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We propose a way to include magnetic dipole-dipole interactions in density functional theory cal-
culations. To this end, we derive an approximation to the exchange-correlation energy functional
associated with the spin-spin correction to the Coulomb force in the Breit-Pauli Hamiltonian. The
local spin-density approximation is shown to be identically zero. First order nonlocal corrections
are evaluated analytically within linear response to a noncollinear external magnetic field. The
functional obtained is based on the exact-exchange energy of the magnetic electron gas with dipolar
interactions, and is estimated to be relevant at interatomic distances, or in the low electron density
limit, where it amounts to one quarter of the magnetostatic energy. We expect our functional to im-
prove over the current description of ground-state properties of inhomogeneous magnetic structures
at the nanoscale and dipolar spin systems.

I. INTRODUCTION

The need for higher density data storage and prac-
tical schemes to implement quantum information pro-
cessing1–4 has led, in the last decades, to a thriving re-
search on nonconventional magnetic systems5. These
include ultracold dipolar gases in optical lattices6,7,
low-dimensional or frustrated magnets8, nanostructured
magnetic materials9 and molecular magnets10. All these
systems show a complex magnetic behavior at the atomic
scale, which results from the delicate interplay between
Heisenberg exchange interactions and (tunable) spin-
orbit coupling and dipolar interactions. In particular,
new effects from the last, due to their long-range and
anisotropic nature, are attracting great interest. While
the picture of magnetic dipole-dipole interactions as a
small classical perturbation might be enough to under-
stand traditional magnetism, it seems to be no longer
sufficient for the description of spin systems with strong
magnetic moments and length scales approaching the
nanometer range.

Currently, the most common and feasible approach to
describe the magnetic behavior of a given material is
the micromagnetic approach11, which ignores the atomic
structure of matter, neglects quantum effects, and uses
classical physics in a continuum description of the sys-
tem. Essentially, the atomic magnetic moments are as-
sumed to vary slowly within a mesoscopic volume of the
sample, so to define a mesoscopic average magnetization
M(r). The magnetic Gibbs energy, which is the sum
of four major contributions, i.e., exchange, magnetocrys-
talline anisotropy, Zeeman and dipolar energy, is formu-
lated in terms of the continuous magnetization vector
field, and minimized to determine static magnetization
structures. Specifically, the dipolar energy is derived
from simplified magnetostatic Maxwell’s equations, and
computed in terms of effective magnetic volume charges
ρ(r) = −∇ ·M(r) and effective magnetic surface charges

σ(r) = M(r) · n as

Emagstat =
µ0

2

∫
V

ρ(r)U(r)d3r+
µ0

2

∫
S

σ(r)U(r)dS. (1)

Here, the magnetic scalar potential U(r) is the solution
of the Poisson’s equation ∆U(r) = −ρ(r), i.e., has the
general form

U(r) =
1

4π

∫
V

ρ(r′)

|r− r′|
d3r′ +

1

4π

∫
S

σ(r′)

|r− r′|
dS′. (2)

As is clear from Eqs. (1) and (2), the magnetostatic en-
ergy arises from inhomogeneities of the average magneti-
zation M(r) on a mesoscopic scale. Micromagnetic sim-
ulations have proven to be generally a very reliable tool
for investigating the properties of ferromagnetic nanos-
tructures. However, due to the rapid advances in the
synthesis of nanostructured materials, the continuum as-
sumption behind these algorithms might be unjustified.
E.g., highly inhomogeneous magnetic structures, laser-
induced magnetization dynamics, and sample sizes ap-
proaching the atomic scale are a few cases that challenge
the limits of micromagnetic theory and demand exten-
sions to the standard approach.

On the other hand, the calculation of atomic proper-
ties and interactions at the quantum mechanical level is
the realm of ab initio methods, such as density func-
tional theory12–14. Density functional calculations of
magnetic systems are mostly based on (nonrelativistic)
spin-density functional theory (SDFT)15. Within SDFT,
the dominant source of magnetic coupling is exchange,
which originates from the Pauli exclusion principle and
favors spin alignment (ferromagnetism). By minimizing
the total energy functional, single-particle Kohn-Sham
(KS) equations16 are derived and solved self-consistently
to determine the values of the charge density and the
magnetization density. The applicability of the method
depends crucially on physically sound and numerically
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feasible approximations to the exchange-correlation (xc)
part of the energy functional, which includes all quan-
tum and many-body effects. The rotational invariance
with respect to the spin quantization axis is broken by
relativistic corrections to the Hamiltonian, i.e., dipole-
dipole interaction and spin-orbit coupling. Both are of
the same order (1/c2) in the weakly relativistic expan-
sion of the full Lagrangian of quantum electrodynam-
ics17. Spin-orbit effects, which are responsible for mag-
netocrystalline anisotropy, are often taken into account
in practice by using nonrelativistic SDFT functionals to-
gether with Dirac- or Pauli-type KS equations. However,
magnetic dipole-dipole interactions are currently not in-
cluded in the formalism. SDFT calculations in the local
spin-density approximation (LSDA) and beyond, have
proven over the years to yield reliable results for large
classes of magnetic materials, with collinear and non-
collinear spin alignment. Nevertheless, based on the re-
cent experimental advances, we propose in this paper a
density functional treatment of the dipolar interaction as
a pairwise interaction, with associated quantum effects.

