
Incremental Policy Refinement by Recursive Regression and Kinesthetic
Guidance

Bojan Nemec, Mihael Simonič, Tadej Petrič and Aleš Ude

Abstract— Fast deployment of robot tasks requires appro-
priate tools that enable efficient reuse of existing robot control
policies. Learning from Demonstration (LfD) is a popular tool
for the intuitive generation of robot policies, but the issue of
how to address the adaptation of existing policies has not been
properly addressed yet. In this work, we propose an incremental
LfD framework that efficiently solves the above-mentioned
issue. It has been implemented and tested on a number of
popular collaborative robots, including Franka Emika Panda,
Universal Robot UR10, and KUKA LWR 4.

I. INTRODUCTION

Nowadays, robots are still dominating in large-scale au-
tomotive and electronic industries, characterized by large-
volume, large-batches productions. One of the issues of
contemporary robotics is the introduction of flexible and
collaborative robots in craft and small-scale SME production.
These production plants are characterized by a wide variety
of different assembly tasks, where it is essential to shorten
the programming time and to reduce the required skill level
of the operators [1]. One of the promising technologies
capable of solving the above-mentioned issues is Learning
from Demonstration (LfD). Using LfD the robot tasks are
demonstrated in a natural way rather than coding in a robot-
oriented programming language or using the expensive and
complex CAD system, which require profound knowledge
in computer science, robot programming and understanding
issues arising from robot kinematics and dynamics [2]. LfD
concept goes beyond the simple showing and copying a
skill performed by a demonstrator. Rather, it encompasses
many aspects such as possibly autonomous generalization
to different contexts, understanding contexts, adaptation and
refinement of the demonstrated policy, etc. [3], [4]. However,
efficient demonstration of the various skills remains a key
point for successful application of LfD framework. Efficient
demonstration is needed not only in production plants but
will also be necessary for the upcoming generation of home
and service robots that will perform a variety of domestic
tasks.

In robotics, we often face the problem that we have to
adapt the existing policy to the new context, imposed by the
changes in the environment. The robot can autonomously
adapt to these changes using techniques like Reinforcement
Learning (RL) [5] or Iterative Learning Control (ILC) [6].
However, it requires either at least partial knowledge of

Humanoid & Cognitive Robotics Lab, Department of
Automatics, Biocybernetics and Robotics, Jožef Stefan Institute,
Jamova 39, 1000 Ljubljana, Slovenia, (bojan.nemec,
mihael.simonic,tadej.petric,ales.ude)@ijs.si

the environmental dynamics for ILC or lengthy refinement
procedures required by RL. In many cases, it is more efficient
to adapt the existing policy utilizing kinesthetic guidance.
It is essential that we do not demonstrate the policy again
from the beginning, but only gradually correct the existing
trajectory. A suitable framework was proposed by Lee and
Ott [7], where they introduced an incremental adaptation of
the robot policy along the refinement tube and applied to
humanoid upper-body robot Justin. Incremental adaptation
was also studied in [8] where the main focus was on
context-dependent robot skills. However, for the successful
completion of the task, it is necessary to adapt both spatial
and temporal part of the task. For complex policies, it is
beneficial to demonstrate them separately. This important
aspect was not considered in the aforementioned frameworks.
In [9] we proposed to define the refinement tube regarding
the Frenet-Serret (FS) frame and decouple the spatial and
temporal part of the trajectory. In this paper, we propose an
improved algorithm, which applies the recursive regression
technique instead of batch regression used in [9]. Moreover,
it enables incremental refinement by moving back and forth
along the trajectory, i.e., to update the path in multiple passes.

The paper is organized into five sections. In the following
section, we briefly review Cartesian Dynamic Motion Primi-
tives and propose extensions, which enable the generation of
movement back and forth along the parametrized trajectory.
Procedures for incremental refinement of an existing policy
using kinesthetic guidance are given in Section III. They rely
on an appropriate control policy, which allows to set the
compliance around an arbitrary axis and are briefly outlined
in the Appendix. Section IV describes the experimental
verification of our framework in learning different tasks.
We conclude with critical discussion and plans on how to
improve the proposed framework in Section V.

