
R Markdown with simulation example

Daniel Caetano and Tiago Quental

5/16/2022

This Markdown document will show how to install and use the “buddPhy” package for R. This package
allows for simulation of multiple scenarios of budding speciation for both discrete and continuous traits. The
package also offers functions for plotting the budding history of lineages and the distribution of rates of trait
evolution under several scenarios of lineage-age dependent rates, budding and cladogenetic events associated
with asymmetric speciation. The package is currently available through github.

Package installation

First install the package dependencies:

install.packages("viridisLite")
install.packages("ape")
install.packages("expm")
install.packages("FossilSim")
install.packages("ratematrix")
install.packages("phytools")

The package can be installed from the github repository.

library(devtools)
install_github(repo = "Caetanods/buddPhy")

library(buddPhy)

Generating a phylogeny

The first step is to obtain a phylogenetic tree. buddPhy will trace the evolutionary history of the lineages
through the branches of an existent phylogeny, but it will not generate a new one. This is useful because the
user can produce lineage histories based on their empirical phylogenetic tree without the need to modify it
in anyway.

If a phylogenetic tree is not available, then one can be simulated using a variety of packages. Here we are
using TreeSim, but note that other packages such as geiger, phytools, and ape could be used as well.

library(TreeSim)

Loading required package: ape

Loading required package: geiger

1

https://github.com/Caetanods/buddPhy

phy <- sim.bd.taxa(n = 50, numbsim = 1, lambda = 0.02, mu = 0.01, complete = TRUE)[[1]]
plot.phylo(x = phy, show.tip.label = FALSE, edge.width = 1.5)

Simulating discrete trait histories

buddPhy will generate the history of the lineages together with the history of a discrete or a continuous
trait. Let’s start by simulating a discrete trait. For this first we need to create a Q matrix with the rates of
transition between states:

Q <- rbind(c(-0.06, 0.03, 0.03), c(0.03, -0.06, 0.03), c(0.03, 0.03, -0.06))
colnames(Q) <- rownames(Q) <- 1:3

We will use this matrix to generate the history for 3 states. Note that we have symmetric evolution. Now
we can use the buddPhy::sim_Mk_budding_exp to generate the trait history:

sim <- sim_Mk_budding_exp(tree = phy, Q = Q, budding_prob = 0.25, change_rate = 0.2
, cladogenetic_change = "prob", cladogenetic_prob = 0.5
, cladogenetic_state = "other")

The line of code above is controlling many aspects of the simulation. budding_prob controls the proba-
bility that a budding event will happen at a given node of the tree. change_rate is the mean value of
the exponential decay function which reduces rates of trait evolution in function of lineage-age. In this
model the older lineages show slower rates of trait evolution than the new lineages. cladogenetic_change

2

is the type of trait change that happens at the event of budding. Here the user can choose between making
a cladogenetic change (“prob” or “flat”) or nothing special at the nodes (i.e., anagenetic evolution only).
cladogenetic_prob is the probability that a cladogenetic event will happen when a node is assigned to be
associated with a budding speciation event. Setting this parameter to 0.5 means that an event of clado-
genetic change will only happen about half of the times that a budding event takes place. Finally, the
cladogenetic_state parameter controls which state can appear after an event of budding. Some of the
options are “other” (a state distinct from the state of the progenitor lineage) and “any” (any state, including
the same state of the progenitor lineage).

Please refer to the help page for the sim_Mk_budding_exp function for more information about the options.

After performing the simulation we can plot the history of the lineages. Note that lineages with distinct
colors are different. Colored branches indicate progenitor lineages which produced one or more daughter
lineages through budding. The collection of colors are randomized.

plot_mother_lineages(sim_obj = sim, background_color = "gray", edge_width = 4)

t5

t21

t4

t72

t67

t54

t61t19
t26

t24

t58
t2

t20

t37

t13

t34

t1
t35

t71
t14

t23

t33

t77

t43

t36
t70

t57

t7
t46

t63

t9

t64

t47

t68

t59

t48
t15

t12

t49

t28

t74

t27

t75

t3
t6
t30
t8

t62
t42

t32
t11

t31

t38

t29

t17

t44

t66

t51
t25

t69

t18

t76

t40
t56
t39

t53

t45

t41

t10

t50

t52t16

t22

t60

t73

t55

t65

We can also summary the history of the internal nodes and indicate which of the nodes were budding
speciation events:

budd_hist <- buddPhy::get_Budding_History(sim = sim)
The list of budding nodes:
budd_hist$budd_nodes

[1] 98 118 149 109 130 111 124 88 105 136 120 89 134 137 110 114

3

A logic vector that can be used to perform further analyses:
budd_hist$budd_edges

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
[13] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
[37] FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[73] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[85] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[133] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

We can also plot the history of the traits. This is similar to a stochastic map, but here we are showing the
true history of the trait and not an estimate of ancestral states.

library(phytools)

