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Abstract The wide and not yet fully uncovered

potential of plant secondary metabolites make plants a

rich source of drug leads. Metabolomics enables the

study of the metabolic perturbations taking place in

bacterial cells under the influence of plant-based

bioactive molecules. It reveals the changes in meta-

bolic pathways within bacteria, reflecting the repro-

gramming of the biochemical networks. From this

point of view, metabolomics is valuable in under-

standing the alteration of cell functions when bacteria

are subjected to metabolic stress caused by treatment

with secondary metabolites, that inhibit their growth.

In this review the application of metabolomics in

revealing bacteria response to plant-derived secondary

metabolites is presented. Metabolomics may be a way

to select antibacterial plant-based bioactive secondary

metabolites and to understand their mode of action.

Therefore, herein the usefulness of metabolomic

approach in screening for antimicrobials from plants,

as well as in exploring the target points in bacteria

metabolism and in uncovering the mechanisms of

bacteria adaptation and resistance to natural antimi-

crobials are discussed. Basic chemometrics and

molecular networking are successfully applied for

the identification of antimicrobial molecules in com-

plex plant mixtures. Determination of antibacterial

modes of action is done through classification strategy,

pathway analysis and integration of transcriptomics,

genomics and metabolomics, whereas, comparative

metabolomics and integrative approach is useful in

revealing the bacterial mechanisms of resistance.

Keywords Metabolome � Bioinformatics � Pathway
analysis � Molecular networking � LC–MS � NMR

Introduction

Food and medicinal plants have always been used by

human as a natural remedy for bacterial infections and

associated diseases. The impact of plant-based foods

and their bioactive secondary metabolites on a human

health and wellbeing in undoubtful. The wide and still

not fully uncovered potential of plant secondary

metabolites make plants a rich source of drug leads

(Anand.et al. 2019). What is more, the antibacterial

action of many food-derived secondary metabolites is
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well documented, like it was done for cinnamaldehyde

from cinnamon, thymol and carvacrol from thyme,

betulinic acid from ber tree (Ziziphus jujuba), allicin

from garlic, curcumin from curcuma, piperine from

piper (Gorlenko et al. 2020) or proanthocyanidins

from cranberries (Wan et al. 2016), just to mention a

few. Some of plant antimicrobial compounds found an

application as food preservatives (Hintz et al. 2015).

However more importantly, plant-based foods have

been recently reported to modulate the composition of

human gut microbiota, showing the possibility to

supress pathogenic species and support symbiotic ones

(Rajoka et al. 2017; Yang et al. 2020). This fact

increases the importanceof plant secondary metabo-

lites in fighting external but also internal bacterial

infections.

The high antibacterial potential of medicinal plants

and plant-based foods is based on the enormous

diversity of their constituents (Gorlenko et al. 2020).

This diversity is nowadays being successfully studied

with the application of metabolomics (Nagana Gowda

and Raftery 2017). Metabolomics enables the com-

prehensive characterization of the set of low-molec-

ular-weight compounds as starting, intermediate, or

end products of metabolic transformations in the

living organisms (Markley et al. 2017). Since metabo-

lites are directly related to biochemical, physiological,

and pathophysiological processes, they reflect the

activity of the genes at a particular time, in a given

environment. Hence metabolomics is complementary

to the other global omics platforms like genomics,

transcriptomics or proteomics (Mirsaeidi et al. 2015).

The metabolomic analysis captures the metabolome in

the single time point while its subsection—fluxomics

further tracks metabolites containing stable isotope-

labelled elements and depicts the metabolic transfor-

mations in full (Mirsaeidi et al. 2015). Metabolomics

supported by chemometrics and bioinformatics pro-

vide the insight into changes occurring the living

organism under given conditions.

The most commonly applied analytical techniques

used in metabolomics are: mass spectrometry (LC–

MS and GC–MS) and nuclear magnetic resonance

(NMR). Regardless of the technique used, metabo-

lomic workflow requires spectral processing with

features detection, normalization and deconvolution

and consequent multivariate data analysis (Alonso

et al. 2015). Bioinformatic calculations include statis-

tical analysis, but also pathway and network analysis,

which depicts more complicated correlations within

metabolite sets (Gardinassi et al. 2017). All these

bioinformatic manipulations on metabolomic data and

possible integration with other OMICS data will be

discussed in details in this review.

Metabolomics covers a number of topics in a basic

and applied research. It is used in the food production,

for the evaluation of plant response to environmental

conditions and stress factors or for profiling of crop

varieties. Afterwards, it is utilized to monitor food

processing, quality, safety and microbiology. It also

provides biomarkers of nutraceutical and functional

effects of food. Metabolomics is suitable to explore

food, especially a plant-based food, for the presence of

pharmacologically active secondary metabolites

(Adebo et al. 2017; Silva et al. 2019). When combined

with bioactivity studies, particularly with bioactivity-

guided isolation, it enables fast tracking and identifi-

cation of molecules with desired biological potential

(Sebak et al. 2019).

Plant metabolome serves as a countless source of

phytochemicals providing various benefits for

humans, however the ability of plant secondary

metabolites to inhibit the growth of microorganisms

is evolutionary strategy (Baldwin 2010). Plants inter-

act with microbes using different molecules, which

can promote the growth of synergistic microorganisms

and inhibit the opportunistic ones (Berg et al. 2017).

This natural mechanism makes plants a source of

antimicrobial compounds, which influence the bacte-

rial biochemical processes in different manners.

Bacteria are susceptible to external stimuli and have

to respond to a wide range of environmental factors to

survive. By sensing these changes and initiating

metabolic regulation they are able to maintain the

cell system homeostasis (Chauhan.et al. 2016). The

metabolic regulation usually starts at transcriptional

level, involving interactions between transcriptional

factors and their target genes (Drapal et al. 2014;

Shimizu 2013). The subsequent up/down-regulation of

activity of enzymes results in adjusted production of

corresponding molecules, which are the final products

reflecting the metabolic state of the cell (Markley et al.