II. SPEED SCALED CARTESIAN DYNAMIC MOTION
PRIMITIVES

Most contemporary LfD schemes rely on an appropriate
Movement Primitive (MP) that allows efficient parametriza-
tion of the robot control policy. An MP aims to allow
temporal and spatial scaling of the robot policy and easy
adaptation to a new situation as it arises. Many previously
presented MP schemes fulfill these requirements, i.e. Dy-
namic Motion Primitives (DMP) [10], Gaussian Mixture
Models with Gaussian Mixture regression (GMM-GPR) [11],
Probabilistic Motion Primitives (PMP), [12], Hidden Markov
Models [7], [2], Interaction Primitives (IP) [13], etc.

Bojan
Typewritten Text
This paper is a Post-Print version (i.e. final draft post-refereeing).For access to Publisher's version (IEEE), please accessproceedings of 2019 19th International Conference on Advanced Robotics (ICAR), pp. 344-349DOI: 10.1109/ICAR46387.2019.8981606

Our approach is based on DMPs, which were further
extended to allow non-uniform velocity scaling [14] and
encoding policies in Cartesian space using unit quaternions
[15]. In this work, we propose modifications to encode bi-
directional policies, i.e. policies that allow to roll back to a
previous state following the same trajectory as in forwarding
direction.

Here, we briefly review the foundations of Cartesian
dynamic motion primitives (CDMP) for discrete tasks. For
periodic tasks, please refer to [15]. Positions p ∈ R3 and
orientations q ∈ R4 are generated by the following system
of nonlinear differential equations

τ ż = ν(s)(αz(βz(gggp − p)− zzz) + fp(s)), (1)
τ ṗ = ν(s)zzz, (2)
τη̇ηη = ν(s)(αz (βz2 log (gggo ∗ q)− ηηη) + fo(s)), (3)

τ q̇ =
1

2
ν(s)ηηη ∗ q, (4)

τ ṡ = −ν(s)αss. (5)

where s is the phase variable, zzz, ηηη ∈ R3 are auxiliary
variables, τ is the duration of the trajectory, ν(s) is a
potentially nonlinear temporal scaling factor, and αz , βz ,
αs > 0 are constants chosen such that the underlying
second order linear dynamic system is critically damped.
Operator ∗ denotes quaternion multiplication and q conjugate
of quaternion q.

The quaternion logarithm log : S3 7→ R3 is defined as

log(q) = log(v,u) =

 arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (6)

It maps the quaternion describing orientation to the angular
velocity that rotates the identity orientation to the current
orientation within unit time. Its inverse transformation (∀r ∈
R3, ‖r‖ < 2π) is defined as

exp(r) =

 cos (‖r‖) + sin (‖r‖) r

‖r‖
, r 6= 0

1 + [0, 0, 0]T, otherwise

. (7)

The nonlinear forcing terms fp(s) and fo(s) are formed in
such a way that the response of the second-order differential
equation system (1) – (5) can approximate any smooth point-
to-point trajectory from the initial position ppp0 and orientation
qqq0 to the final position gggp ∈ R3 and orientation gggo ∈ R4

(represented by a unit quaternion). They are defined as linear
combinations of radial basis functions (RBFs)

fp(s) = (x(s)Wp)
T, (8)

fo(s) = (x(s)Wo)
T, (9)

x(s) =

[
Ψ1(s), . . . ,ΨN (s)

]∑N
j=1 Ψj(s)

s, (10)

Ψj(s) = exp
(
−hj (s− cj)2

)
, j = 1, . . . , N,

where the matrices composed of free parameters Wp,Wo ∈
RN×3 determine the shape of the position and orientation

trajectory, respectively. Centers cj of RBFs with widths hj
are evenly distributed along the trajectory.

The temporal scaling function ν(s) determines variations
from the demonstrated speed profile and allows to specify
non-uniform speed changes along the demonstrated trajec-
tory. Similarly to the forcing terms (8) and (9), it is encoded
as a linear combination of RBFs

ν(s) = x(s)wν , (11)

where wτ ∈ RN is a column vector with the corresponding
weights.

In order to parameterize the demonstrated control policy
with a CDMP, the weights Wp and Wo need to be calculated
by applying standard regression techniques [15] using the
demonstrated trajectory πd. For ν we initially set such wν

that ν(s) = 1 ∀s, meaning that the speed profile remains as
demonstrated.

