
Instructions to Reproduce the Results in the Paper
“High-Performance Agent-Based Simulation”

Contents
Overview 2

Extract code repositories 3
The bdm-paper-examples repository . 3

Install host machine prerequisites 4
Docker . 4
Intel Vtune Sampling Driver . 4
Linux screen command . 4

Load Docker image 5

Reproduce results 5
General information . 5
Functional Evaluation . 6
Main results (Figure 4a and 9–13 in the paper) 6
Comparison with Cortex3D and NetLogo (Figure 8 in the paper) 7
Runtime and space complexity (Figure 6 in the paper) 8
Workload profiling (Figure 4b and Figure 5 in the paper) 8
Biocellion comparison small (Figure 7 in the paper) 9
Biocellion comparison large (Figure 7 in the paper) 10

1

Overview
This repository contains the necessary files to reproduce the results in the paper: High-
Performance Agent-Based Simulation.

It consists of code repositories (SF2-code.tar.gz) and a self-contained Docker image
(SF3-bdm-publication-image.tar.gz). We executed all simulations and benchmarks in
the paper inside this Docker container.

The table below shows an overview of our benchmark hardware and software configuration.

System Type Description
System A CPU 4x Intel(R) Xeon(R) CPU E7-8890 v3 @ 2.50GHz

Memory 504 GB
Host operating system CentOS Linux release 7.9.2009 (Core)
Kernel 3.10.0-1160.53.1
Docker version 19.03.13

System B CPU 4x Intel(R) Xeon(R) CPU E7-8890 v3 @ 2.50GHz
Memory 1008 GB
Host operating system CentOS Linux release 7.9.2009 (Core)
Kernel 3.10.0-1160.59.1
Docker version 19.03.5

System C CPU 2x Intel(R) Xeon(R) E5-2683 v3 CPUs @ 2.00GHz
Memory 62 GB
Host operating system CentOS Stream 8
Kernel 4.18.0-365
Docker version 20.10.7

Software Description
Intel oneAPI 2022.0.0 (build 621730)

BioDynaMo v1.01-73-g5b6101a3
C++ compiler g++ (Ubuntu 9.3.0-17ubuntu1~20.04)

9.3.0
Python 3.9.1
CMake 3.19.5

Java openjdk version “11.0.10” 2021-01-19
Maven Apache Maven 3.6.3
Cortex3D 0.03 with modifications

We used maven as build system, added
support for headless execution, and
removed calls to Thread.sleep.

NetLogo 6.2.0

2

Please follow the instructions in this file to reproduce all results.

Extract code repositories
Start by downloading the file SF2-code.tar.gz. Extract the archive into an empty directory
and change into this directory using the following commands. Make sure that the absolute
path to this directory contains no spaces.
mkdir reproduce
tar -xzf <path-to>/SF2-code.tar.gz -C reproduce
cd reproduce

Now, reproduce contains all necessary code to produce all results shown in the pa-
per. The code consists of the biodynamo, and bdm-paper-examples repositories. Bio-
DynaMo is the high-performance simulation engine shown in the paper, and the directory
bdm-paper-examples contains the simulations, benchmarks, plots, and utilities to generate
the results.

License information is available in the following files:

• biodynamo/LICENSE
• bdm-paper-examples/LICENSE

Directory metadata contains more detailed information about the hardware and software
configuration of the used systems.

• System A: metadata/system-a
• System B: metadata/system-b

The bdm-paper-examples repository
The following list explains the directory structure.

• bdm: This directory contains the five simulations shown in Table 1 in the paper. These
simulations are detailed in https://doi.org/10.1093/bioinformatics/btab649.

• benchmark: This directory contains the scripts that define the compile and runtime
parameters used for a specific study.

• docker: This directory contains scripts to build, run, load, save, and connect to a
Docker container. It also includes the definition of the Docker image.

• netlogo: This directory contains the epidemiology implementation for NetLogo and
scripts to execute it.

• other-tools/cx3d: This directory includes Cortex3D and its simulation implementa-
tions.

• plot: This directory contains all matplotlib scripts to combine the raw results into
figures for the paper.