2017). In comparison to genomics, transcriptomics

and proteomics, metabolomics gives more complete

insight into the direct, indirect, and secondary

responses of bacteria to different stress factors chal-

lenges (Mack et al. 2018). Metabolomics enables to

study the metabolic perturbations taking place in
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bacterial cells under the influence of plant secondary

metabolites. It reveals the changes in metabolic

pathways reflecting the reprogramming of the bio-

chemical networks within bacteria (Zampieri et al.

2017a). From this point of view, metabolomics is

valuable in understanding altered cell functions when

bacteria are subjected to metabolic stress caused by

secondary metabolites inhibiting their growth. To

date, metabolomic studies have explored at length the

bacterial response to changing environmental condi-

tions (carbon source, pH, starvation) (Drapal et al.

2014), the mechanisms of action of known antibiotics

(Hoerr et al. 2016; Koen et al. 2018; Schelli et al. 2017;

Vincent et al. 2016; Zampieri 2017a) or bacterial

resistance mechanisms (Mack et al. 2018; Nandaku-

mar et al. 2014; Zampieri et al. 2017b), however the

application of metabolomics in revealing bacteria

response to plant derived natural products still needs

more attention and detailed research.

Therefore, herein we attempt to focus on metabo-

lomics as a way to select antimicrobial plant-based

bioactive secondary metabolites and to understand

their mode of action. This involves the usefulness of

metabolomics in I) screening for antimicrobials from

plants, II) understanding the mode of action of

antimicrobial plant-based bioactive secondary

metabolites, and III) revealing the mechanisms of

bacterial adaptation and resistance.

Screening for antimicrobials—Identification

of antimicrobial molecules in complex plant

mixtures

Basic chemometrics for the identification

of antimicrobial molecules

One of the significant advantages of metabolomics is

the possibility to screen mixtures of plant secondary

metabolites, like crude extracts or essential oils, for the

presence of active molecules/biomarkers without

fractionation step(s) (Bittencourt et al. 2015; Ebrahi-

mabadi et al. 2016; dos Santosa et al. 2018; Maree

et al. 2014; de Oliveira Dembogurski et al. 2018). This

can be achieved through the combination of metabo-

lomic analysis (normally non-targeted at this stage)

and multivariate data analysis (Fig. 1). For this kind of

experiments two data sets are required: set of

metabolites present in the studied samples and the

results of activity assay. The correlation of these data

sets provides the putative biomarkers, eventually

responsible for the activity. In such case, chemomet-

rics enables the elucidation of patterns in complicated

chemical matrices. It shows possible similarities or

dissimilarities among samples, which can result in the

presence of clusters. Such a characteristics of explored

data sets helps to discover relevant variables and

discard not significant features (Biancolillo and

Marini 2018). The exploratory data analysis aims to

reduce the data dimensionality via projection of

multidimensional space (whose axes are the variables)

to low-dimensional representation of the data. For this

purpose, the principal components analysis (PCA) is

commonly used. It provides the information about the

distribution of the samples into PCA subspace based

on the principal components and allows to evaluate the

relative contribution of the experimental variable to

the definition of the principal components (Kumar

et al. 2014). Multivariate data analysis applied in

metabolomic studies includes PCA, but also several

methods derived from PCA, like partial least squares

discriminant analysis (PLS-DA), orthogonal projec-

tions to latent structures discriminant analysis (OPLS-

DA), or principal component regression (PCR). All

these techniques aim to predict a set of response

variables based on the relationship between a descrip-

tor matrix X and a response matrix Y (Worley and

Powers 2016). In the comparative studies, when more

than one factor can influence the evaluated biomarkers

PCR may be not sufficient to build a useful statistical

model. Hence in that case a supervised PLS-DA

should be applied, because it allows to determine the

most discriminant metabolites and to predict group

membership. Although PLS-DA is considered to be

superior over PCA and PCR, it’s application is limited

in complexmixtures when data is very variable and the

correlation with the membership to the test group is

not always clear. As a solution in that case, OPLS-DA

model was proposed, because it enables to eliminate

the variation frommatrix X that does not correspond to

Y (dos Santos et al. 2018; Worley and Powers 2016).

All three subtypes of PCA analysis are used in

screening of crude plant extracts, essential oils and

food-related products for the presence of antimicrobial

secondary metabolites (Bittencourt et al. 2015;

Ebrahimabadi et al. 2016; dos Santosa et al. 2018;

Maree et al. 2014; de Oliveira Dembogurski et al.

2018). The examples discussed below refer to
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essential oils. Ebrahimabadi et al. (2016) showed that

PCR, PLS-DA and OPLS-DA methods result in

approximately similar plots indicating their equal

abilities for data analysis and communication between

predictor matrixes and response vectors, however

OPLS-DA appeared to be the best choice because of

its facility, repeatability and lower time-consuming.

Nevertheless, the data pre-treatment method has an

influence on the results and level scaling is supposedly

better for active principles identification (dos Santos

et al. 2018).

The chemometrics was most frequently combined

with GC–MS in order to reveal the antimicrobial

constituents within essential oils, obtained from

aromatic plants. The application of PCA performed

to identify and evaluate groupings, followed by OPLS-

DA analysis enabled to identify eugenol to be

responsible for the high antimicrobial activity against

Bacillus cereus, Staphylococcus aureus and Entero-

coccus faecalis (Gram-positive), Escherichia coli and

Pseudomonas aeruginosa (Gram-negative) as well as

Candida albicans. Eugenol was detected in all

samples, demonstrating minimal inhibitory concen-

tration (MIC) value below 2 mg/mL. On the contrary,

high concentration of a-pinene, limonene and sabi-

nene in the studied commercial essential oils appeared

negatively correlated with antimicrobial activity,

hence demonstrating its poor effect against B. cereus,

S. aureus, E. coli and E. faecalis (Maree et al. 2014).

Similarly, the principal component regression (PCR),

PLS and OPLS were adopted in order to identify the

active antimicrobial constituents in Myrtus communis

essential oil obtained from different locations. The

regression coefficients for studied microorganisms

obtained by PCR, PLS and OPLS plotted with the GC

chromatograms of myrtle samples revealed that a-
pinene and 1,8-cineol which consisted more than 75%