In this paper we introduced slightly modified formulation
of ν(s), which is actually the inverse function of the one
introduced in [14]. This minor modification has important
properties: it allows to completely stop the evolution of the
CDMP by setting ν to 0, velocity scale the policy for ν > 0
and generate time-reversed policy for ν < 0. Please note that
CDMP is a dynamical system and reversing the time results
in unstable behavior. In [16], we proposed to create another
CDMP, computed for policy πr(t) = πd(τ − t). Variable t
denotes the time. Here, we set also the necessary condition
to switch between the CDMP which parametrizes πd and
CDMP which parametrizes πr. Smooth switching between
CDMP and CDMP at a phase s is obtained with

s =
e−αz

s
(12)

z = −z (13)
ηηη = −ηηη (14)

ν(s) = |ν(s)|, (15)

where over-lined variables (.) belong to the CDMP. Thus,
whenever ν(s) changes the sign, we map CDMP to CDMP
variables (or vice versa) using the above equations and start
integrating CDMP or CDMP depending of the sign of the
ν(s), using Eqs. (1) – (5).

III. INCREMENTAL REFINEMENT OF THE CONTROL
POLICY USING KINESTHETIC GUIDANCE

In this section, we describe our main idea - how to
intuitively and incrementally modify an existing robot policy.
Our framework should provide the operator to freely move
the robot forward and backward along the existing policy at
any speed and change only those parts, where necessary. For
this purpose, we applied our previously developed method
[16] based on kinesthetic guiding within a refinement tube
[7]. In this method, actions are parameterized with CDMP,
presented in Section II. The desired robot poses denoted
as tuple [pTd qTd]T , are passed as references to the robot
controller (see Appendix). They are calculated using a set of
Eqs. (1) – (5).

To allow the operator to move the robot forward and
backward along the existing trajectory πa, we associate speed
scaling factor τ of CDMPs with force projected to the
tangential direction of the Frenet-Serret frame [17] computed
at the current position on the desired path. The tangential
direction of the Frenet-Serret frame (32) for translational
motion is calculated as

tp(s) =
ṗd(s)

‖ṗd(s)‖
, (16)

where ṗd ∈ R3 are commanded (demonstrated) velocities
obtained from Eq. (1) and s denotes the phase. The corre-
sponding direction for the rotational motion is

tr(x) =
ωd(s)

‖ωd(s)‖
, (17)

where ωd ∈ R3 is the commanded robot end-effector angular
velocity in Cartesian space calculated integrating Eq. (3)
and taking into account the relation ωd = ηηη/τ . In order
to move along the trajectory according to the applied forces
and torques to the robot end effector, we calculate a new
speed scaling factor using

ν(s) = k1F · tp(s) + k2M · tr(s), (18)

where (·) denotes dot product and k1, k2 are positive scalars,
used to scale the velocities of the translational and rotational
motion along the πa(s). F ∈ R3 and M ∈ R3 are the
measured vectors of forces and torques in Cartesian coor-
dinate system. As forces and torques are usually measured
in the tool coordinate system, they need to be mapped to the
Cartesian coordinates with

(0,F) = q̄ ∗ (0,Ft) ∗ q (19)
(0,M) = q̄ ∗ (0,Mt) ∗ q, (20)

where Ft ∈ R3 and Mt ∈ R3 are the measured vectors
of forces and torques at the robot tool and q is the unit
quaternion of the measured robot rotation. When both F ·
tp(s) and M · tr(s) → 0, τ(s) → 0, which actually stops
the CDMP integration. Applying this ν to Eqs. (1) – (5), the
robot moves along the trajectory πa(s) in the direction of
the applied forces and torques, with the speed proportional
to them. This algorithm makes the guiding process extremely
intuitive. An operator pushes the robot along the tangent of
the trajectory. To prevent undesired robot moves along the
trajectory due to the force/torque sensor noise, a threshold
is usually applied to the measured forces and torques.

As we control the motion along the trajectory with forces
and torques, the robot should be stiff in the tangential
direction of the path. By making the robot compliant in
the directions of normal and binormal of the Frenet-Serret
frame, we can also modify the trajectory. An appropriate
control law provides such behavior (see Appendix). By
this, we can displace the robot only in a plane along with
these two directions. Namely, any force in the tangential
direction immediately moves the robot along the refinement
tube defined around the trajectory and changes this plane.