We start with the weakly relativistic Hamiltonian

Ĥ =T̂ +

∫
d3r{n̂(r)vext(r) + µBm̂(r) ·Bext(r)}

+
e2

2

∫
d3r

∫
d3r′

n̂(r)n̂(r′)

|r− r′|
+ ĤSS , (3)

which includes, beyond the usual Hamiltonian of spin-
density functional theory, the mutual 1/c2 interac-

tion ĤSS between the spin magnetic moments of the
electrons18. This term has the form17,19:

ĤSS =− 2πµ2
B

∫
d3r

∫
d3r′ m̂i(r)δ⊥ij(r− r′)m̂j(r′),

(4a)

δ⊥ij(r− r′) =
2

3
δijδ(r− r′) + dij(r− r′), (4b)

representing the interaction −µ
2
B

2

∫
d3r m̂(r) · B̂(r) of

the magnetization density m̂(r) with the magnetic in-

duction B̂i(r) = 4π
∫
d3r′δ⊥ij(r − r′)m̂j(r′) generated

by the magnetization distribution within the sample.
Here, the magnetization density operator is defined as

m̂(r) = ψ̂†(r)σψ̂(r), where ψ̂(r), ψ̂†(r) are the usual
Pauli spinor field operators and σ is the vector of Pauli
matrices. δ⊥ denotes the transverse delta function20,21,
µB = e~/(2mec) is the Bohr magneton. Repeated indices
are assumed to be summed over. As one can see, Eq. (4a)
is the sum of two contributions. The first contribution,
coming from the first term of Eq. (4b),

ĤSC = −4πµ2
B

3

∫
d3r m̂(r) · m̂(r), (5)

is a contact interaction, which depends on the magneti-
zation density at the same point. This is the counterpart
of the Fermi contact interaction between an electron and
a nucleus. The second contribution, coming from the
second term of Eq. (4b),

Ĥdip = −2πµ2
B

∫
d3r

∫
d3r′ m̂i(r)dij(r− r′)m̂j(r′),

(6)
represents the dipolar interaction between two spin den-
sities. Here, the tensor dij is defined as follows

dij(r− r′) ≡− 1

4π
∇i∇′j

1

|r− r′|
+

1

3
δijδ(r− r′)

=
1

4πR3
(3R̄iR̄j − δij), (7)

where R = r− r′ is the relative position of the electrons,
and R̄ denotes the unit vector along R. The expression
for dij is understood to be regularized at R = 019,21.
Physically, Eq. (6) together with Eq. (7) describe the
interaction between the magnetization density at r and
the dipolar field created by the magnetization distribu-
tion at all the other points r′ 6= r. Nevertheless, the
contact term δij in Eq. (7) is included to ensure that
the diagonal elements of dij satisfy the Laplace equation
∆(1/|r−r′|) = −4πδ(r−r′) for the scalar potential gener-
ated by the magnetic charge density in the system. The
dipolar tensor, as defined by Eq. (7), is both traceless
and symmetric.

The present article is organized as follows: in
Sec. (II A) we point out the equivalence between the mag-
netostatic energy contribution implemented in the mi-
cromagnetic approach and the classical Hartree term of
SDFT for the dipolar interaction. The SDFT framework
then naturally leads to the inclusion of a dipolar xc func-
tional to account for quantum effects. In Sec. (II B) we
address the adequacy of a LSDA for the dipolar xc en-
ergy. In Sec. (II C) we derive a nonlocal and noncollinear
exchange energy functional as leading order quantum cor-
rection to the magnetostatic energy. In Sec. (III) we
briefly consider the density functional treatment of the
spin contact interaction of Eq. (4b).

II. DIPOLE-DIPOLE INTERACTION
FUNCTIONAL

A. Hartree energy functional

The Hartree term for the magnetic dipole-dipole inter-
action has been derived by Jansen22 in a broader analysis
of magnetic anisotropy contributions within the frame-
work of density functional theory. The dipolar energy in
the Hartree approximation is obtained by simply replac-
ing the magnetization density operator m̂(r) in Eqs. (6)-
(7) by the expectation value m(r):
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EdipH [m] = −µ
2
B

2

∫
d3r

∫
d3r′

3
(
m(r) · R̄

) (
m(r′) · R̄

)
−m(r) ·m(r′)

R3
. (8)

The Hartree method, in which the dipolar interaction is
taken into account by a mean field type of approxima-
tion, is qualitatively equivalent to the micromagnetic ap-
proach. [Formally, this can be seen by rewriting Eq. (1)
as Emagstat = −µ0

2

∫
d3r

∫
d3r′M(r) ·N(r − r′) ·M(r′),

where the demagnetizing tensor for a ferromagnetic body
of arbitrary shape is given by N(r−r′) = − 1

4π∇∇
′(1/|r−

r′|).] Differences in the dipolar energy calculated from
Eq. (8) and from the micromagnetic formula (1) are due
to deviations of the actual atomic distribution m(r) from
its average M(r) over a mesoscopic cell of atomic vol-
umes. We emphasize that, so far, only this mean field
contribution to the dipolar energy has been implemented
in actual calculations of magnetic structures. However,
the Hartree treatment of a pairwise interaction is usu-
ally a crude approximation, (see, e.g., the case of the
Coulomb interaction), as it completely neglects quantum
many-body effects, and is affected by a self-interaction
error. In the next sections we discuss how to derive an
improved estimate of the real dipolar energy by adding,
as a natural step of the SDFT formalism, an approximate
exchange-correlation term.