of the essential oil samples, contributed the most to the

activity against C. albicans, Shigella dysanteriae and

Klebsiella pneumonia. The two additional compounds

strongly correlated with activity were b-pinene and

limonene. Although, these two consisted only nearly

2% of the essential oil samples their regression

coefficient plots negative peaks obtained by PCR,

Fig. 1 Selection of antibacterial plant secondary metabolites
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PLS and OPLS suggest their considerable contribution

in antimicrobial activity of essential oil samples. What

is more, the better correlation was obtained for a-
pinene peaks in case of C. albicans and S. dysanteriae

compared to K. pneumonia, suggesting its higher

antimicrobial activities against these microbial strains

(Ebrahimabadi et al. 2016). Interestingly, the activity

of a-pinene and limonene against C. albicans was

described as strong (Ebrahimabadi et al. 2016) or poor

(Maree et al. 2014) indicating that any synergistic

effect reflecting the superior activity of compounds

acting together should not be unnoticed. Therefore,

besides the identification of active principles, meta-

bolomics combined with i.e., decision tree analysis

reveal the possible interactions between different

constituents in the mixture. dos Santos et al. (2018),

for instance, observed such interactions among

palmitic acid, bornyl acetate and 4-terpineol in the

samples of essential oils tested against Streptococcus

mutans. Essential oils were described as very active if

they contained palmitic acid at higher concentration,

moderately active when bornyl acetate without

palmitic acid was part of the composition and further

inactive when 4-terpineol was present. Hence, the

applied decision tree classifier suggested possibility of

synergism or antagonism between different con-

stituents. In that sense, metabolomics combined with

chemometrics efficiently allows to observe the mutual

interactions among compounds in the mixture. The

weak positive correlation between chemical compo-

sition and antimicrobial activity may surprisingly

suggest nonlinear concentration-dependent inhibition

of the microorganism, which could be explained by

the ability of the identified bioactive secondary

metabolites to act synergistically (Bittencourt et al.

2015).

Another advantage of metabolomics combined

with chemometrics is the power to predict the resultant

activity of the mixture. It can be obtained by prior

analysis of range of samples of interest which are

characterized by the presence of chemically similar

secondary metabolites. When the level of activity is

assigned to identified chemical biomarkers, statistical

prediction can be used to forecast the antimicrobial

activity of a new mixture that was not previously

included in the model. By analysing the contribution

of particular constituents to the new mixture, and

correlating them with assigned level of activity, the

probability of level of activity can be described. Such

an approach was applied and validated by dos Santos

et al. (2018), who used chemometric methods to

predict the antimicrobial activity of Aldama arenaria

essential oil. The model predicted 41% of probability

for the essential oil to have very good activity, 30% of

probability to be moderately active, 19% of chance to

be weakly active and 10% of chance to have no

activity. The experimental verification appeared in

agreement with the statistical prediction with the MIC

value in very active classification (dos Santos et al.

2018). This kind of studies undoubtedly contribute to

the development of useful strategies leading to the

identification of antimicrobial molecules in the com-

plex mixtures obtained from plants.

Molecular networking for selection

of antimicrobial targets and for the identification

of antimicrobial molecules

The basic concept of molecular network includes the

relationships between genes, proteins or metabolites

expressed as nodes. This relationships are described as

edges, which can be direct or indirect interactions,

such as transcription regulation for genes, physical

interactions for proteins, or chemical similarity for

metabolites. More complex networks can be also

generated in system biology, like gene-proteins or

gene-metabolites relationships, which reflects the

working machinery of the cell/organism (Grennan

et al. 2014). The use of metabolic network analysis for

selection of antimicrobial targets was conceptualized

by Wang et al (2013). They suggested the cellular

metabolite concentration as a criterion for selection of

enzymatic targets in antibacterial discovery. The

targets working with low substrate concentrations

(\ 0.5 mM) should be favourable drugs hits, because

high concentration of antimicrobial can effectively

compete with low amount of the substrate. In other

words, the solubility of enzyme inhibitor should be is

at least 100 times higher than the concentrations of the

competed substrate (Wang et al. 2013). The molecular

networking was proposed as a tool to predict cellular

concentrations of metabolites. The evaluation of the

chemical basis of metabolic network organization

showed that bacterial metabolite concentrations cor-

related with metabolic network topology and metabo-

lite chemical properties. Based on the observation that

high-concentrated metabolites have higher degrees of

connectivity authors hypothesized that using
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topological and chemical properties of metabolites it is

possible to predict their cellular concentrations (Wang

et al. 2013).

The other application of molecular networking is

screening of antimicrobial constituents within crude

extracts (Fig. 1). This approach allows for the iden-

tification of the variety of unknown natural products

with potential antimicrobial activity even from plant

species that have already been extensively studied

(Quinn et al. 2017). Metabolite molecular networking

is a tool based on a tandem mass spectrometry (MS/

MS) analysis. It enables data organization according to

the MS/MS fragmentation patterns of molecules,

assuming that chemically related molecules are likely

to display similar fragment ion spectra. In other words,

the analysis can recognize sets of spectra from related

molecules even when the spectra themselves are not

matched to any known secondary metabolites (Allard

et al. 2017; Raheem et al. 2019; Quinn et al. 2017;

Wang et al. 2016). It results in detection and visual-

ization of clusters of metabolites as a relational

spectral network (Allard et al. 2017). Molecular

networking functions within a Global Natural Prod-

ucts Social Molecular Networking (GNPS), which is a

public online platform—the growing repository of

MS/MS data enabling the annotation of compounds

present in plant extracts or microbial cultures and

bring about the generation of spectral connections

among them (Quinn et al. 2017; Wang et al. 2016).

The identification of new antimicrobial secondary

metabolites within crude mixtures through molecular

networking is complementary to the matching of the

m/z peaks with available databases and dereplication

of the data (Raheem.et al. 2019). In the classical

approach, the list of known and unknown metabolites

ranked according to their peak intensity is created and

subjected to discriminative analysis, which performed

on active versus inactive extracts allows to specify

structures that are likely to mediate the bioactivity. In

case of molecular networking the data can be further

processed in two ways. First is to identify putative

antimicrobial biomarkers from extracts and to use

spectral data of these biomarkers for analysis at GNPS

Molecular Networking website in order to find the

similar fragmentation patterns with other molecules

not necessarily present in the studied extracts, but

which also might contribute to the activity (Lee et al.