From sampled robot poses p,q we calculate position and
orientation displacements in the form

d(s) =

[
dp(s)
dr(s)

]
=

[
p(s)− pd(s)

log(q(s) ∗ qd(s))

]
. (21)

These displacements are used to update the trajectory, as it
will be shown later. Similar algorithm can be applied also to

dp

Fig. 1. FS coordinate frame and errors projected to the refinement plane
(orange arrow).

the robots, which are not compliant, but provide force/torque
measurement. In this case, another displacement vector can
be expressed in the form

d′(s) =

[
d′p(s)
d′r(s)

]
=

[
F− (F · tp(s))tp(s)
M− (M · tr(s))tr(s)

]
. (22)

The intuition behind the above equation is straightforward;
from measured forces/torques we subtract the projection to
the tangential direction, what remains are the forces/torques
in the plane defined with the normal and bi-normal of the
FS frame, as shown in Fig. 1.

Yet another possibility is to apply this algorithm to the
robots that are compliant in all directions and do not provide
force/torque measurements. In this case, Eq. (18) changes to
the

ν(s) = k3dp(s) · tp(s) + k4dq(s) · tr(s), (23)

where dp(s) and dq(s) are calculated from Eq. (21) and
constants k3 and k4 are used to scale the position and
orientation displacements. Using this equation, the operator
drives the robot along the trajectory with a speed proportional
to the position/orientation error projected to the tangential
direction of the FS frame. The displacement used for the
trajectory update is calculated by projecting d(s) to the plane
defined with the normal and bi-normal component of the FS
frame.

d′′(s) =

[
dp(s)− (dp(s) · tp(s))tp(s)
dq(s)− (dq(s) · tr(s))tr(s)

]
. (24)

From calculated d(s) (or d′(s) or d′′(s)) we have to
calculate the CDMP update. In [16] we proposed to sample
robot poses during the above described kinesthetic guiding
process and calculate the new nonlinear forcing term of the
CDMP whenever we change the sign of ν(s), using batch
regression. The modified robot positions and orientations
have to be sampled at exactly the same phase s as the
original trajectory, which means, that we have to exactly

determine the phase of the modified trajectory. Even minor
phase deviations of s can cause the captured trajectory poses
not to follow in the correct order, which can significantly
corrupt the modified trajectory. In this work, we propose an
alternative solution that does not suffer from this limitation.
Instead of capturing the complete trajectory and updating
the nonlinear forcing term at the change of the direction, we
concurrently modify weights of the CDMP nonlinear forcing
terms, W(s) = [W(s)p W(s)o] ∈ RN×6, using recursive
regression formulas

W(s) = W(s−1) + P(s)xT (s)d(s)TKl, (25)

P(s) =
1

λ

(
P(s−1) − P(s−1)x(s)Tx(s)P(s−1)

λ+ x(s)P(s−1)xT (s)

)
,

(26)

where P(s) ∈ RN×N is the error covariance matrix and
x(s) ∈ R1×N is a vector of Gaussian kernel functions
(10). N is the number of kernel functions and s−1 denotes
the phase in the previous step. λ is forgetting factor that
is kept close to 1. Recursive updating is governed by the
displacement vector d(s) and the diagonal estimation gain
matrix Kl ∈ R6×6, which set the magnitude and thus the
speed of the adaptation. Our algorithm resets the covariance
error matrix to the default value, P(s) = γI whenever the
factor ν changes its sign. I denotes identity matrix and
γ is a suitably chosen scalar. This is necessary because
the recursive algorithm becomes less and less sensitive to
the new trajectory updates. Namely, from (26) it follows
that the error covariance matrix P(s) is monotonically de-
creasing and consequently estimation updates (25) are also
decreasing. Note that also a suitable choice of λ prevents the
algorithm of decreasing the sensitivity to the new trajectory
updates.

The last stage of our procedure is to learn the velocity
profile. In this stage, we set the learning gain matrix Kl to
0 to prevent displacement of the adjusted trajectory and set
the stiffness in the directions of normal and bi-normal of the
Frenet-Serret frame to the maximal value, when applicable.
Next, we are guiding the robot along the trajectory. As
this selection of the gains restricts the robot to stay on the
trajectory, we concentrate only to demonstrate the desired
velocity profile and sample ν(s). Also, this procedure can
be done in multiple repetitions until the required velocity
profile is obtained. Finally, we compute the weights of wν

from Eq. (11) applying regression.
Now recall that we can implement our algorithm on three

different types of robots: a) stiff in the tangential direction
and compliant in the plane perpendicular to it, b) stiff in
all directions and c) compliant in all directions. Regard-
ing this, we pass to the recursive update algorithm values
d(s),d′(s) or d′′(s), respectively. While the environment
does not constrain the robot motion, there are no substantial
differences in them. However, algorithms act differently
when in contact with the environment. The algorithm b)
forms a feedback loop between the robot controller and the
environment. Environmental stiffness thus directly affects the

gain of the resulting admittance control, which might cause
closed-loop stability problems. Therefore, with algorithm b),
update gains in the diagonal matrix Kl need to be smaller,
which consequently results in slower learning. A similar
issue is with algorithm a) in the tangential direction of
motion. This motion is, however, not constrained in most
applications.