Loading required package: maps

The sim object is a list with many elements, including a stochastic map
with the true history of the simulation.
plotSimmap(tree = sim$simmap)

no colors provided. using the following legend:
1 2 3
"black" "#DF536B" "#61D04F"

4

t5

t21

t4

t72

t67

t54

t61t19
t26

t24

t58
t2

t20

t37

t13

t34

t1
t35

t71
t14

t23

t33

t77

t43

t36
t70

t57

t7
t46

t63

t9

t64

t47

t68

t59

t48
t15

t12

t49

t28

t74

t27

t75

t3
t6
t30
t8

t62
t42

t32
t11

t31

t38

t29

t17

t44

t66

t51
t25

t69

t18

t76

t40
t56
t39

t53

t45

t41

t10

t50

t52t16

t22

t60

t73

t55

t65

Of course, we can also extract the states for each tip of the tree:

sim$tip_state

t5 t21 t4 t72 t67 t54 t61 t19 t26 t24 t58 t2 t20 t37 t13 t34 t1 t35 t71 t14
3 2 1 3 1 3 2 2 2 1 3 2 2 2 2 2 3 3 2 2
t23 t33 t77 t43 t36 t70 t57 t7 t46 t63 t9 t64 t47 t68 t59 t48 t15 t12 t49 t28
3 1 2 1 2 2 3 3 2 3 2 2 3 2 2 2 2 1 2 3
t74 t27 t75 t3 t6 t30 t8 t62 t42 t32 t11 t31 t38 t29 t17 t44 t66 t51 t25 t69
3 2 2 2 2 2 2 3 3 1 2 2 2 2 2 3 1 3 1 3
t18 t76 t40 t56 t39 t53 t45 t41 t10 t50 t52 t16 t22 t60 t73 t55 t65
1 2 1 3 3 2 2 1 3 2 1 1 2 2 1 2 1
Levels: 1 2 3

Plotting the rates of trait evolution

In buddPhy, the age of the lineages influence the rate of trait evolution. Thus, rates of trait evolution vary
across the tree. This is not a rate-homogeneous model of trait evolution. The distribution of rates will vary
in function of the exponential decay factor and the probabilities of budding speciation.

We can easily plot the variation in the rates of trait evolution and also extract this information to make
further analyses.

The function will produce a phylogenetic tree in a simmap format and also
information for the colors.

5

rate_tree <- make_scaler_simmap(sims = sim, ncat = 20)
class(rate_tree$simmap)

[1] "phylo" "simmap"

head(rate_tree$col_vec)

A B C D E F
"#00FF00" "#1AFF00" "#35FF00" "#50FF00" "#6BFF00" "#86FF00"

Then we can use the plotSimmap function to produce the desired figure:
plotSimmap(tree = rate_tree$simmap, colors = rate_tree$col_vec)

t5

t21

t4

t72

t67

t54

t61t19
t26

t24

t58
t2

t20

t37

t13

t34

t1
t35

t71
t14

t23

t33

t77

t43

t36
t70

t57

t7
t46

t63

t9

t64

t47

t68

t59

t48
t15

t12

t49

t28

t74

t27

t75

t3
t6
t30
t8

t62
t42

t32
t11

t31

t38

t29

t17

t44

t66

t51
t25

t69

t18

t76

t40
t56
t39

t53

t45

t41

t10

t50

t52t16

t22

t60

t73

t55

t65

In the figure above red colors indicate the fastest rate, which is equal to the original Q matrix used for the
simulation. Then colors approaching green are slower rates of trait evolution. The decay function works by
reducing the original rate of trait evolution by a factor.

We can check the actual values for the slowdown factor. These are also produced by the same function used
above and stored as an element of the list:

rate_tree$legend_matrix

from to label col
1 0.00000000 0.04909519 A #00FF00

6

2 0.04909519 0.09819039 B #1AFF00
3 0.09819039 0.14728558 C #35FF00
4 0.14728558 0.19638078 D #50FF00
5 0.19638078 0.24547597 E #6BFF00
6 0.24547597 0.29457117 F #86FF00
7 0.29457117 0.34366636 G #A1FF00
8 0.34366636 0.39276156 H #BBFF00
9 0.39276156 0.44185675 I #D6FF00
10 0.44185675 0.49095195 J #F1FF00
11 0.49095195 0.54004714 K #FFF100
12 0.54004714 0.58914233 L #FFD600
13 0.58914233 0.63823753 M #FFBB00
14 0.63823753 0.68733272 N #FFA100
15 0.68733272 0.73642792 O #FF8600
16 0.73642792 0.78552311 P #FF6B00
17 0.78552311 0.83461831 Q #FF5000
18 0.83461831 0.88371350 R #FF3500
19 0.88371350 0.93280870 S #FF1A00
20 0.93280870 1.00000000 T #FF0000