2019). The second way is to create molecular network

for all secondary metabolites present in the extracts

and then statistically predict the putatively identified

clusters for their bioactivity according to their pres-

ence in the active extracts and absence in the inactive

extracts. This approach is not dependent on the

concentration of the individual metabolites in the

respective extracts and as a result even compounds

present in very low concentration can be indicated as

highly potent (Raheem et al. 2019).

The limitation of molecular networking is the

possibility of designation of putatively active uniden-

tified structures for which only precursor ions and

mass spectra are known. In that case the molecular

formula prediction is possible (Raheem et al. 2019),

though only targeted isolation can result in undoubtful

identification. However, because the analysis is not

dependent on the concentration of the individual

constituents in the samples, the isolation is still not

always feasible, since some constituents are present in

minor in the initial plant material.

Another limitation of basic chemometrics and

molecular networking is the fact that the correlation

of chemical composition of the crude mixture with its

antimicrobial activity is not sufficient to explain the

mechanism of action. For complete understanding of

the mode of action of plant secondary metabolites the

analysis of bacterial metabolome under the influence

of these compounds is hence required.

Determination of antibacterial modes of action

Understanding the mechanism of action of natural

(also applicable to synthetic) antimicrobial com-

pounds is essential for their full consideration as

antibacterial agents or future drug leads. The research

on this field was previously done mainly through

experimental bacteriology, involving whole-genome

sequencing, transcriptome sequencing (RNA-seq),

microarray analysis, two-dimensional protein gel

electrophoresis, and gene knockout and overexpres-

sion studies (Hong et al. 2016). The drug targets were

identified through tools enabling generation of knock-

out mutant strains not able to produce or producing

inactive target protein (Tuyiringire et al. 2018). The

mutations were usually induced by exposure to the

increasing concentrations of antibacterial. In the next

step, the overexpression of the mutation was proven to

be responsible for the resistance (Awasthi et al. 2017).

This ‘‘one target’’ oriented approach is, however, very
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laborious and usually based on the previous results of

the cell assays, which give the premise that particular

protein can be a hit. However, it is likely that this

strategy misses the targets other than selected proteins

or even other than proteins. The recent research

already indicated that antibacterial natural products

can influence bacterial cells on different metabolic and

functional levels (Božik et al. 2018; Chen et al. 2020;

Liu et al. 2020; Mack et al. 2018; Senizza et al. 2020).

For that reason, untargeted observations of changes

taking place in bacterial cells under the influence of

compounds, inhibiting their growth give a better

chance for identification of target points (Zampierii

et al. 2018) (Fig. 2). Metabolomics perfectly applies in

this case. It detects a large number of measurable

analytes in a sample and reflects the complexity of

metabolic changes caused by causative agent. The

application of untargeted mode is preferred since

measurements of selected predefined analytes (tar-

geted strategy) give only very narrow view on the

metabolomics perturbations as it is difficult to

correlate limited sets of metabolites and specific

physiological states (Senizza et al. 2020).

Bacterial metabolome consists of numerous and

diverse metabolites. Majority of these metabolites are

placed inside the cells and when characterized gives a

fingerprint. The smaller number of metabolites is

transported outside the cell membrane and results in a

footprint (Rácz et al. 2018; Pinu and Villas-Boas

2017). Fingerprint reflects the biochemical state of the

cell in a given moment and can be related to all

metabolic processes ongoing within bacteria and

needed to adapt and survive (Rácz et al. 2018).

Extracellular metabolites play important role in the

formation of cell wall, biofilm and quorum sensing

(Pinu and Villas-Boas 2017). Metabolomic intracel-

lular fingerprinting and extracellular footprinting of

the treated bacteria can provide complementary and

classifying information about the mechanisms of

action of antibacterial molecules. Both sets of metabo-

lites are affected in a distinct manner when bacteria are

under the influence of plant secondary metabolites,

having intracellular or extracellular targets such as

Fig. 2 Understanding of the mode of action of plant secondary metabolites
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protein synthesis, DNA and cell wall (Hoerr et al.

2016). Treatment with antibiotics disturbing intracel-

lular targets results in modes of action specific

fingerprints. The footprints could be differentiated

from controls, but with much smaller magnitude and

significance of the separation than that for the cell wall

affecting compounds. The opposite situation takes

place when bacteria are influenced with antibiotics

targeting the call wall, the fingerprints are similar to

those of control cultures however footprints are

significantly different (Hoerr et al. 2016). For that

reason, comprehensive metabolomic determination of

mechanism of action of plant secondary metabolites

should include the analysis of both, intracellular and

extracellular metabolites.

The classification strategy

NMR-, GC–MS- and LC–MS-based metabolomics

were already successfully applied for the characteri-

zation of antibacterial mechanisms of action of various

compounds—known and new antibiotics (Hoerr et al.

2016; Koena et al. 2018; Vincent et al. 2016, Zampieri

et al. 2017a), uncharacterized antimicrobial com-

pounds (Zampieri et al. 2018), human-targeted phar-

macologically diverse drugs (Campos and Zampieri

2019), and also plant secondary metabolites in mix-

tures or as individual molecules (Božik et al. 2018;

Chen et al. 2020; Hossain et al. 2013; Liu et al. 2020;

Senizza et al. 2020; Zhao et al. 2020; Zhi et al. 2008).

In 2016 Dos Santos and co-workers published a review

about the application of omics technologies for

evaluation of antibacterial mechanisms of action of

plant-derived products. At that time the authors stated

that the topic is still largely unexplored with Staphy-

lococcus aureus being the most studied organisms

(Dos Santos et al. 2016). Since that review many

papers appeared describing the mechanism of antibac-

terial action of natural products not only against S.

aureus, but also against Escherichia coli (Božik et al.