IV. EXPERIMENTAL EVALUATION

Experimental evaluation of the proposed framework was
carried out on three platforms: a) Franka Emika Panda robot,
b) Universal robot UR10 and c) bi-manual setup composed
of two KUKA LWR 4 robot arms.

Franka Emika Panda is a 7 d.o.f collaborative robot
arm, where the control algorithm was implemented
as a ROS control plug-in in C++ using libfranka
(https://frankaemika.github.io/), while the LfD framework
was implemented in Matlab as a ROS node. As the control
algorithm enables to implement variable compliance around
any axes, we made the robot stiff in the tangential direction of
the trajectory and compliant in the plane perpendicular to this
direction. We set the stiffness to 3000 N/m in the tangential
direction and 500 N/m in the direction of the normal and
bi-normal of the FS frame. The displacement vector was
calculated using Eq. (21). We executed two experiments, 1)
refinement of the policy for the square peg in a hole and 2)
adaptation of the shoe grinding trajectory from one to another
shoe shape. In experiment 1, we learned an appropriate pol-
icy to insert the peg in the hole, as shown in Fig. 2. Next, we
displaced the gripping position resulting in a failure to insert
the peg. When the robot stopped, as it exceeded the maximal
forces, we automatically triggered our policy refinement. We
adapted the policy incrementally in subsequent passes, the
last pass being the velocity demonstration. Fig. 3 shows the
original and the refined positional parts of the trajectories.

0.06

0.6

0.07

0.08

0.06

x y

0.09

0.62 0.04

0.1z

0.11

0.02

0.12

0.13

0.14

original
refined

Fig. 2. Refinement of the PiH
operation.

Fig. 3. Original and refined PiH
trajectories.

Experiment 2 involves the transfer of trajectories for shoe
grinding process from one type of shoe to another. Therefore,
trajectories need to be adapted. As in the previous example,
we modified the grinding trajectory in multiple passes by
pushing the robot tool forward and backward and pressing
it against the new shoe shape, until it fitted new shape. Also
here, the last pass was used to define the velocity profile. A

snapshot of learning and 3D plots of the original and adapted
trajectories are shown in Figs. 4 and 5, respectively.

0.2

0.15

0.1

y

0.05

0

0.11

0.46

0.12

x

0.48 0.5 -0.050.52 0.54 0.56

original
refined

Fig. 4. Refinement of the shoe grind-
ing policy.

Fig. 5. Original and refined
shoe grinding trajectories.

Next experiment involved the assembly of actuator ele-
ments for electronically adjustable furniture using Universal
Robot UR10, shown in Fig. 6. Although it is possible to
teach the UR10 robot in the zero-gravity mode, we applied
our LfD framework, which used forces and torques from
the wrist-mounted ATI force sensor. Namely, due to the
insufficient friction compensation of UR10, it is difficult to
demonstrate continues policy in zero gravity mode. During
the refinement of the assembly policy, the robot was stiff in
all directions, and the displacement vector was calculated
using Eq. (22). The LfD framework was implemented in
Python as a ROS node, while the control algorithm was
implemented in Matlab/Simulink using XPC Target platform
[18]. To preserve the stability during the assembly operation
which involves physical contacts with the environment, it
was necessary to select lower update gains Kl regarding
one selected for experiment 1. Lowering gains resulted in
slow movements and slow update of the control policy. In
the current implementation, we control the magnitude of Kl

and scalars k1 and k2 with a button at the robot wrist, which
enabled to improve the performance during the free motion
by increasing their values.

Fig. 6. Learning of the assembly policy for furniture actuator.