• util: This directory contains various scripts needed to execute the benchmarks.
• visualization: Contains ParaView scripts to visualize the simulations. We did not

use these scripts for this publication.

3

https://doi.org/10.1093/bioinformatics/btab649

• run-*.sh: These scripts execute one or more benchmarks for each simulation and
gather metadata about the software and hardware configuration of the underlying
machine.

Mapping between simulation names in the paper and bdm-paper-examples

Name in the simulation Name in bdm-paper-examples

Cell proliferation cell-grow-divide
Cell clustering soma-clustering
Epidemiology use case epidemiology
Neuroscience use case pyramidal-cell
Oncology use case tumor-spheroid

Install host machine prerequisites
Docker
Please install a recent Docker version (>= 19.0.3) and follow the instructions to use docker
as a non-root user.

Intel Vtune Sampling Driver
To collect performance results using Intel Vtune, install the Intel Vtune sampling driver
(version 2022.2.0) on the host machine by following this guide.

Linux screen command
We use the Linux screen command to execute long-running commands over SSH connections.
With screen, processes are not terminated if we close the SSH session. If this command is
not available on the system, please install it:
on Ubuntu
sudo apt install -y screen
on CentOS
sudo yum install -y screen

Here are the most important screen commands:
Start a new screen
screen

Disconnect from the screen by pressing CTRL + a, d
That means: press 'CTRL' and 'a' at the same time,
release both, and then type 'd'

4

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/build-install-sampling-drivers-for-linux-targets.html

Reconnect
screen -r

Have a look at this tutorial for more details on using screen.

Load Docker image
Download the publication’s docker image (SF3-bdm-publication-image.tar.gz) if you
haven’t done so already. After finishing this step, load the docker image using the following
commands. This step takes around 5 min to complete. The extracted image requires ~30GB
of disk space.
cd bdm-paper-examples
docker/load.sh <path-to>/SF3-bdm-publication-image.tar.gz

If this step completes successfully, you should be able to see an entry for bdm-publication-image-v7
with ID 9e13327e93a5 in the output of the command docker images. A sample output is
shown below.
REPOSITORY TAG IMAGE ID ... SIZE
...
bdm-publication-image-v7 latest 9e13327e93a5 ... 28.5GB
...

The Dockerfile that underlies the image can be found at bdm-paper-examples/docker/Dockerfile

Reproduce results
General information

• Results are always generated in the directory bdm-paper-examples/result. Make
sure this directory is empty before starting a script.

• The resulting plots can be found in the directory bdm-paper-examples/result/evaluation.
• Please ensure that the system you are using has enough memory and disk space to

run the simulations.
• The information regarding required memory and disk space given below only includes

the execution of the script.
• Execution time on your system might differ significantly, depending on your hardware.
• Use a local filesystem to avoid authentication issues with network file systems.
• Do not run the scripts as root user, and do not use sudo.
• Only run one script at the same time.
• If you are facing issues that you cannot resolve, don’t hesitate to get in touch with

lukas.breitwieser@cern.ch or contact@biodynamo.org for help.

Result directory structure

As mentioned above, all results will be generated in the directory bdm-paper-examples/result.
Please find a description of its directory structure below.

5

https://www.howtogeek.com/662422/how-to-use-linuxs-screen-command/
lukas.breitwieser@cern.ch
contact@biodynamo.org

• evaluation: This directory contains plots generated from the individual simulation
results. The plots are accompanied by a csv file containing the plot’s raw numbers.

• reproduce: Contains information on how to reproduce the generated results.
– Exact source code used: bdm-paper-examples and biodynamo repositories
– Additional details in metadata/run-* about used memory, disk space, docker

container id, and more.
• metadata:

– log: Complete log of the whole execution.
– system-info: Metadata about the hardware and software configuration used.
– benchmark: Subdirectories contain log files of individual benchmark runs (e.g.,

load balancing study for the epidemiology use case)
• tmp: Contains large temporary files (e.g., the raw results from Intel Vtune and advisor).
• Simulation result directories (cell-grow-divide, epidemiology, soma-clustering,

pyramidal-cell, tumor-spheroid) contain the measurements for each benchmark for
each simulation. For example, the epidemiology/operation-breakdown directory
contains the runtime measurement for each operation.