B. LSDA

The approximation to the exchange (x) energy func-
tional most widely used in SDFT is the local spin-density
approximation15. In LSDA, the x energy of a non-
uniform magnetic system is approximated at each point
by the x energy of the homogeneous electron gas (HEG)
with the same spin density as the local density. Choosing
a coordinate system with the z-axis along the direction of
the local spin, the x energy density of the spin polarised
non-relativistic HEG with dipolar interactions (see dia-
gram a) of Fig. 1) can be evaluated as

edipx (r) =
µ2
B

2

∫
d3r′ραβ(R)σiναdij(R)σjβµρµν(−R), (9)

where ραβ(R) =
∫
d3k ψ†kσ(rα)ψkσ(r′β) is the one-

body density matrix with spin orbitals ψkσ(rα) =

1/
√
V eik·rδσα. Since the HEG is spherically symmet-

ric, the density matrix depends only on the modulus of
the distance, i.e., ρ(R) = ρ(R). It is then easy to show
that Eq. (9) gives a null contribution, as one essentially
integrates a spherical harmonic with l = 2 and m = 0
over all angles. We thereby conclude that for the HEG,
regardless of the spin polarization, the leading relativis-
tic correction to the energy due to the dipole-dipole in-
teraction vanishes. We point out that this is a general
property of the interaction, and the obtained result is not
affected by employing Dirac spinors for the electron field
operators.

Nevertheless, the correlation energy of the dipolar
HEG turns out to be finite. In second order it arises
entirely from diagram b) of Fig. 1, which readily trans-
lates into the Møller-Plesset (MP2) correlation energy
per electron

E(MP2)dip
c = − e4~2k4

F

2m3
ec

4π2

43− 46 ln 2

525
. (10)

For the same reason discussed above, in fact, diagram
c) vanishes, and it can be proven, in general, that all
the diagrams involving one single dipole interaction line,
(thus including also diagrams d) and e) of Fig. 1), do not
contribute to the energy.

a)

b) c)

d) e)

FIG. 1. Diagrammatic expansion of the exchange-correlation
energy of the homogeneous electron gas with dipolar spin-
spin interactions, up to second order. a) Exchange energy di-
agram. b), d) Direct and c), e) exchange diagrams contribut-
ing in second order to the correlation energy. Dashed lines
indicate dipolar interactions, wiggly lines indicate Coulomb
interactions.

C. Nonlocal exchange energy functional

We proceed to derive nonlocal corrections to the LSDA
for the dipolar x energy functional. Corrections to the
standard LSDA in SDFT are systematically constructed
from the weakly inhomogeneous electron gas via the gra-
dient expansion and the linear response. Here, we fol-
low the second strategy, which allows one to account for
small variations of m(r) at any r. We thus consider the
(spin-unpolarised) dipolar HEG subject to a weak ex-
ternal magnetic field δV jq (r) ∝ eiq·rσj , which perturbes
the magnetization density from the average value mj to
mj + δmj(r). The wave vector q is assumed to be ar-
bitrary, so that the approach is fully noncollinear. By
expanding the dipolar x energy to second order in the
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deviation from the homogeneous limit, we have14,23–25

Edipx [m] =
µ2
B

2

∫
d3q

(2π)3
Kij
x (q)δmi(q)δmj(−q), (11)

where δmi(q) is the induced magnetization density vari-
ation (to be obtained from an actual calculation), and
the x kernel is given by

Kij
x (q) ≡ ∂2Edipx

∂mi (q) ∂mj (−q)
=

gkl(q)

χik0 (q)χjl0 (q)
. (12)

Here, Kij
x is expressed in terms of the Lindhard response

function of the HEG χik0 = ∂mi/∂Vk and the linear re-
sponse contribution to the dipolar x energy functional
gkl(q) ≡ ∂2Edipx /∂V kq ∂V

l
−q.

a) b) c)

FIG. 2. First order Feynman diagrams for the spin den-
sity response function with magnetic dipole-dipole interaction
(dashed line). The grey dots represent the external magnetic
fields.

The latter is represented diagrammatically in Fig. (2).
Here, the vertex correction diagram a) corresponds to the
analytic expression

glk(q, 0) =
2π

β2

∑
n,m

∫
d3k

(2π)3

∫
d3k′

(2π)3
vijk−k′σ

i
αδG

0
δε(k, iεn)σlεη

×G0
ηγ(|k + q|, iεn)σjγβG

0
βζ(|k′ + q|, iε′m)σkζθG

0
θα(k′, iε′m),

(13)

where vijk = (δij − 3k̄ik̄j)/3 is the Fourier transform19

of the dipolar tensor of Eq. (7), and G0
αβ(k, iωn) =

δαβ/(iωn − εk) is the unperturbed Matsubara Green’s

function for the paramagnetic electron gas. Summing
over the spin indices in Eq. (13) gives

Tr{σiσlσjσk} = 4δilδjk. (14)