The last experiment was carried out on a bi-manual setup
composed of two KUKA LWR 4 robot arms and applied
to the assembly of long poles of the vacuum cleaner. The

same experiment was previously accomplished with the
incremental refinement procedure using batch regression in
[16]. In this paper, we repeated the experiment with newly
proposed recursive learning, where the displacement vector
was calculated using Eq. (24). The robot was equally stiff
in all directions with positional and rotational stiffness set to
500N/m and 50Nm/rad, respectively. The bi-manual LfD
algorithm [16] was implemented in Matlab/Simulink, that
generated references for the KUKA LWR 4 controller. Note
that this implementation controls directly relative and abso-
lute coordinates of the bi-manual system [16]. Consequently,
by moving one arm, the other moves in such a way that
it preserves the relative coordinates. Regarding the previous
implementation, the new algorithm features greater accuracy,
and ease of implementation.

Fig. 7. Refinement of a bi-manual assembly policy.

V. CONCLUSIONS

In the paper, we presented an improved algorithm for
incremental adaptation of complex robot trajectories using
kinesthetic guidance. It is based on speed scaled DMPs, that
allow moving forward and backward along the trajectory. It
allows decoupling from learning of the spatial and temporal
component of the task. The update mechanism is based
on recursive regression, which improves the performance,
does not require to store the modified trajectory, and is
easier to implement. We have provided modifications that
are necessary for the implementation of the algorithm also
on robots that do not allow changing compliance or are
inherently rigid. Implementation on a rigid robot, however,
results in reduced performance in terms of a kinesthetic sense
during learning, precision, and operational stability.

Our future work includes implementation of the proposed
framework as an integrated application in the controller of
the Franka Emika robot, which will additionally increase the
performance and eliminate the need for an external computer.

APPENDIX

The dynamics of a robot arm interacting with the environ-
ment is described by

ρ = Hθ̈θθ + h + JT
[
FT,MT

]T
(27)

where ρ is a vector of joint torques, H ∈ Rn×n is a
symmetric, positive definite inertia matrix, h ∈ Rn is
vector of the centrifugal, Coriolis, friction and gravity forces,
J ∈ R6×n is the robot Jacobian, and F, M ∈ R3 are the
vectors of environment contact forces and torques acting on
the robot’s end-effector. θθθ ∈ Rn denotes the joint angles.

Joint and Cartesian space accelerations of a kinematically
redundant robot arm are related by [19]

θ̈θθ = J+
H

([
p̈
ω̇ωω

]
− J̇θ̇θθ

)
+ Nξξξ, (28)

where J+
H = H−1JT(JH−1JT)+ = H−1/2(JH−1/2)+

denotes the inertia weighted pseudo-inverse of J [20]. ξξξ ∈
Rn is arbitrary chosen vector that defines the null space
motion. The control law is obtained by inserting (28) into
(27)

ρ = HJ+
H

([
p̈
ω̇ωω

]
− J̇θ̇θθ

)
+HNξξξ+h+JT

[
F
M

]
, (29)

where N is the projection matrix onto the null space of
inertia weighted Jacobian, defined as N = I − J+

HJ. The
first term in Eq. (29) is the task controller, the second term
is the null space controller and the third and the fourth term
compensate for the non-linear robot dynamics and external
forces, respectively.

Choosing the task command inputs p̈c, ω̇ωωc as

p̈c = p̈d + Dp(ṗd − ṗ) + Kp(pd − p), (30)
ω̇ωωc = ω̇ωωd + Dq(ωωωd −ωωω) + Kq log (qd ∗ q) , (31)

we obtain the well known impedance control law [21]
Subscript d denotes the desired values and variables without
the subscript the current values as measured from the robot
sensors. Dp, Dq , Kp and Kq are positional and rotational
damping and stiffness positive definite, but not necessary
diagonal matrices.

Let Rt define the FS frame, attached to the robot trajec-
tory. It is calculated using

Rt =
[
t n b

]
, (32)

t =
ṗl
‖ṗl‖

, b =
ṗl × p̈l
‖ṗl × p̈l‖

, n = b× t.

Note that the absolute velocity ṗl and acceleration p̈l are
provided by CDMP integration at every phase s, which
ensures smoothness. At low speed and low accelerations,
we suspend the updating of Rt until the motion becomes
faster again. Now choose Kp = RtK

′
pR

T
t and Kq =

RtK
′
qR

T
t . Then, K′p and K′q are diagonal matrices, that

define compliance in tangential, normal and bi-normal axis
defined with the FS frame. Damping matrices have to be
defined accordingly. In order to obtain critically damped
response of the robot, they are chosen as Dp = 2

√
Kp and

Dq = 2
√
Kq .

