample N must comply that
N > 10"3% and therefore, we will always be capable of obtaining a large enough superabundant
number n that is multiple of N. Note that, this proof fails for even perfect numbers. O
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