Published January 31, 2020
| Version v2
Conference paper
Open
Incremental Policy Refinement by Recursive Regression and Kinesthetic Guidance
Creators
- 1. Jožef Stefan Institute, Ljubljana, Slovenia
Description
Fast deployment of robot tasks requires appropriate
tools that enable efficient reuse of existing robot control
policies. Learning from Demonstration (LfD) is a popular tool
for the intuitive generation of robot policies, but the issue of
how to address the adaptation of existing policies has not been
properly addressed yet. In this work, we propose an incremental
LfD framework that efficiently solves the above-mentioned
issue. It has been implemented and tested on a number of
popular collaborative robots, including Franka Emika Panda,
Universal Robot UR10, and KUKA LWR 4.
Files
ICAR2019forZenodo.pdf
Files
(2.2 MB)
Name | Size | Download all |
---|---|---|
md5:8a96e1529c8cb9d3a46cd26edf133f16
|
2.2 MB | Preview Download |