Null space motion of the robot is controlled with the
null space command input ξξξc. Simply setting ξξξc to 0 is not
appropriate as the robot will continuously move in null space,
minimizing its kinetic energy. To damp this motion, we set
the desired null space velocities to zero, and the command
null space motion vector is calculated as ξξξc = −Knθ̇θθ. The
commanded torque ρc is finally calculated by inserting p̈ppc,
ω̇ωωc, ξξξc into (29), whereas the current values are used for all
other variables in (29).

ACKNOWLEDGMENT

The research leading to these results has received funding from
the Horizon 2020 RIA Programme grant 820767 CoLLaboratE.

REFERENCES

[1] E. Dean-Leon, K. Ramirez-Amaro, F. Bergner, I. Dianov, P. Lanillos,
and G. Cheng, “Robotic technologies for fast deployment of industrial
robot systems,” IECON Proceedings (Industrial Electronics Confer-
ence), pp. 6900–6907, 2016.

[2] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, jun 2004.

[3] A. Billard and S. Calinon, “Chapter 59: Robot Programming by
Demonstration,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer Berlin Heidelberg, 2008.

[4] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” 2011
IEEE International Conference on Robotics and Automation, pp.
3828–3834, 2011.

[5] J. Peters, K. Mülling, and J. Kober, “Towards motor skill learning for
robotics,” Robotics Research, pp. 1–14, 2011.

[6] D. A. Bristow and M. Tharayil, “A Survey of Iterative Learning
Control - A learning-based method for high-performance tracking
control,” IEEE Control Systems Magazine, no. June, pp. 96–114, 2006.

[7] D. Lee and C. Ott, “Incremental Motion Primitive Learning by Phys-
ical Coaching Using Impedance Control,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010, pp. 4133–
4140.

[8] M. Ewerton, G. Maeda, G. Kollegger, J. Wiemeyer, and J. Peters,
“Incremental imitation learning of context-dependent motor skills,” in
2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), 2016, pp. 351–358.

[9] B. Nemec, N. Likar, A. Gams, and A. Ude, “Human robot cooperation
with compliance adaptation along the motion trajectory,” Autonomous
Robots, vol. 42, no. 5, pp. 1023–1035, 2018.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–73, 2013.

[11] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[12] A. Paraschos, E. Rueckert, J. Peters, and G. Neumann, “Model-Free
Probabilistic Movement Primitives for Physical Interaction,” IROS, pp.
2860–2866, 2015.

[13] H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters,
“Interaction primitives for human-robot cooperation tasks,” in 2014
IEEE International Conference on Robotics and Automation (ICRA),
May 2014, pp. 2831–2837.

[14] B. Nemec, A. Gams, and A. Ude, “Velocity adaptation for self-
improvement of skills learned from user demonstrations,” in IEEE-RAS
International Conference on Humanoid Robots (Humanoids), Atlanta,
USA, 2013, pp. 423–428.

[15] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in
cartesian space dynamic movement primitives,” in IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China,
2014, pp. 2997–3004.

[16] B. Nemec, L. Zlajpah, S. Slajpah, J. Piskur, and A. Ude, “An Efficient
PbD Framework for Fast Deployment of Bi-manual Assembly Tasks,”
in 18th IEEERAS International Conference on Humanoid Robots,
2018.

[17] R. Ravani and A. Meghdari, “Velocity distribution profile for robot
arm motion using rational Frenet-Serret curves,” Informatica, vol. 17,
no. 1, pp. 69–84, 2006.

[18] T. Gaspar, B. Ridge, R. Bevec, M. Bem, I. Kovač, A. Ude, and Ž.
Gosar, “Rapid hardware and software reconfiguration in a robotic
workcell,” in 2017 18th International Conference on Advanced
Robotics (ICAR), 2017, pp. 229–236.

[19] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: A theoretical and empirical comparison,” The Interna-
tional Journal of Robotics Research, vol. 27, pp. 737–757, 2008.

[20] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Boston, MA: Addison-Wesley, 1991.

[21] N. Hogan, “Impedance control: An approach to manipulation: Part I
- theory,” Journal of dynamic systems, measurement, and control, vol.
107, no. 1, pp. 1–7, 1985.