The columns "from" and "to" have the limits for the categories associated with
each color on column "col". The "label" column is just a sequence of letters
to help plotting the information.
The values of "from" and "to" are rate scalers. So the true transition rate for
each of these categories are:
ft_rate <- data.frame(from_rate = rate_tree$legend_matrix$from * Q[1,2]

, to_rate = rate_tree$legend_matrix$to * Q[1,2])
ft_rate

from_rate to_rate
1 0.000000000 0.001472856
2 0.001472856 0.002945712
3 0.002945712 0.004418568
4 0.004418568 0.005891423
5 0.005891423 0.007364279
6 0.007364279 0.008837135
7 0.008837135 0.010309991
8 0.010309991 0.011782847
9 0.011782847 0.013255703
10 0.013255703 0.014728558
11 0.014728558 0.016201414
12 0.016201414 0.017674270
13 0.017674270 0.019147126
14 0.019147126 0.020619982
15 0.020619982 0.022092838
16 0.022092838 0.023565693
17 0.023565693 0.025038549
18 0.025038549 0.026511405
19 0.026511405 0.027984261
20 0.027984261 0.030000000

We can investigate the pattern created by the slowdown function by plotting the scaling factor in function
of the age of the lineage. Below we will use the average branch length as the age of the lineage as a point of
reference.

7

mean_br <- mean(phy$edge.length)
rate_decay <- simulate_rate_decay(change_rate = 0.2, start_rate = Q

, time_elapsed = mean_br, plot = TRUE
, nsims = 100)

[1] "Projecting expected number of transitions after 22.4324713275105 time units using a MK model."

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Age of lineage

P
ro

je
ct

ed
 n

um
be

r
of

 tr
an

si
tio

n
ev

en
ts

max
mean
min

The figure above shows how the expected number of transitions will decrease over time. If we change the
change_rate we can control how fast this slowdown happens:

slow_rate_decay <- simulate_rate_decay(change_rate = 0.1, start_rate = Q
, time_elapsed = mean_br, plot = TRUE
, nsims = 100)

[1] "Projecting expected number of transitions after 22.4324713275105 time units using a MK model."

8

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Age of lineage

P
ro

je
ct

ed
 n

um
be

r
of

 tr
an

si
tio

n
ev

en
ts

max
mean
min

Other functions in buddPhy

This was just a quick example of the type of functions that buddPhy has. Here are a list of the functions in
the package. Please refer to their help pages for instructions of usage and what type of thing can be done
with them.

List of the functions and their parameters:
lsf.str("package:buddPhy")

drop_fossils_track_node : function (phy)
get_Budding_History : function (sim)
make_phylip_data : function (data, states, file = "biogeobears_data.txt")
make_scaler_simmap : function (sims, ncat = 10, low_cut, high_cut)
mcmc_mk_budd_exp : function (phy, trait, k, prior_beta_Q = c(2, 5), prior_beta_budd = c(2,
5), prior_exp_rate = 1, sample_prob = c(0.25, 0.25, 0.25, 0.25), Q_prop = 0.2,
budd_prop = 0.2, rate_prop = 0.2, gen = 100)
optim_base_rate : function (sim, target_mean_rate)
plot_cont_sim : function (sim_obj, edge_width = 1.5, bg = "white", jump_col = "coral",
jump_width = 1, main = "", legend = TRUE)
plot_mother_lineages : function (sim_obj, background_color = "gray", edge_width = 3, no_margin = TRUE)
sim_BM_budding_exp : function (tree, sigma, anc = 0, budding_prob = 0, budding_mother = NA,
change_rate = 2, decay_fn = TRUE, jump_size = NA)
sim_BM_trace_history : function (sim_BM, sigma, anc = 0, change_rate = 2, decay_fn = TRUE, jump_size = NA,
jump_type = "fixed", jump_all = FALSE)
sim_Mk_budding_exp : function (tree, Q, anc = NULL, budding_prob = 0, budding_mother = NA, change_rate = 2,

9

decay_fn = TRUE, cladogenetic_change = "none", cladogenetic_state = "any",
cladogenetic_prob = 1)
sim_Mk_trace_history : function (sim_MK, Q, anc = NULL, change_rate = 2, decay_fn = TRUE, cladogenetic_change = "none",
cladogenetic_state = "any", cladogenetic_prob = 1)
simulate_rate_decay : function (change_rate, start_rate = NULL, time_elapsed, plot = TRUE, npoints = 10,
nsims = 1000)
tree_rescale_exp : function (change_rate = 0.05, budding_prob = 0.3, tree, chunk_fraction = 0.01,
decay_fn = TRUE)

Some highlights are sim_Mk_trace_history which can be used to simulate trait histories while hold-
ing the history of the lineages constant. Other interesting functions are sim_BM_budding_exp and
sim_BM_trace_history which work similarly to the example above, but simulate a continuous trait under
Brownian motion model.

10

	Package installation
	Generating a phylogeny
	Simulating discrete trait histories
	Plotting the rates of trait evolution
	Other functions in buddPhy