• run-*.tar.gz: Archive of the whole result directory excluding the tmp folder.
• run-*.tar.gz.sha256: Sha256 hash code of the result archive to detect modification.

The following instructions assume that the current working directory is
reproduce/bdm-paper-examples.

Functional Evaluation
This script is a quick check to see if the steps so far were successful. The script compiles
and executes all simulations shown in Table 1 in the paper with ~1000 agents.

• Executed on System A in 15 min
• Required memory: 12 GB
• Required disk space: 1 GB

Create a new Docker container and run the script
docker/run.sh ./run-functional-evaluation.sh

If the script returns exit code 0, it means that the checks were successful and that we can
start running the scripts to reproduce all results in the paper.

Main results (Figure 4a and 9–13 in the paper)
This script executes the majority of benchmarks described in the evaluation section of the
paper. We separated some benchmarks to reduce the memory consumption. The subsequent
sections show how to execute these separated benchmarks.

• Executed on System A in 12d
• Required memory: 13 GB
• Required disk space: 10 GB

Move the previous result
mv result ../result-<choose-name>

6

Create a new screen
screen
Create a new Docker container and run the script
docker/run.sh ./run-main.sh
Disconnect from the screen by pressing CTRL + a, d

Mapping between the output of the script and the paper:

Figure in the paper Result file (inside result/evaluation)
Figure 4a operation-breakdown.svg
Figure 9 (left) optimization-overview/all.svg
Figure 9 (right) optimization-overview/all-memory.svg
Figure 10a full-sim-scalability/all.svg
Figure 10b optimization-overview-scalability/cell-grow-divide-runtime.svg
Figure 10c optimization-overview-scalability/soma-clustering-runtime.svg
Figure 10d optimization-overview-scalability/epidemiology-runtime.svg
Figure 10e optimization-overview-scalability/pyramidal-cell-runtime.svg
Figure 10f optimization-overview-scalability/tumor-spheroid-runtime.svg
Figure 11a (left) environment/all-144.svg 1

Figure 11a (right) environment/all-18.svg 2

Figure 11b (left) environment/all-144-update-environment.svg
Figure 11b (right) environment/all-18-update-environment.svg
Figure 11c (left) environment/all-144-agent-ops.svg
Figure 11c (right) environment/all-18-agent-ops.svg
Figure 11d (left) environment/all-144-memory.svg
Figure 11d (right) environment/all-18-memory.svg
Figure 12 (left) load-balancing/all-144-threads.svg
Figure 12 (right) load-balancing/all-18-threads.svg
Figure 13 (left) mem-alloc-comp/all-total-runtime.svg
Figure 13 (right) mem-alloc-comp/all-memory.svg
Figure 14 (left) alternative-exec-modes/all.svg
Figure 14 (right) alternative-exec-modes/all-memory.svg

Comparison with Cortex3D and NetLogo (Figure 8 in the paper)
This script executes the comparison of BioDynaMo with Cortex3D and NetLogo.

• Executed on System A in 3h
• Required memory: 83 GB
• Required disk space: 10 GB

Move the previous result
mv result ../result-<choose-name>

1144 corresponds to the number of logical CPU core on the system.
218 corresponds to the number of physical CPU cores on the first NUMA domain.

7

Create a new screen
screen
Create a new Docker container and run the script
docker/run.sh ./run-comparison-with-others.sh
Disconnect from the screen by pressing CTRL + a, d

Mapping between the output of the script and the paper

Figure in the paper Result file (inside result/evaluation)
Figure 8 comparison-with-others/all.svg

Runtime and space complexity (Figure 6 in the paper)
This script analyses the runtime and memory consumption of BioDynaMo, with the number
of agents increasing from 103 to 109.

• Executed on System B in 2d 9h
• Required memory: 610 GB
• Required disk space: 16 GB

Move the previous result
mv result ../result-<choose-name>
Create a new screen
screen
Create a new Docker container and run the script
docker/run.sh ./run-runtime-complexity.sh
Disconnect from the screen by pressing CTRL + a, d

Mapping between the output of the script and the paper

Figure in the paper Result file (inside result/evaluation)
Figure 6 (left) runtime-complexity/all.svg
Figure 6 (right) runtime-complexity/all-memory.svg

Workload profiling (Figure 4b and Figure 5 in the paper)
This script performs the microarchitecture and roofline analysis for all simulations in Table
1 in the paper.

