
Bounded Self-Motion of Functional Redundant

Robots

Leon Žlajpah and Tadej Petrič

Jožef Stefan Institute

Ljubljana, Slovenia

{leon.zlajpah,tadej.petric}@ijs.si ⋆

Abstract. In this paper, we consider a problem how to exploit a task

space motion for lower-priority tasks when the end-effector motion al-

lows some deviation of the motion for the primary task. Using a com-

mon redundancy resolution methods, the self-motion is only possible in

the null-space. Therefore, we propose a novel combination of controllers

in two spaces: in the task space and in the reduced task space, where

DOFs corresponding to spatial directions allowing the deviations are

excluded. The motion generated by the controller in the reduced task

space is mapped into the main task and by properly selecting the con-

troller parameters the resulting motion does not violate the constraints.

To demonstrate the effectiveness of the proposed control we show sim-

ulation examples where motion in a constraint region is used to avoid

joint limits.

Keywords: Redundant robots, functional redundancy, null-space con-

trol, tracking relaxation

1 Introduction

Robot tasks are usually defined as a motion of the robot’s end-effector. Typi-
cally, the motion of the end-effector is restricted by different constraints arising
from the task itself or the working environment. In general, to perform the task
without violating any constraints the robot has to be redundant. In this case,
there are infinite joint configurations which result in the desired task-space pose
of the end-effector. The problem is how to find such joint motions that realize the
desired end-effector motion while guaranteeing that no constraints are violated.

Typically, the redundancy resolution is done by selecting a suitable objective
function and then a feasible solution is found by using a local or a global opti-
mization method. In most cases, it is assumed that the robot is kinematically
redundant. However, there are tasks like arc welding or spray painting, where
not all six Cartesian dimensions are important to accomplish the task. These
unused DOFs can then contribute to the degree-of-redundancy (DOR) of the

⋆ This work was supported by EU Horizon 2020 RIA Programme grant 820767

CoLLaboratE, and by Slovenian Research Agency grant P2-0076.

This paper is a Post-Print version (i.e. final draft post-refereeing).

For access to Publisher's version, please access

DOI: https://doi.org/10.1007/978-3-030-19648-6_33

2 Leon Žlajpah, Tadej Petrič

robot and they can be exploited for the self-motion. This type of redundancy
has been recognized as the functional redundancy [8, 2, 5]. To control robots with
functional redundancy, Baron [2] proposed to add a virtual joint to the robot
and used the usual redundancy resolution with the extended Jacobian. A more
general version has been proposed in [7], where a robot has been virtually ex-
tended by three prismatic joints and three rotational joints at the end-effector
allowing flexible redundancy control when the task is not fully constraint in the
Cartesian space. Huo and Baron [5] proposed the orthogonal decomposition of
the task-space without considering the null-space of the Jacobian matrix. In [9]
the use of the extended Jacobian is proposed for tasks where axis-symmetric
tools are used (like a spray-painting gun) and the orientation of the tool along
one axis is not important. For 5 DOF tasks, a redundancy resolution algorithm
based on sequential quadratic programming is proposed in [6] and based on
convex optimization in [4].

These approaches do not consider the possibility that tasks may allow some
freedom regarding the motion of controlled DOF, i.e. the task can be performed
with a set of possible end-effector positions and/or orientations. For example,
for spray-painting and welding tasks it is common to assume that the tool is
axis-symmetric and hence, it has one additional rotational DOR. However, the
task can be performed also when the orientation of the tool-axis is not exactly
oriented but in some region around the object. In [3] a concept of Task Space
Regions is proposed, where the idea is that the end-effector pose is not fixed
but can belong to a region of admissible positions and/or orientations. These
regions are then used for motion planning. In [1] a method for optimizing the
trajectories considering allowed deviations around the path is presented.

All path planning algorithms require apriori knowledge of constraints. If this
is not the case, a common approach is to perform redundancy resolution in the
control. The simplest approach to solve the kinematic redundancy is to resolve it
on the velocity level, where the differential kinematic equation is solved by using
a kind of generalized inverse, and the projection of an arbitrary vector onto
the null-space of the Jacobian is used to exploit the self-motion of the robot.
When the motion in one spatial direction has to be controlled, but the task
allows some deviation in this direction then we can treat this freedom-of-motion
as bounded functional redundancy, i.e. this DOF belongs to the task space and
allows simultaneously some motion which can be used to perform lower priority
tasks.

This paper aims at contributing to this field by presenting efficient kinematic
control strategies for bounded functional redundancy. The main goal is to im-
prove the capabilities of robots using intrinsic and functional redundancy in the
same framework. For that, we propose a control framework which allows exploit-
ing freedom-of-motion in the task DOFs for lower priority tasks like joint limit
avoidance or obstacle avoidance.

Exploiting Self-motion of Robots with Bounded Functional Redundancy 3

2 Modelling

We deal with robot manipulators, which can be represented by a serial kinematic
chain. Let the configuration of the robot manipulator be represented by the n-
dimensional vector q of joint positions. The robot’s end-effector pose x ∈ SE(3),
the six-dimensional Cartesian space, is represented by the position p ∈ R

3 and
orientation Q ∈ SO(3) (quaternion representation), which can be expressed as
a function of joint coordinates using the direct kinematic equations, p = p(q)
and Q = Q(q).

In general, the spatial end-effector velocity v is expressed as

v = [ṗTωT]T , (1)

where ṗ ∈ R
3 and ω ∈ R

3 are the linear and angular velocity of the end-effector,
respectively. The relation between joint velocities q̇ and end-effector velocity v

is represented by the differential forward kinematics in the form

v =

[
ṗ

ω

]
= J(q)q̇ . (2)

where J(q) ∈ R
6×n is a geometric Jacobian matrix.