2018), Bifidobacterium breve (Senizza et al. 2020),

Listeria monocytogenes (Zhao et al. 2020) or My-

cobacterium tuberculosis (Sieniawska et al. 2020).

The simplest approach, enabling the prediction of

mechanism of action based on the antibiotic class

membership is the comparison of mode of action of

unknown molecule to mode of action of well charac-

terized antibiotics or chemotherapeutics (Dos Santos

et al. 2016). This strategy can be performed with the

application of multivariate data analyses (usually

PLS-DA), which groups the molecules in clusters

according to their molecular targets. The statistical

model is then built to predict the bacterial response to

compounds that had not been included in the original

training set. This methodology was validated by Hoerr

et al. (2016), who correctly predicted the classification

of streptomycin, tetracycline and carbenicillin against

Escherichia coli K12 BL21 by their fingerprints. First,

they described that molecules with intracellular targets

influence the levels of alanine, glutamate acetamide as

well as of energy-related metabolites such as ethanol,

citrate, formate and isobutyrate, whereas antibiotics

affecting the cell wall results in decreased levels of

tricarboxylic acid energy-related metabolites and

increased levels of metabolites derived from anaerobic

energy pathways such as formate, acetate, and

acetone. Later Hoerr et al. (2016) calculated that with

89% prediction the metabolomic profile of bacteria

treated with streptomycin is similar to that of

kanamycin. Tetracycline showed 76.4% probability

of being in the same cluster that doxycycline and that

carbenicillin may target cell wall with probability of

62.1% (Hoerr et al. 2016). The same approach was

recently extended to the evaluation of the mode of

action of plant-based antibacterial natural products.

The cluster and correlation analyses performed by

Božik et al. (2018) revealed that essential oils

constituents affect the levels of small proteins in

E. coli in a more complicated manner than antibiotics,

chlorine and peroxide. Differences in protein expres-

sion were characteristic for treatments with various

volatiles, however some of the changes were shared

among different groups of constituents. The guaiacol

fingerprint appeared partially similar to that of antibi-

otic tetracycline. The increased levels of UPF0434

protein involved in biofilm formation and 23S rRNA

methylase leader peptide involved in the regulation of

the synthesis of the erythromycin resistance protein

were detected at very high levels only in the guaiacol-

treated sample. The other volatiles: citral, eugenol,

geraniol, thymol, carvacrol, cinnamaldehyde, carvo-

menthenol, carvone and careen induced the expression

of DNA-binding protein HU-alpha which stabilizes

DNA by wrapping to prevent its denaturation in stress

conditions. The characteristic fingerprints provided

the evidence that essential oils constituents not only

impact bacterial membranes and the cell but also

influence biofilm formation, resistance to antibiotics,
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and ribosomal functionality (Božik et al. 2018). The

PCA was also sufficient to compare the antibacterial

mode of action of extract of Chinese plant Hemsleya

pengxianensis and its main constituent—dihydrocu-

curbitacin F-25-O-acetate with the known modes of

action of nine antibacterial substances. The metabolic

profiles of Staphylococcus aureus occurred to be

different for antibiotics targeting protein synthesis,

RNA polymerase, gyrase and topoisomerase IV, as

well as cell wall peptidoglycan. The fingerprint of

dihydrocucurbitacin F-25-O-acetate was close to that

of vancomycin, which inhibit peptidoglycan forma-

tion. What is more, results of PCA analysis indicated

that dihydrocucurbitacin F-25-O-acetate play the main

antimicrobial role against S. aureus in the studied

extract (Zhi et al. 2008).

The classification strategy enables the accurate

ranking of tested antimicrobial secondary metabolites

to groups with known modes of action, however

uncommon or unknown mechanisms of action could

not be elucidated in this way.

Pathway analysis

More functional strategy, aiming to reveal new

mechanisms of action of plant-based antibacterial

secondary metabolites, which does not require com-

parison with drugs of a known class is pathway

analysis. It can be used to determine the differences in

the expression of genes, proteins and metabolites, and

gives a possibility to reduce the complexity of data and

hence provides a system-level view of changes in

cellular activity in response to treatments (Ma et al.

2016). In metabolomics, pathway analysis is derived

from Metabolite Set Enrichment Analysis, which

identify biologically meaningful patterns containing

significantly enriched molecules (Garcı́a-Campos

et al. 2015). Metabolites, which expression is signif-

icantly changed, are grouped in clusters and related to

key cellular signaling and metabolic networks (Xia

et al. 2015). The simplest analysis is to group the lists

of individual metabolites into smaller sets of related

molecules. Such sets can describe biological processes

in which individual metabolites are known to be

involved in and how they interact with each other

(Khatri et al. 2012). However, metabolites can take

part in different pathways at the same time, and their

roles in the pathways may be different, depending on

the cellular context. Therefore, the same pathways can

be further related to build the pathway networks

composed of metabolites and their connections repre-

senting the interactions between molecules (binding,

activation or inhibition) (Garcı́a-Campos et al. 2015).

Identifying active pathways that differ between two

conditions can be performed through functional

enrichment or over-representation analysis (ORA),

which identifies over-expressed molecules in relation

to the control set. In other words, the analysis lists

differentially active pathway members however does

not provide any view on the interactions between

them. The interactions between biomolecules in the

pathway networks can be computed based on the

curated biological databases (Ma et al. 2016). This

type of analysis, called pathway topology, reveals

information about connections between components,

which can affect each other in direct/indirect manner.

Direct connections result in activation or inhibition of

reactions and describes the redirections of the

metabolism (Garcı́a-Campos et al. 2015).

