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Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part % Under the assumption of the
Riemann Hypothesis, we claim that there is not any odd perfect number at all.
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1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part % As usual o(n) is the sum-of-
divisors function of n:

2,

dln

where d | n means the integer d divides n, d { n means the integer d does not divide 7 and d* || n

means d* | n and d**! { n. Define f(n) and G(n) to be @ and 1o£ ;zi,n respectively, such that log

is the natural logarithm. We know these properties from these functions:

Proposition 1.1. [1]. Let [1\_, 4" be the representation of n as a product of primes q; < -+ < g,
with natural numbers as exponents ay, ..., a,. Then,

f(n)=(ﬁqiq+l]xﬁ[l— 11]

i=1 ql

i=1
Proposition 1.2. For every prime power g%, we have that f(q*) = qf,’%lq__ll) [2]. If m,n > 2 are
natural numbers, then f(m x n) < f(m) X f(n) [2]. Moreover, if p is a prime number, and a, b
two positive integers, then [2]:

(P =DHxp'-1
pa+h—1 X (]7 _ 1)2 :

F@) = fY) x f(pP) = -
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Say Robins(n) holds provided
Gn) <e

where the constant y = 0.57721 is the Euler-Mascheroni constant. The importance of this prop-
erty is:

Proposition 1.3. Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann
Hypothesis is true [3].

In mathematics, ¥ = n x []y, (1 + 1) is called the Dedekind ¥ function. Say Dedekind(g,)
holds provided

1 e
1+-]> 5 xlogég,
n(+q)>4<2>”g (4n)

q<qn

where {(x) is the Riemann zeta function and {(2) = %2 The importance of this inequality is:

Proposition 1.4. Dedekind(g,) holds for all prime numbers g, > 3 if and only if the Riemann
Hypothesis is true [4].

Let g, = 2,9, = 3,...,qr denote the first k consecutive primes, then an integer of the form
I—[f:l g{ withay > ay > --- > @ > 0 is called an Hardy-Ramanujan integer [5]. A natural
number n is called superabundant precisely when, for all natural numbers m < n

fm) < f(n).

Proposition 1.5. If n is superabundant, then n is an Hardy-Ramanujan integer [6]. Let n be a
superabundant number, then p || n where p is the largest prime factor of n [6]. For large enough
superabundant number n, we have that g% < 2% for q > 11 where g% || n and 2% || n [6].
For large enough superabundant number n, we obtain that logn < (1 + lg;p) X p where p is the
largest prime factor of n [7].

In mathematics, the Chebyshev function 6(x) is given by
0(x) = Z log p
p<x
with the sum extending over all prime numbers p that are less than or equal to x [7].
Proposition 1.6. [7]. For x > 89909:

0(x) > (1 — M) X X.
log(x)

In number theory, a perfect number is a positive integer n such that f(n) = 2. Euclid proved
that every even perfect number is of the form 257! x (2* — 1) whenever 2° — 1 is prime. It is
unknown whether any odd perfect numbers exist, though various results have been obtained:

Proposition 1.7. Any odd perfect number N must satisfy the following conditions: N > 101%
and the largest prime factor of N is greater than 108 [8], [9].

Using these results, we finally claim that there is not any odd perfect number at all.
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2. Results

Theorem 2.1. Under the assumption of the Riemann Hypothesis, we claim that there is not any
odd perfect number at all.

Proof. Let N be a large enough odd perfect number, then we will show its existence implies that
the Riemann Hypothesis is false. If N is a large enough odd perfect number, then a superabundant
number # that is a multiple of N would be large enough as well. We would have

n
fm) < fIN) X f(5)
according to the Proposition 1.2. That is the same as

fn) <2 Xf(%)

since f(N) = 2, because N is a perfect number. Hence,

o) _ 2= 5) X [

2 2
n 2-35)
=[G x5

no 20t -

2a2 ) X 2a2+l

= f(

when 2 || n due to the Proposition 1.2. In this way, we have
fGa) _ 2a+1

fGo T2

However, we know that p < 2% because of p > 10® > 11 and the Propositions 1.5 and 1.7, where
p 1is the largest prime factor of n. Consequently,

2a2+1 - 2)(]?
20l — ] =~ 2x p—1

since XTX1 decreases when x > 2 increases. In addition, we know that

2Xp
— <
Ixp_1° f(p)
where we know that f(p) = ”Tf] from the Proposition 1.2. Certainly,

2xpP<(p+Dx2xp-1)
=2xp*+2xp-p-1
=2xp°+p-1

where this inequality is satisfied for every prime number p. So,

fGi)
F(m ; fp)




where we know that p || n from the Proposition 1.5. Under the assumption of the Riemann
Hypothesis, we have that

e’ > Gn)
_fBYXf(p)
" loglogn
FEYX ()
f (%) X loglogn
since f(...) is multiplicative and as a consequence of Proposition 1.3. This is equivalent to
f(%) ey

F(&) f (357)

From the Propositions 1.1 and 1.5, we know that

rfil -

where g; = p and ¢; = 2. We know that

X loglogn.

and

Using the previous inequalities, we obtain that

i+ 1
e E ]_[q+

Under the assumption of the Riemann Hypothesis:

1
1 —— X log 8
l_[( +q)>4<2>x 0g#(p)

q=p

which is the same as

(2)><]—[(1+ ) ”62 (1+é)

=—X
q<p q<p
7 3 ( 1)
=—=X=X 1+-
6 2<q<p q
2
=T (1 + 1)
2<g<p q

> e¥ x log 6(p).
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due to the Proposition 1.4. Taking into account that p > 10® > 3 and n is superabundant:

ﬂz

5 xf(%) > ¢ x log 6(p).

Therefore,
z y
3 e

> .
logb(p)  f(z5)
We use the previous inequality to show that

2

I
&) = logé(p)

For large enough superabundant number 7 and p > 108, then

X loglogn.

z

8
log 6(p)

X loglogn <

0.5
X log((l + o

8
2108 0)

log ((1 — {22 x 10)
because of the Propositions 1.6 and 1.5. We obtain that
7[.2
8 X log ((l + S
log ((1 — 2265 x 108) log 10

) X 108) < 1.235748]1.

Thus,

ﬁ) 1.2357481
< 1. .
f(&)
For every prime p; that divides N such that pf" [| N and p?‘””” || n for a;, b; two natural numbers,
we have that

=X -1
Pt X (pi = 12

FB = FOf % fp)) =
in the Proposition 1.2. This is equal to

@y (P! = DX =1
o =S - ath—1 2
f(P,-’) f(pi’)xpi’ ' X(pi_l)

(f(p“’”"' ]
F
P =-Dxpi-1
fpiH -
l_[( P x pi Pt x (py = 1)?
~ 1_[ (r(™)
= f(N)
=2
> 1.2357481

Hence,

-]

&



since we know that the expression

P =D X} = 1)
F@ % pix (pi= 12

tends to O as b tends to infinity for every odd prime p. Certainly, the fraction % gets closer to
N
2 as long as we take n bigger and bigger. However,

n

f)
1.2357481 < —~ < 1.2357481
F(&)

is a contradiction. By contraposition, the number N does not exist when N would be a large
enough odd perfect number under the assumption of the Riemann Hypothesis. In addition, we
claim there is not any odd perfect number at all since the smallest counterexample N must comply
that N > 10"% according to the Proposition 1.7. O
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