From Eq. (14), since the HEG is isotropic, we observe
that Eq. (13) can be written in the following form

gij(q, 0) = f(q)(δij − 3q̄iq̄j), (15)

where f(q) denotes a function of the modulus of q only,
and the angular dependence of g on the indices of q is
through the traceless and symmetric interaction tensor
vijk−k′ . By assuming q in the direction of the z axis, i.e.,
q = qz̄, we evaluate the function f(q) = −gzz(qz̄)/2 [note
that one also has gxx = gyy = −1/2 gzz]. Summing over
the Matsubara frequencies gives

f(q) =
8π

3

∫
d3k

(2π)3

(
nk − nk+q

εk − εk+q

)
×
∫

d3k′

(2π)3

(
nk′ − nk′+q

εk′ − εk′+q

)
P2(cos θk−k′), (16)

where nk is the Fermi distribution function and
P2(cos θk) = 1/2(3 cos2 θk − 1) is the Legendre polyno-
mial of second order with cos θk = k̄ · z̄. The main result
of this paper is the exact evaluation of Eq. (16) in terms
of one quadrature. We notice that by means of the trans-
formations k(′) → ±k(′)−q/2, it is possible to recast the
∼ cos2 θk−k′ term of Eq. (16) in the form

I(q) =
m2
e

8π5~4q2

∫
d3k

∫
d3k′

nk−q/2nk′−q/2

(k · q)(k′ · q)

×

{[
q · (k + k′)

|k + k′|

]2

+

[
q · (k− k′)

|k− k′|

]2
}
, (17)

which looks structurally similar to the response function
of the electron gas with Coulomb interaction26,27. In
evaluating Eq. (17) we generalize the analytic derivation
presented in Ref. 27 (see Appendix A for details). The
additional term in Eq. (16) simply amounts to the square
of the Lindhard function χ0, so that Eq. (16) reads as
f(q) = I(q)− π

3χ
2
0(q).
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In the zero temperature limit we obtain for f(q) the following expression:

f(q) =
m2
ek

2
F

16π3~4q2

{ 2

45q

(
7q5 − 15q4 + 30q3 − 20q2 − 144

)
ln |a|

+
2

45q

(
7q5 + 15q4 + 30q3 + 20q2 + 144

)
ln b

+
4

45
q2
(
7q2 + 60

)
ln

2

q
+

16

45

(
11q2 − 18

)
− 2

3
q

[
(2b)3 ln b

(
ln b+ ln

2

q

)
− (2a)3 ln |a|

(
ln |a|+ ln

2

q

)]
+ 8

∫ b

−a
dzz ln |z| [(a+ z)(b− z)W1(z)− (b+ z)(z − a)W2(z)]

− 4

3

(
q + ab ln

∣∣∣ b
a

∣∣∣)2 }
, (18)

where W1(z) = ln
∣∣∣z + a

z − b

∣∣∣ and W2(z) = ln
∣∣∣z − a
z + b

∣∣∣, with a = 1− q/2 and b = 1 + q/2 in units of the Fermi vector kF .

The remaining self-energy diagrams b) and c) of Fig. (2)
give a null contribution to the dipolar x energy, (as it can
be easily checked by evaluating the trace over the spin
indices). The physical explanation for this result is that

diagram a), including two triplet Green’s functions, cor-
respond to the Fock (x) energy diagram for a magnetic
HEG, whereas both diagrams b) and c) contain one sin-
glet Green’s function28.

For completeness we show here the expansions of f(q) at small and large q:

f(q) =


m2
ek

2
F

1080π3~4

[
(127 + 60 log 2− 60 log q) q2

5
− 97q4

70
− 53q6

392
+ . . .

]
, q → 0

16m2
ek

2
F

675π3~4

(
25

q4
+

11

q6
+ . . .

)
, q →∞.

(19)

From Eq. (19) we observe that the second derivative of
the functional has a logarithmic divergence in the low
wave-vector limit q = 0. This nonanalyticity implies the
non-existence of standard semilocal gradient approxima-
tions, and can be traced back to the nonlocal character
of the interaction.

In Fig. 3 we show the function f(q) and the x ker-
nel Kzz

x (q) computed from Eq. (12) at rs = 1. At large
q, Kzz

x (q) tends to a constant value. In this limit the
dipolar x energy amounts to one quarter of the magne-
tostatic energy. In Figs. 3b-d we compare the Fourier
transform of Kzz

x (q) (see Appendix C) to the interaction
between classical magnetic dipoles, 4πdzz, for different
values of the charge density. In the short-distance limit
(R→ 0) both Kzz

x (R) and the classical dipole interaction
increase as 1/R3 (Fig. 3b). At distances of few atomic
units the x kernel decays, faster at higher charge-density,
while developing an oscillatory behavior (Fig. 3c). The
oscillations are readily seen in the ratio between Kzz

x (R)
and 4πdzz (Fig. 3d), with a period that depends strongly
on the value of the density. At high density (rs = 1)
the oscillations are fast, with a period of few atomic

units, whereas at low density (rs = 10) they lie in the
long period range, and eventually disappear in the limit
rs → ∞. The oscillation amplitude (of the ratio) de-
creases slowly with R and, for realistic values of rs, re-
mains sizable (≈5%) even at large interatomic distances.
We expect that in conventional magnets, with mostly
simple magnetic patterns and domain wall geometries,
these oscillatory corrections to the magnetostatic energy
will average to zero, especially in the high density limit.
However, in more complex magnetic configurations, such
as layered and frustrated systems8,29,30, the oscillatory
x energy may sum up leading to sizable and measurable
effects.