The application of pathway analysis is advanta-

geous to identify the modes of action of molecules

which specifically target metabolic pathways (Nan-

dakumar et al. 2014). However, the use of untargeted

metabolomics and pathway analysis is helpful in

determination of mechanisms of action of antimicro-

bial natural products in general, because they can

indicate metabolic perturbations, which are effects of

direct or indirect action of the studied secondary

metabolites. Such metabolomic analysis was success-

fully applied to evaluate the antibacterial activity of

the essential oil from the leaves of Cinnamomum

camphora. Chen et al. (2020) studied the metabolic

profile of methicillin-resistant Staphylococcus aureus

(MRSA) under the essential oil treatment and found

that seven pathways were enriched by shared differ-

ential metabolites. Metabolism of alanine, aspartate

and glutamate, sulphur metabolism, arginine and

proline metabolism, cysteine and methionine metabo-

lism, aminoacyl-tRNA biosynthesis, cyanoamino acid

metabolism and streptomycin biosynthesis were influ-

enced and differed from the control group. The largest

metabolic difference was observed for pathways

related to cell metabolism, where most of metabolites

enriched in the four pathways decreased indicating

that essential oil act via disturbing the cell metabolism.

Additionally, two upstream metabolites of tricar-

boxylic acid cycle (citrate and succinate) were down-

regulated, whereas two downstream metabolites
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(fumarate and malate) upregulated suggesting disrup-

tion of TCA cycle (Chen et al. 2020). The study

provided the metabolomic evidence that antibacterial

activity of C. camphora against MRSA is not only

related to damage of cell membranes, but also

disruption of amino acids metabolism. Another

recently reported work elucidating the mode of

antibacterial action of cinnamon essential oil by

means of metabolomics evaluated the response of

Mycobacterium tuberculosis H37Ra to Cinnamomum

zeylanicum essential oil treatment. The significant

alterations in metabolic pathways were observed for

tetrahydrofolate biosynthesis, tRNA charging, factor

420 biosynthesis and biotin biosynthesis from 8-

amino-7-oxononanoate. The highest significant dys-

regulation was observed for tetrahydrofolate biosyn-

thesis pathway, resulting in increased production of

alpha- and keto-mycolic acids and consequently

glucose monomycolates and phthiocerol dimyco-

cerosates, meaning that mycobacteria reorganize their

outer membrane as a physical barrier against stress.

What is more, upregulated factor 420 biosynthesis

pathway suggested that cinnamon essential oil may

also contribute to disturbances in bacteria redox

homeostasis and detoxification mechanisms (Sieni-

awska et al. 2020). Pathway analysis appeared also

helpful to investigate the antimicrobial effect of nisin

and grape seed extract against Listeria monocytoge-

nes. Identified metabolomic markers were involved in

total, 22 pathways, 8 of which were regarded as

significantly contributing to the antimicrobial action.

Disruption was described for alanine, aspartate and

glutamate metabolism; aminoacyl-tRNA biosynthe-

sis; valine, leucine and isoleucine biosynthesis; cys-

teine and methionine metabolism; glutathione

metabolism; butanoate metabolism; TCA cycle and

pyruvate metabolism leading to the conclusion that

antibacterial action of combination of nisin and grape

seed extract is mediated through blocking the TCA

cycle, amino acid biosynthesis and energy-producing

pathway (Zhao et al. 2020). Interestingly, the detected

metabolic changes in bacteria exposed to food-derived

natural products indicate the disruption of TCA cycle

and redox homeostasis. Such observations were cor-

related with stress response activation and adaptive

metabolic reaction, being an indirect effect leading to

the bacteria growth inhibition (Mack et al. 2018). The

better understanding of the stress/detoxification

response was provided for Bifidobacterium breve

challenging linoleic acid exposure. The untargeted

metabolomics-based approach revealed that redox

stress resulted in the downregulation of peroxide

scavengers (low molecular-weight thiols, glutathione-

and mycothiol-related compounds) and ascorbate

precursors, together with the upregulation of oxidized

forms of fatty acids suggesting that bacteria repro-

grammed metabolism to counteract oxidative stress

(Senizza et al. 2020).

As can be seen, the recent metabolomic studies,

summarized above, add new knowledge to the modes

of action of plant secondary metabolites against

bacteria. They reveal that also other than known

antibacterial-drugs targets may be involved when

bacteria are treated with natural products, however

applied methodology does not explore the regulation

of bacteria response to stress factors. This can be

obtained by more comprehensive gene-metabolite

approach.

Integration of transcriptomics, genomics

and metabolomics into systems biology

The combination of metabolomics with genomics or/

and transcriptomics is a new powerful strategy giving

insight into bacterial metabolism and consequently

into antibacterial mechanisms of action of plant-based

natural molecules (Wanichthanarak et al. 2015).

Genomics enables the identification of genes related

to different processes needed for bacteria survival and

resistance. It indicates potential antibacterial drugs

targets, which are checked then through screening

platforms based on protein interactions and mutant

libraries (Dos Santos et al. 2016). Transcriptomics

provides the information about functional elements of

the genome and reveals the global gene expression

profiles in bacterial cells. It describes the association

between genes, transcripts and the phenotype, which is

depicted by metabolic state of the cells (Cruickshank-

Quinn et al. 2018; Han et al. 2019). The integration of

metabolomics and transcriptomics reveals the func-

tional correlations between cellular metabolic pertur-

bations and differentially expressed genes to identify

metabolic pathways that are essential in cellular

responses to antimicrobial compounds treatment

(Han et al. 2019).

A combination of transcriptomics and metabolo-

mics is an emerging strategy to explain molecular

mechanisms involved in the antibacterial activity of
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plant secondary metabolites. Such a systems biology-

oriented approach was successfully applied to inves-

tigate the mode of action of persimmon tannin against

methicillin-resistant Staphylococcus aureus (Liu et al.

2020). Liu et al. (2020) detected 370 genes and 19

metabolites that were differentially expressed under

the persimmon tannin treatment and related to osmotic

regulation, intracellular pH regulation, amino acid

synthesis and metabolism, glycolysis, TCA cycle and

iron metabolism. Based on the gene-metabolite net-

work, authors suggested that antibacterial action of

persimmon tannin includes cell membrane damage,

amino acids limitation, energy metabolism disorder

and iron deprivation. The transcriptome and metabo-

lome changes were in agreement and proved that

although transcriptional analyses offer an incomplete

view of the metabolic changes due to posttranscrip-

tional regulation, metabolomics is supplementary and

detects fluctuations which occurs in last step (Liu et al.

2020).