3 Redundancy

A redundant robot has more DOFs than it is necessary to perform a task. This
implies that the redundancy is not only a feature of the robot structure but
depends also on the task. To identify different types of redundancy, it is beneficial
to define the following spaces:

– the configuration space C ∈ R
n where the joint variables q are defined;

– the operational space O , SE(3) is the 6-dimensional Cartesian space, where
the positions/orientations of the robot end-effector are defined; and

– the task space T is a Cartesian subspace where the task is defined, T ⊆ O.

Serial robots for which dim(O) < dim(C) are intrinsic redundant. When the task
does not require that all 6 spatial DOFs are controlled, i.e. dim(T) < dim(O),
the robot becomes functional redundant.

The task can be viewed as constraints of the end-effector pose x along the
path. In some cases, the task allows that the constraints for one or more DOFs
are relaxed, i.e. the end-effector can be in some region A ⊂ T around the nominal
path. Let the task be defined as a path in task space T as

xd = xd(s) ∈ T , (3)

where s is a strictly increasing path parameter, s ⊆ [0, 1] and let ξ ∈ R
k be a set

of coordinates in T corresponding to spatial directions in which the task allows

4 Leon Žlajpah, Tadej Petrič

some free motion. Then the free-motion region A(s) is defined as a subspace of
T spanned by ξ with origin in xd(s) and with bounds

Bi = [ξ
i
(s, t), ξi(s, t)], i = 1, . . . , k , (4)

where ξ
i
(s) and ξi(s) are minimal and maximal deviations from xd(s) in spatial

direction ξi, respectively. The region A can change along the path or in time.
In [3] these regions are termed Task Space Regions (TSRs) and are used for
manipulation planning. In the following, we will present how the motion in A
can be included in the redundancy resolution at the control level. We denote
that when A exists, the robot becomes bounded functional redundant.

4 Kinematic control

To this day many different control approaches for robots have been proposed.
As robot manipulators are highly nonlinear dynamical systems, most of the pro-
posed control strategies use some kind of inner-loop inverse dynamic control
like computed torque technique or operational space control to compensate non-
linearities. Here, we focus on the redundancy resolution at the velocity level
and we assume that the inner-loop controller already compensates the nonlinear
dynamics of the robot.

The main idea of the redundancy resolution at the velocity level is to compute
the necessary outer-loop control velocity q̇c by inverting Eq. (2)

q̇c = J
#(q)ẋc +

(
I− J

#(q)J(q)
)
q̇n , (5)

where ẋc represents the desired task-space control velocity and q̇n is an arbitrary
joint velocity, which is projected into the null-space of J and can be used to
perform some additional lower priority subtasks.

It is common to select the task-space control velocity ẋc in (5) as

ẋc = vd +Kpe , (6)

where vd is the desired end-effector position/rotation velocity, Kp is the diago-
nal gain matrix, which define the close-loop behavior, and e is the end-effector
position/rotation error. It is defined as

e =

[
pd − p

2 log(QdQ
−1)

]
, (7)

where xd = {pd,Qd} represents the desired pose of the end-effector. Note that
the velocity ẋc and errors e can be expressed in any task space as long as the
Jacobian matrix J relates the robot configuration space and the selected task
space T .

The task space T and consequently the Jacobian matrix J are defined con-
sidering intrinsic and/or functional redundancy of the robot. However, when
bounded functional redundancy is present, then (5) does not make possible to

Exploiting Self-motion of Robots with Bounded Functional Redundancy 5

use the motion in A for additional lower priority subtasks. As A ⊂ T the spatial
directions ξ are also included in T . Therefore, projecting q̇n into the null-space of
J using (I−J

#
J) does not produce any motion in T , meaning that the available

motion in A cannot be exploited.
To exploit the motion in A for secondary tasks, it is necessary that spatial

directions ξ are excluded from T and included in null-space projector (I−J
#
J).

Let denote TA the task space spanned over spatial directions excluding direc-
tions ξ and the corresponding Jacobian matrix as JA. Then, projected velocities
(I− J

#
A
JA)q̇n have components also in directions ξ. However, using JA in (5)

is not allowed as this would allow moving along the task path. To overcome
this problem, we propose to use the following kinematic control, which combines
redundancy resolution in space T and in task space TA.

The affordance that free-motion region around the path exists can be ex-
pressed in (6) by applying dead-zones to the components of e that are corre-
sponding to ξ

êi =





(ei − ei) for ei > ei

0 otherwise

(ei − ei) for ei < ei

and i ∈ ξ (8)

Next, we augment the control (6) with a term corresponding to the task space
velocities generated by the projection of q̇n in the null-space of JA

ẋA = J(I− J
#
A
JA)q̇n (9)

yielding
ẋc = vd +Kpê+ sat(ẋA, ẋi, ẋi) , (10)

where sat(a) is the saturation function

sat(a, amax, amin) =





amax for a > amax

a for amin < a < amax

amin for a < amin

. (11)

To prevent the violation of constraints defined by A, the dead-zone parameters
in (8) are selected as

ei = ξi −
1

Kp,i

ẋi and ei = ξ
i
−

1

Kp,i

ẋi , (12)

where ẋi and ẋi are the limits for the task velocities generated by (9), respec-
tively.

5 Case study

The application of the proposed control scheme does not depend on the com-
plexity of the motion the robot has to perform. It solely allows some freedom-
of-motion around the task trajectory, which depends on the task requirements.