III. SPIN-SPIN CONTACT FUNCTIONAL

As mentioned in Sec. I, in addition to the dipolar term,
the magnetic interaction between two electrons includes
also a spin-spin contact term (Eq. (5)). This contact
interaction has the same form of the Coulomb exchange
interaction, but is rescaled by the smaller factor µ2

B . The
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FIG. 3. Real and reciprocal space behavior of the dipolar exchange kernel. q and R are taken along the z axis; q is measured
in units of the Fermi vector kF , R is given in atomic units (Bohr). a): dipolar exchange kernel Kzz

x (q) (black line) and energy
functional f(q) (dashed line) at rs=1. b): short-distance Kzz

x (R) at rs = 1 (short-dashed line) compared to the Hartree
(magnetostatic) contribution (green line). c): mid-distance Kzz

x (R) at rs=1 (short-dashed line), 3 (long-dashed line), 5 (dot-
dashed line) and 10 (red line) compared to the Hartree (magnetostatic) contribution (green line). d): Ratio between dipolar
exchange and Hartree at rs=1 (dashed line) and rs=10 (red line).

associated Hartree functional is easily obtained as

ESC
H = −4πµ2

B

3

∫
d3rm2 (r) , (20)

while the LSDA for the x energy is given by

ESC
x = 2πµ2

B

∫
d3r

[
n2(r)− 1

3
m2(r)

]
, (21)

where n is the total electron density.

IV. CONCLUSIONS

We have proposed a density functional treatment of
the dipolar interaction between electronic spin magnetic
moments. Within this approach, the dipolar Hartree
term is given by the classical magnetostatic energy, cur-
rently implemented in magnetic structure codes. In ad-
dition, we have derived quantum corrections by evaluat-
ing analytically the exact x energy (Fock term) for the
magnetic electron gas with spin-spin interactions. The
dipolar x energy thereby obtained amounts to one quar-
ter of the magnetostatic energy at short interaction dis-
tance, or in the limit of low electronic density. At long
range, the dipolar x kernel displays an oscillatory be-
havior, while decaying in amplitude slightly faster than
the classical contribution (see Fig. 3d). This quantum
correction is expected to have negligible effects in most
conventional magnetic materials, where it likely averages
to zero. However, it might become significant in com-
plex magnetic structures, especially in specific geometries
where lattice and dipole x oscillations are commensurate,
or in the presence of a delicate magnetic balance, like in

frustrated systems. Further progress in the functional ap-
proximation might be achieved by carrying out the Levy
constrained search31,32 for the exact functional

F [n,m] =

= min
Ψ→n,m

〈
Ψ

∣∣∣∣T̂ +
e2

2

∫
d3r

∫
d3r′

n̂(r)n̂(r′)

|r− r′|
+ ĤSS

∣∣∣∣Ψ〉 ,
(22)

via a stochastic minimization33 over the many-body
wave-functions Ψ that are eigenstates of the total
(spin+orbital) angular momentum Ĵ2. Upcoming work
comprises implementing and testing the new functional
against experimental data. Applications include the
study of crystalline layered magnets and magnetic atoms
on surfaces, as well as the dynamics of domain walls
and skyrmions. Of particular interest is also the applica-
tion of our functional to the physics of dipolar quantum
gases, where it might serve as an exchange partner for
the “strictly correlated particles” functional of Ref. 34.
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Appendix A: Evaluation of I(q)

For convenience we evaluate Eq. (17) in cylindrical co-
ordinates with the polar axis along q, where all the wave
vectors are measured in units of kF . The integrations
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over the azimuthal and radial coordinates of k and k′

are readily carried through obtaining

I(q) =
m2
ek

2
F

16π3~4q2

3∑
i=0

Ji, (A1)

where

J0 =− 2

∫∫ b

−a

dz dz′

z z′
[
(z2 + z′2)(λ+ λ′)(2 ln 2 + 1)

+z4 + 6z2z′2 + z′4
]
, (A2)

J1 = 2

∫∫ b

−a

dz dz′

z z′

[
α2
√
R(z, z′) + β2|β|

]
, (A3)

J2 =4

∫∫ b

−a

dz dz′

z z′
λ
[
α2 ln |2

√
R(z, z′) + λ′ − λ+ α2|

+β2 ln |2|β|+ λ′ − λ+ β2|
]
, (A4)

J3 = −4

∫∫ b

−a

dz dz′

z z′
λ
[
β2 ln |β2|+ α2 ln |α2|

]
. (A5)

We adopt the same notation as in Ref. 27. Here, a =
1 − q/2, b = 1 + q/2, α = z + z′, β = z − z′ and λ(′) =

(a+z(′))(b−z(′)). The function R is defined as R(z, z′) =
C0(z)z′2 + B0(z)z′ + A0(z), where A0 = z2, B0 = (2 +
2qz − q2)z and C0 = 1 + 2qz.