The other interesting approach aiming to investi-

gate the modes of action is the combination of

metabolomics and chemogenomics. Such strategy

was developed by Ziamperi et al. (2018) to monitor

the metabolic response of Mycobacterium smegmatis

to new antibacterial compounds. The metabolome

profiling strategy was combined with calculations on

the genome-scale metabolic model of M. smegmatis.

The authors calculated the distance between each

enzyme-metabolite pair as the minimum number of

reactions connecting these two elements and created

the net of similarity and proximity of metabolic

changes to drug-target. The enzymes with the highest

probability to exhibit local metabolic changes were

further correlated with genes, which interestingly

showed strong functional dependencies for the drug

mode of action in most antibiotic classes. The results

of this metabolomics/genomics approach showed that

only 8% of the new compounds targeted unconven-

tional cellular processes. More than 70% of studied

compounds induced metabolic responses in M. smeg-

matis characteristic for known modes of action with

strong tendency to elicit similar metabolic responses

within a drug-group (Ziamperi et al. 2018). The same

innovative strategy was adopted to investigate the

influence of pharmacologically diverse drugs on

metabolic response of Escherichia coli. The mapping

of enzymes to drug-inducedmetabolic changes using a

genome-scale metabolic network revealed that carbon

metabolism and signalling were the most impacted

suggesting new targets of antibacterial compounds

(Campos and Zampieri 2019). Although metabolo-

mics/chemogenomics approach focused on synthetic

compounds this strategy can be easily applied to

determination of the modes of action of food-based

secondary metabolites, which presents a vast struc-

tural variety and can hit different targets in bacteria

cells. With the current availability of genome-scale

metabolic models of different bacteria and good

accuracy metabolite annotations in untargeted meta-

bolomics this combinational approach can be very

effective.

Revealing the mechanisms of resistance

The main tool used to reveal the mechanisms of

bacterial resistance was functional metagenomics,

which enabled generation of mutants and characteri-

zation of resistance genes. However, widely available

genomic sequencing made sequence-based approach

reliable and accurate strategy to identify antimicrobial

resistance. It provided much greater precision in

comparison with phenotypic tests, revealed co-car-

riage of specific genes responsible for multidrug

resistance patterns and gave the insight into possibility

of genes horizontal transfer, and their distribution by

source. It also opened the way to detect the presence of

co-resistances not assayed on standard drug panels

(Hendriksen et al. 2019). These numerous advantages

of genomics in understanding of the mechanisms of

bacterial resistance are, however, limited. Genomics

does not show the final metabolic state of the cell,

which is influenced by posttranscriptional modifica-

tions or bacterial signalling cascades, being also

important response to external stimuli (Lin et al.

2018). The missing knowledge about bacteria inter-

actions with environment can be successfully

described by metabolomics. Metabolomics can enrich

the understanding of the mechanisms of bacteria

resistance and may contribute to the development of

more effective future treatments (Eswara Rao and

Kumavath 2017).
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From comparative metabolomics to integration

of genomics and metabolomics

The simplest approach leading to understanding of the

bacterial resistance is comparative metabolomics

aiming to describe the changes between metabolites

produced by different single- or multi-drug resistant

bacteria in relation to sensitive strains. Such strategy

for prediction of multi-drug resistant bacteria charac-

teristics and mechanisms of resistance at the metabo-

lite level was applied by Lin et al. (2019), who clearly

discriminated drug sensitive and multi-drug resistant

strains and indicated some functional metabolites. The

authors confirmed that the profile of antibiotic resis-

tance affects the metabolite set produced by bacteria

and that biosynthesis of amino acids, biosynthesis of

phenylpropanoids and purine metabolism may be

related to multi-drug resistance of E. coli to antibiotics

(Lin et al. 2019). Besides the changes is small

metabolites set, the changes in proteome and phos-

phoproteome in E. coli were also detected. The later

reflected the correlations between signalling and

antibiotic susceptibility in bacteria, indicating that

changes in signalling precede resistance development

(Lin et al. 2018). This proteomics aspect is however

out of the scope of this review. Nevertheless, inves-

tigation of metabolome level changes resulting from

adaptations occurring in antibiotic resistant mutants

can reveal production of specific secondary metabo-

lites being the outcome of activation of poorly

expressed or silent gene clusters. Likewise, the de-

repression of biosynthetic processes in antibiotics

resistant bacteria may be a survival strategy as was

shown by Derewacz et al. (2013), who observed the

upregulation of number of features shared throughout

the diverse mutants in antibiotics resistant Nocardiop-

sis. The majority of these upregulated metabolites

were not found in the progenitor strain confirming

their role in new cell state. Interestingly, the metabolic

changes appearing in resistant bacteria depict not only

mechanisms of resistance but also the impact of

environmental conditions on the development of

resistance. This aspect was examined by Zampieri

et al. (2017b) who introduced novel approach corre-

lating changes of metabolite abundances with poten-

tial functional flux rearrangements during evolution of

antibiotic resistance in E. coli under two different

nutritional conditions. The subsequent genome

sequence analysis of evolved populations supported

the hypothesis that environmental nutrient composi-

tion can directly affect the selection of resistance and

compensatory mechanisms such as the shift from

respiratory to fermentative metabolism of glucose

upon overexpression of efflux pumps (Zampieri et al.

2017b).

The complementary approach combining gene

transcription and translation quantification data with

identification of accumulated metabolites can provide

fully comprehensive view on the molecular changes in

bacteria resistance mechanisms. Metabolomics can be

useful in evaluation of the response of antibiotic

resistant bacteria to the plant-based natural products

and the prediction of the possibility to restore the

bacteria sensitivity to antibiotics. The combinational

therapy including antibiotics and natural products may

reveal some functional biomarkers indicating new

targets in bacteria cells (Mohana et al. 2018).

Biotransformation reactions

The other important aspect related to bacteria response

to antimicrobials of different origin and contributing

to resistance mechanisms is a biotransformation.

Bacteria possess the ability to metabolize xenobiotics

through number of metabolic reactions. They are the

only living organisms, which can use potentially

harmful compounds as their nutrients or to convert

them to nontoxic or less toxic products (Arora 2019).