• Executed on System A in 20h
• Required memory: 47 GB
• Required disk space: 32 GB

Move the previous result
mv result ../result-<choose-name>
Create a new screen

8

screen
Create a new Docker container and run the script
docker/run.sh ./run-profiling.sh
Disconnect from the screen by pressing CTRL + a, d

The file result/evaluation/uarch-analysis.svg corresponds to Figure 4b in the paper.

Roofline plot

You have to extract the information from the individual roofline plots in result/evaluation/roofline/*.html
and enter it in the file: other-tools/nersc-roofline/Plotting/data.txt to generate
the aggregate plot. Here are the required steps:

1. Update the values for memroofs. The numbers correspond to the order of
mem_roof_names.

2. Repeat the step for comproofs.
3. For each simulation, update the arithmetic intensity (AI) and GigaOPS (FLOPS)

of the whole simulation indicated by the right crosshair (DRAM based AI) in
result/evaluation/roofline/*.html.

Now, you can generate the plot based on the updated data file.
Execute plot/roofline.sh in the Docker container
docker/exec.sh plot/roofline.sh

The generated plot can be found in result/evaluation/roofline/roofline.svg and
corresponds to Figure 5 in the paper.

Biocellion comparison small (Figure 7 in the paper)
This script executes the small-scale comparison with Biocellion, and the optimization
analysis in Figure 7b (right).

• Executed on System C in 7h
• Required memory: 11 GB
• Required disk space: 1 GB

Move the previous result
mv result ../result-<choose-name>
Create a new screen
screen
Create a new Docker container and run the script
docker/run.sh ./run-biocellion-cmprsn-single-node.sh
Disconnect from the screen by pressing CTRL + a, d

Figure in the paper Result file (inside result/evaluation)
Figure 7b (right) optimization-overview-16-cpus/biocellion-cell-clustering.svg

Open the spreadsheet at bdm-paper-examples/bdm/biocellion-cell-clustering/comparison.ods

9

and follow the instructions below to calculate the speedups.

• Copy the content of biocellion-cell-clustering/single-node/runtime into the
cells B32:B34

Biocellion comparison large (Figure 7 in the paper)
This script executes the large-scale comparison with Biocellion, the optimization analysis in
Figure 7b (left), and also renders the visualization in Figure 7a.

• Executed on System B in 16.5h
• Required memory: 500 GB
• Required disk space: 1 GB

Move the previous result
mv result ../result-<choose-name>
Create a new screen
screen
Create a new Docker container and run the script
docker/run.sh ./run-biocellion-cmprsn-cluster.sh
Disconnect from the screen by pressing CTRL + a, d

Figure in the paper Result file (inside result/evaluation)
Figure 7b (left) optimization-overview/biocellion-cell-clustering.svg
Figure 7a biocellion-cell-clustering-final-state-highres.png

Open the spreadsheet at bdm-paper-examples/bdm/biocellion-cell-clustering/comparison.ods
and follow the instructions below to calculate the speedups.

• Copy the content of biocellion-cell-clustering/cluster/runtime into the cells
B7:B9

• Copy the content of biocellion-cell-clustering/cluster-281m/runtime into the
cells E7:E9

• Copy the content of biocellion-cell-clustering/single-node/runtime into the
cells E32:E34

• Enter the number of physical CPU cores of the used benchmark hardware into B18
and E18

10

	Overview
	Extract code repositories
	The bdm-paper-examples repository

	Install host machine prerequisites
	Docker
	Intel Vtune Sampling Driver
	Linux screen command

	Load Docker image
	Reproduce results
	General information
	Functional Evaluation
	Main results (Figure 4a and 9–13 in the paper)
	Comparison with Cortex3D and NetLogo (Figure 8 in the paper)
	Runtime and space complexity (Figure 6 in the paper)
	Workload profiling (Figure 4b and Figure 5 in the paper)
	Biocellion comparison small (Figure 7 in the paper)
	Biocellion comparison large (Figure 7 in the paper)