Evaluating J0 is straightforward and the resulting expression is

J0 = −(2 + ln 2)8q2 − 2q

[
q2 ln 2− 4

3
(4 + 5 ln 2)

]
ln
∣∣∣a
b

∣∣∣. (A6)

J1 can be rewritten in the following form

J1 = 4

∫∫ b

−a
dzdz′

(
α

z′

√
R(z, z′) +

β

z′
|β|
)

= 4

∫ b

−a
dz
(
J̄A1 (z) + J̄B1 (z)

)
, (A7)

where J̄A1 (z) and J̄B1 (z) are evaluated to be27

J̄A1 (z) = 1 +
1

4
q2 +

5

2
qz +

(
2− ln

∣∣∣1− 4

q2

∣∣∣) z2 +
B0

4C0
(2z + q) +

1

4C
3/2
0

z2
[
8− q4 + 4qz(6− q2) + 12q2z2

]
Y (z),

J̄B1 (z) = 2qz − 1− q2

4
− z2(3− 2 ln |z|+ ln |ab|),

with Y (z) = ln
∣∣∣√C0 + 1√
C0 − 1

∣∣∣. The remaining integration in Eq. (A7) can also be carried through obtaining

J1 =− 1

q2
− 1

9
+

44

3
q2 + 4

(
4

3
+ q2

)
ln
q

2
+

1

3

[
(q − 2)

3
ln b− (q + 2)

3
ln |a|

]
+

1

2q3

(
q2 − 1

)2
ln
∣∣∣q + 1

q − 1

∣∣∣
+

3

4q3
η5 −

1

2q
η3 −

(
5

2q3
− 3

2q
+
q

4

)
η1 −

(
3

2q
− 2

q3
− q

2

)
η−1 +

(
1

2q
− 1

4q3
− q

4

)
η−3, (A8)

where ηn = q
∫ b
−a dzC

n/2
0 Y (z). The explicit expressions for η±1,−3 are given in Ref. 27, for η3,5 in Appendix B.

Next, we evaluate J23 = J2 + J3. This term is conve-
niently rewritten as

J23 =4

∫∫ b

−a
dzdz′

λ

z z′
(
α2 + β2

)
ln |4λ|

− 4

∫ b

−a
dz
λ

z

[
N̄1(z) + N̄2(z)

]
, (A9)

where N̄1(z) and N̄2(z) are defined as follows:

N̄1(z) =

∫ b

−a
dz′

α2

z′
ln |α2 + λ′ − λ− 2

√
R(z, z′)|,

(A10)

N̄2(z) =

∫ z

−a
dz′

β2

z′
ln |2β(z − b)|+

∫ b

z

dz′
β2

z′
ln |2β(z + a)|.

(A11)
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Eqs. (A10) and (A11) can be integrated by parts obtain-
ing

N̄1(z) =

∫ b

−a

dz′

α

(
z2 ln |z′|+ 1

2
z′2 + 2zz′

)
×

(
qz√
R(z, z′)

− 1

)
+

(
z2 ln

∣∣∣ b
a

∣∣∣+ q + 4z

)
ln |2λ|

(A12)

N̄2(z) =

(
z2 ln

∣∣∣ b
a

∣∣∣+ q − 4z

)
ln |2λ|+

(
3

2
z2 − ln |z|z2

)
×W1(z) +

∫ b

−a
dz′
(
z2 ln |z′|+ 1

2
z′2 − 2zz′

)
1

β
,

(A13)

where we have used the notation W1(z) = ln | z+az−b |. Sub-

sequent substitution of Eqs. (A12) and (A13) in Eq. (A9)
gives

J23 =4q

[
q +

(
ab+

2

3

)
ln
∣∣∣ b
a

∣∣∣] (2 ln 2 + 1)− 8

3
q ln

∣∣∣ b
a

∣∣∣
+ 6

∫ b

−a
dzλzW2(z)− 4 (qΦ1 + 2Φ2 + qΦ3 − Φ4) .

(A14)

Here, we have defined W2(z) = ln | z−az+b |,

Φ1 =

∫ b

−a
dzλ

∫ b

−a
dz′
(

1

2
z′2 + 2zz′

)
1

α
√
R(z, z′)

,

(A15)

Φ2 =

∫ b

−a
dzλz

∫ b

−a
dz′

z′

αβ
ln |z′|, (A16)

Φ3 =

∫ b

−a
dzλ

∫ b

−a
dz′z2 ln |z′| 1

α
√
R(z, z′)

, (A17)

Φ4 =

∫ b

−a
dzλzW1(z) ln |z|. (A18)

By writing Φ1 as

Φ1 =
1

2

∫ b

−a
dzλ

∫ b

−a
dz′

1√
R(z, z′)

[
z′ + 3z

(
1− z

α

)]
,

(A19)
and performing the integrations over z′∫ b

−a
dz′

z′√
R(z, z′)

=
1

C0
(2z + q)− B0

C
3/2
0

Y (z), (A20)

∫ b

−a
dz′

1√
R(z, z′)

=
2√
C0

Y (z), (A21)∫ b

−a
dz′

1

α
√
R(z, z′)

= − 1

qz
W2(z), (A22)

we get

Φ1 =
1

2

∫ b

−a
dz

λ√
C0

[
2z + q√
C0

+

(
6z − B0

C0

)
Y (z)