The enzymatic modifications of antimicrobials may

result in deactivation, or on the contrary, in activation

of the drug, like it works in case of pro-drugs

(Chakraborty and Rhee 2015). Biotransformation

products can be monitored by metabolomics. The

anterior approach was based on determination of

products of extracellular enzymatic reactions, whereas

new one involves elucidation of intrabacterial fate of

antibacterials (Awasthi and Freundlich 2017).

Awasthi and Freundlich (2017) presented the use of

metabolomics alone or in combination with genomics

and biochemical assays, as a powerful platform to

characterize chemical transformations performed on

small molecules by Mycobacterium tuberculosis. The

described transformations were categorized as hydrol-

ysis, N–alkylation, amidation, and nitro group reduc-

tion, which result in activation or deactivation of the

xenobiotic. The important conclusions were drawn,

that metabolites of antimicrobials used can also

contribute to bacteria growth inhibition and that both,
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parent and derived molecule may be the subject of

mechanism of action (Awasthi and Freundlich 2017).

The similar biotransformation reactions can be

expected in bacteria under the influence of plant-

based bioactive secondary metabolites, therefore the

determination of mechanism of action should not be

limited to parent compound. Although the identifica-

tion of products of metabolic transformations of

complex plant extracts may be challenging, it is

without doubt the important step in the workflow of

antimicrobials discovery.

Limitations of metabolomics

Although we described above numerous applications

of metabolomics in antimicrobial drug leads finding,

this methodology has also its limitations. The majority

of research studying response of bacteria to plant

secondary metabolites describes in vitro testing,

however investigation of the in vivo mechanism of

action is crucial for the development of new drugs

(Domı́nguez et al. 2017). There are several reasons,

explaining this situation. The first one is the higher

uniformity of samples obtained in vitro comparing to

in vivo. Both kinds of sampled should capture the true

state of the metabolome, but any variation in the

procedure may influence the obtained results, and

in vitro conditions are much more predictable, and

exclude variations between animals (Halouska et al.

2013). The other aspect is the discrimination between

bacterial and host metabolites. If the determination of

mode of action requires analysis of metabolites

produced by both, bacteria and host, it may be

challenging to correctly assign the observed changes.

Therefore, to overcome this limitation metabolomics

has to be supported by other complementary

‘‘OMICS’’ to study in vivo activity of antimicrobials.

Apart from the problem of in vitro/in vivo testing,

metabolomics in some cases might be not sufficient to

give the satisfactory answer about the action of

antimicrobials. For example, basic chemometrics

and molecular networking helpful in making correla-

tions between chemical composition of the crude plant

mixtures and its antimicrobial activity do not explain

their mechanism of action. These methodologies

tentatively identify the active compounds, however

for the understanding of their influence on bacteria we

still need targeted isolation and undoubtful

identification, followed by monitoring of bacteria

metabolome under the influence of active compounds

(Allard et al. 2017). What is more, the metabolomic

classification strategy does not allow to describe

unknown mechanisms of action (Dos Santos et al.

2016). Similarly, pathway analysis applied alone does

not explore the regulation of bacteria response to stress

factors, what can be obtained in more comprehensive

gene-metabolite approach (Domı́nguez et al. 2017).

The other issue which should be challenged in the

future is the limited number of bacterial model

organisms widely available for metabolic changes

evaluation. The most studied models include: Escher-

ichia coli, Bacillus subtilis, Pseudomonas putida,

Staphylococcus aureus N315 (MRSA/VSSA), Ther-

motoga maritima, Synechococcus elongatus

PCC7942, Mesorhizobium japonicum MAFF

303,099, Klebsiella pneumoniae MGH 78,578 (ser-

otype K52), Klebsiella variicola At-22, and Strepto-

coccus pyogenes M1 476 (serotype M1)(Pang et al.

2020), however in some cases it is not enough, and

data have to be analyzed on the phylogenetically

closest organisms. Of course it is not possible to

identify all metabolites in all sample types, what is

considered as weaknesses of metabolomics science,

however mapping metabolites onto metabolic path-

ways for many model organisms is necessary (Edison

et al. 2016).

Conclusions and perspectives

Metabolomics finds a number of new applications in

searching new antibacterial leads. One of them is the

utilization of metabolomics to select antimicrobial

plant secondary metabolites and to understand their

antimicrobial action (Fig. 3). The literature data,

summarized above, confirm that recent metabolomic

studies add new knowledge to the modes of action of

plant-based secondary metabolites against bacteria.

They reveal that also other than known antibacterial-

drugs targets may be involved when bacteria are

treated with natural products. Metabolomics can

enrich the understanding of the mechanisms of

bacteria resistance and may contribute to the devel-

opment of more effective future treatments, including

the prediction of the possibility to restore the bacterial

sensitivity to antibiotics. The combinational therapy,

including antibiotics and natural products, may reveal
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some functional biomarkers indicating new targets in

bacteria cells. However, metabolomics does not

explore the regulation of bacteria response to stress

factors. This can be obtained by more comprehensive

gene-metabolite approach, combining gene transcrip-

tion and translation quantification data with identifi-

cation of accumulated metabolites. Future research on

this field should explore possibilities of the integration

of transcriptomics, genomics and metabolomics. The

constantly developing bioinformatics tools, supported

by growing gene and metabolite databases, provide a

powerful tools to monitor bacterial metabolism on

different levels. Correlation of transcriptomics and

metabolomics through the pathway analysis gives

further possibilities to indicate new enzymatic targets

in bacterial cells, which should be experimentally

validated in the next step. Metabolomics along with

other ‘‘omics’’ approaches shed a light on the bacterial

response to plant secondary metabolites treatment,

which influence not only pathogenic bacteria but also

human microbiota. The impact of the plant-based food

on intestinal bacteria is positively correlated with

some health benefits and with the application of

‘‘omics’’, especially metabolomics, it can be further

successfully explored. Therefore, the likely future

metabolomics development should include the inte-

grative, comprehensive approach to study food and

plant-based secondary metabolites and their impact on

human health.
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