]
+

3

2q

∫ b

−a
dzλzW2(z). (A23)

The last term in Eq. (A23) cancels with the same con-
tribution of opposite sign in Eq. (A14). The remaining
integrals can be carried out as follows

1

2

∫ b

−a
dzλ

2z + q

C0
=

1

24q4

[
−6q + 16q3 + 6q5 − 3(q2 − 1)3 ln

∣∣∣q + 1

q − 1

∣∣∣] , (A24)

−1

2

∫ b

−a
dzλ

Y (z)

C
3/2
0

[B0 − 6zC0] =− 5

16q4
η5 +

(
9

16q2
+

1

q4

)
η3 −

(
3

16
− 1

16q2
+

9

8q4

)
η1

−
(
q2

16
− 3

8
+

13

16q2
− 1

2q4

)
η−1 +

(
3

16q2
− 1

16q4
− 3

16
+
q2

16

)
η−3. (A25)

We then write Eq. (A16) as

Φ2
z ↔ z′

= −
∫ b

−a
dzz ln |z|

∫ b

−a
dz′

λ′z′

αβ
(A26)

= −
∫ b

−a
dzz ln |z|

[
(b+ z)(a− z)

∫ b

−a
dz′

z′

αβ
+ (q + z)

∫ b

−a
dz′

z′

β
−
∫ b

−a
dz′

z′2

β

]
, (A27)

where each of the integrations in z′ can be performed∫ b

−a
dz′

z′

αβ
=

1

2
(W1(z) +W2(z)) , (A28)
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−a
dz′

z′

β
= −2 + zW1(z), (A29)

∫ b

−a
dz′

z′2

β
=

1

2
[a(a− 2z)− b(b+ 2z)] + z2W1(z). (A30)

Substituting Eqs. (A28)-(A30) in Eq. (A27), and carrying through the elementary integrations over z, we obtain the
following result for Φ2 in terms of one quadrature

Φ2 = −1

2

∫ b

−a
dzz [λW1(z)− (b+ z)(z − a)W2(z)] ln |z| − 1

2
q(q + a2 ln |a| − b2 ln |b|). (A31)

We follow the same procedure for Φ3 given in Eq. (A17)

Φ3
z ↔ z′

=

∫ b

−a
dz ln |z|

∫ b

−a
dz′

λ′z′2

α
√
R(z, z′)

=

∫ b

−a
dz ln |z|

[
(b+ z)(a− z)

∫ b

−a
dz′

z′2

α
√
R(z, z′)

+ (q + z)

∫ b

−a
dz′

z′2√
R(z, z′)

−
∫ b

−a
dz′

z′3√
R(z, z′)

]
. (A32)

Here, we have ∫ b

−a
dz′

z′2

α
√
R(z, z′)

=
1

C0
(2z + q)− 1

C
3/2
0

(B0 + 2zC0)Y (z)− z

q
W2(z), (A33)

∫ b

−a
dz′

z′2√
R(z, z′)

=

(
b

2C0
− 3B0

4C2
0

)√
R(z, b) +

(
a

2C0
+

3B0

4C2
0

)√
R(z,−a) +

2√
C0

(
3B2

0

8C2
0

− A0

2C0

)
Y (z), (A34)

∫ b

−a
dz′

z′3√
R(z, z′)

=

(
b2

3C0
− 5B0b

12C2
0

+
5B2

0

8C3
0

− 2A0

3C2
0

)√
R(z, b)−

(
a2

3C0
+

5B0a

12C2
0

+
5B2

0

8C3
0

− 2A0

3C2
0

)√
R(z,−a)

−
(

5B3
0

16C3
0

− 3A0B0

4C2
0

)
2√
C0

Y (z). (A35)

Substituting Eqs. (A33)-(A35) in Eq. (A32), we obtain with some algebra

Φ3 = Φ̄1 + Φ̄2 + Φ̄3, (A36)

where

Φ̄1 = −1

q

∫ b

−a
dz z ln |z|(b+ z)(a− z)W2(z), (A37)

Φ̄2 =

∫ b

−a
dz
[
− 19

32q3
C2

0 +

(
139

96q3
− 9

32q

)
C0 −

15

16q3
+

25

16q
− 5

32
q +

(
1

16q3
− 3

4q
+

17

32
q +

q3

32

)
C−1

0

+

(
− 1

16q
− 13

96q3
+

5q

32
+
q3

24

)
C−2

0 +

(
5

32q3
− 15

32q
+

15

32
q − 5

32
q3

)
C−3

0

]
ln |z|, (A38)

Φ̄3 =

∫ b

−a
dz C

−7/2
0

[(
−4 + 2q2 − q4

4

)
z +

(
−16q +

11

2
q3 − q5

4

)
z2 +

(
8− 20q2 +

11

2
q4 − q6

8

)
z3

+

(
36q + 2q3 +

5

4
q5

)
z4 +

(
60q2 +

25

2
q4

)
z5 + 35q3z6

]
ln |z|Y (z). (A39)
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Evaluating Φ̄2 is elementary. Moreover, it can be shown27 that Φ̄3 is equivalent to

Φ̄3 =
1

8q

3∑
n=−3

γn
1

2n+ 1

[
(1 + q)2n+1 ln b ln

∣∣∣2b
q

∣∣∣− q̃2n+1 ln |a| ln
∣∣∣ q̃ + 1

q̃ − 1

∣∣∣+ Ωn

]
, (A40)

where

γ3 =
35

8q3
, γ2 = − 45

4q3
+

25

8q
, γ1 =

69

8q3
− 117

8q
+

5

8
q, γ0 = − 3

2q3
+

29

4q
+ 3q − q3

8
,

γ−1 = − 3

8q3
+

11

4q
− 7

4
q − q3

8
, γ−2 =

3

4q3
− 3

8q
− 3q3

8
, γ−3 = − 5

8q3
+

15

8q
− 15

8
q +

5q3

8
.

Here, q̃ = |1− q| and the explicit expressions for Ω0,±1 are given in Ref. 27, while for Ω±2,±3 in Appendix B.

Appendix B

η3 =
1

5

[
4q(2 + q2)− 2q(5 + 10q2 + q4) ln q − 2(1− 2q + 4q2 − 3q3 + q4)a ln |2a|+ 2(1 + 2q + 4q2 + 3q3 + q4)b ln 2b

]
,

(B1)

η5 =
1

7

[
4q

(
3 +

13

3
q2 + q4

)
− 2q(7 + 35q2 + 21q4 + q6) ln q − 2(1− 3q + 9q2 − 13q3 + 11q4 − 5q5 + q6)a ln |2a|

+ 2(1 + 3q + 9q2 + 13q3 + 11q4 + 5q5 + q6)b ln 2b
]
, (B2)

η−5 =
1

3

[ 4q

(q2 − 1)2
+ 2 ln

∣∣∣q + 1

q − 1

∣∣∣− (1 +
1

(1 + q)3

)
ln 2b+

(
1 +

1

(1− q)3

)
ln |2a|+ 2q(q2 + 3)

(q2 − 1)3
ln q
]
. (B3)

Ω−3 = h0(q)− 2q

[∫ b

−a
dz
(
C−3

0 + C−2
0 + C−1

0

)
ln |z|

]
+ 2(η−3 + η−5), (B4)

where h0(q) is given in Ref. 27,

Ω−2 = h0(q)− 2q

[∫ b

−a
dz
(
C−2

0 + C−1
0

)
ln |z|

]
+ 2η−3, (B5)

Ω2 = h0(q)− 1

30

[
q(416 + 108q2) + q(240 + 120q2) ln 2− q(60 + 300q + 80q2 + 75q3 + 12q4) ln q

+ (2b)(92− 16q + 38q2 + 21q3 + 12q4) ln 2b− (q̃ + 1)(137− 77q̃ + 47q̃2 − 27q̃3 + 12q̃4) ln |q̃ + 1|

+ (q̃ − 1)(137 + 77q̃ + 47q̃2 + 27q̃3 + 12q̃4) ln |q̃ − 1|
]
, (B6)

Ω3 = h0(q) +
1

210

[
− q

(
4472 +

9028

3
q2 + 520q4

)
− q(2520 + 3640q2 + 840q4) ln 2 + q(420 + 4410q + 1260q2

+ 3675q3 + 924q4 + 490q5 + 60q6) ln q − 2b(704− 142q + 386q2 + 437q3 + 464q4 + 230q5 + 60q6) ln 2b

+ (q̃ + 1)(1089− 669q̃ + 459q̃2 − 319q̃3 + 214q̃4 − 130q̃5 + 60q̃6) ln |q̃ + 1| − (q̃ − 1)(1089 + 669q̃

+ 459q̃2 + 319q̃3 + 214q̃4 + 130q̃5 + 60q̃6) ln |q̃ − 1|. (B7)
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Appendix C: Fourier transform of Kij
x (q)

The real-space representation of Eq. (11) is given by

Edipx [m] =
µ2
B

2

∫
d3r d3r′Kij

x (R)δmi(r)δmj(r
′), (C1)

where

Kij
x (R) =

gkl(R)

χik0 (R)χjl0 (R)
. (C2)

Here, gkl(R) is evaluated as follows. We write the Fourier transform of gkl(q) in spherical coordinates as:

gkl(R) =
1

(2π)
3

∫ ∞
−∞

gkl (q) eiq·Rd3q =
1

(2π)
3

∫ ∞
0

dq

∫ 2π

0

dφ

∫ π
2

−π2
dθf (q) 2P2 (cos θ) eiq·Rq2 sin θ. (C3)

Then, by expressing the exponential as a Rayleigh expansion, and using the addition theorem for spherical harmonics
Ylm (θ, φ) , we obtain:

gkl (R) =
2

(2π)
2

∫ 2π

0

∫ π
2

−π2

∞∑
l=0

l∑
m=−l

Y20 (θ, φ)Ylm (θ, φ) sin θdφdθ

∫ ∞
0

f (q) iljl(qR)q2dq 2P2 (cos θR) (C4)

=− 2

(2π)
2

∫ ∞
0

f (q) j2(qR)q2dq 2P2 (cos θR) = f(R)2P2 (cos θR) , (C5)

where jl(qR) are the spherical Bessel functions and the function f(R) is defined by the last equality.
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