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Abstract 
Background: The correct design of electric vehicle (EV) charging 
infrastructures is of fundamental importance to maximize the benefits 
for users and infrastructure managers. In addition, the analysis and 
management of recharges can help evaluate integration with auxiliary 
systems, such as renewable energy resources and storage systems. EV 
charging data analysis can highlight informative behaviours and 
patterns for charging infrastructure planning and management. 
Methods: We present the analysis of two datasets about the recorded 
energy and duration required to charge EVs in the cities of Barcelona 
(Spain) and Turku (Finland). In particular, we investigated hourly, daily 
and seasonal patterns in charge duration and energy delivered. 
Simulated scenarios for the power request at charging stations (CSs) 
were obtained using statistical parameters of the Barcelona dataset 
and non-parametric distributions of the arrivals. Monte Carlo 
simulations were used to test different scenarios of users’ influx at the 
CSs, and determine the optimal size of an integrated renewable 
energy system (RES). 
Results: This study highlighted the difference between fast and slow 
charging users’ habits by analysing the occupancy at the charging 
stations. Aside from the charge duration, which was shorter for fast 
charges, distinct features emerged in the hourly distribution of the 
requests depending on whether slow or fast charges are considered. 
The distributions were different in the two analysed datasets. The 
investigation of CS power fluxes showed that results for the 
investment on a RES could substantially vary when considering 
synthetic input load profiles obtained with different approaches. The 
influence of incentives on the initial RES cost were investigated. 
Conclusions: The novelty of this work lies in testing the impact of 
different approach to design synthetic profiles in the determination of 
the optimal size of a photovoltaic (PV) system installed at a charging 
infrastructure, using the economic criterion of the net present value 
(NPV).
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Plain language summary
The reduction of greenhouse gas emissions from road transport 
can be achieved with a transition to less polluting forms of 
vehicle power supply, such as electricity. To facilitate the  
large-scale adoption of electric mobility, charging an electric 
vehicle should be simple and reliable. To this end, an adequate  
charging infrastructure is required. However, we are faced with 
a typical chicken-and-egg problem: the number of users who 
switch to electric vehicles will be limited until a recharging  
infrastructure is available; on the other hand, investments in 
infrastructures require greater certainty about the adoption of 
electric vehicles. To facilitate planning and investment deci-
sions, it is important to evaluate the demand, through both  
quantitative and behavioural aspects. In the early stage of 
low uptake of electric vehicles, this assessment can be more  
difficult. In this work, we present an analysis of some charg-
ing data for two European cities: Barcelona (Spain) and Turku  
(Finland). We analysed the convenience of some types of invest-
ments for charging infrastructures based on the hourly charg-
ing profiles obtained. The results show that the choice of 
profiles to be adopted in the analysis greatly influences the  
results, especially when the available data are limited.

Introduction
Electric vehicles (EVs) represent the main answer for the abate-
ment of greenhouse gas emissions in the transport sector1.  
The introduction of financial incentives from governments led 
to an increase in the number of EVs sold in many countries2,3.  
Therefore, it is necessary to strengthen the network of electric 
charging stations (CSs) with adequate infrastructures to satisfy  
the charge demand. At this stage, careful planning of charging  
stations is crucial to meet user demand, ensure an economic  
return for charging point operators, and to guarantee the oper-
ability of the electrical grid. For this purpose, accurate forecasts 
of the energy demand at CSs are fundamental for optimal plan-
ning and operation. Therefore, there is the need to investigate  
about  specifications and usage of charging infrastructures4. 
For instance, the charge demand from commercial fleets is 
strictly related to the type of transport activity5,6. For this work, 
we only considered the charge demand related to the private  
transport activity.

Forecasting energy demand through charging operations is  
usually based on users’ habit and on historical traffic data 
related to EVs. Charging start times and duration, the amount 
of required charge, the state of charge (SOC) of the battery 
and the type of car are among the main insights characterising  

user’s habits. Based on time series of charging data, forecasting 
methods often use stochastic or machine learning approaches to 
predict future charge demand7. In addition, numerical techniques 
like Monte Carlo (MC) simulations have been used to create  
synthetic charging profiles8. On the other hand, parking data 
are also been used to determine the charge demand through the 
assumption that the charge probability increases with parking 
time and decreases if charges were made earlier in the same day9. 
Within this context, the potential daily load of an EV is evaluated 
through traffic/parking simulations using agent-based models10.  
Modelling the arrival of EVs at the charging stations, together 
with energy request, is usually simulated using a stochastic model  
based on the so-called Markovian Queueing model as birth 
and death process (M/M/c/k)11. Similar work simulated arrivals  
of EVs at the charging station using the General Markovian 
model M/G/k queue12. In this approach, a random Poisson process  
models arrivals, while the charge duration is fixed and the energy 
demand for each EV is approximated by a Gaussian distribution.

Other approaches forecasting the charge demand used real 
traffic flow data. Previous work showed the load profile was  
obtained using GPS data from private vehicles circulating in 
the urban area and assuming a transition of a fixed percent-
age of users from fuel-powered to electric cars13. The energy  
request was estimated from the evaluation of the consump-
tion and instantaneous speed of a medium-size EV required 
for each trip. Similar work14, combined real-world traffic data 
with weather data to determine travel patterns, which may  
affect the EV charging demand forecasting. In that case, EV 
SOC and “start” charging time followed a Gaussian distribu-
tion. Alternative data-driven approaches, estimating EV charging  
demand, used traffic flow data and travel patterns extracted 
from OpenStreetMap and from a battery capacity prediction  
model15; alternatively, they used online ride-hailing trip data 
to forecast charging demand regardless of whether data was  
referring to electric or conventional vehicles16.

As shown above, forecasting the energy demand at the charging 
station is usually accomplished using time-series of his-
torical data. Recent work17 analysed and compared different  
forecasting models, such as Auto-Regressive-Moving-Average,  
autoregressive integrated moving average, artificial neural  
networks, and long short-term memory modelling. That study  
highlighted the uncertainties of the forecasting process related 
to the quality and amount of accessible data. This issue can be 
partially overcome using a short-term load forecasting model 
based on Support Vector Machines18. Another issue arises  
from the time distribution and magnitude of energy demand 
that often comes from multiple sources. Therefore, data for-
mats may be heterogeneous and the availability dependent on  
different recording rates. This issue can be overcome by using a  
distributed and dynamic computing architecture consisting 
of a series of autonomous phases, in which data from differ-
ent sources are combined and made available by a regulating  
authority19.

The study of the charging profiles and the potential energy needs 
of electric vehicles is used for the correct design and planning 
of the activities of the charging structures. As far as the authors 
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know, the impact of the different methodologies used to obtain  
these profiles on the optimization process has not been inves-
tigated. The present work aims to underline the impact that  
charging profiles obtained with different methods can have 
on determining the optimal investment for a renewable source 
implemented in charging infrastructure. We conducted statistical 
analysis on the data collected in some public recharging points 
in the cities of Barcelona and Turku. The results are the input to  
synthesize charging demand profiles according to different 
approaches. We compared the optimal PV sizes obtained 
with these different load profiles, highlighting that statistical 
approaches based on the measures of central tendency are not 
suitable for low usage rates of the charging infrastructures.  
Non-parametric statistical distribution (NPD)20 combined with a 
Monte Carlo approach can provide more adequate results for this  
situation.

Methods
For this work, we analysed EV charging datasets provided by 
two cities participating in the User-Chi project21. This project 
focuses on the design of electric charging networks satisfying  
user needs with the aim of developing marketable, innova-
tive and highly convenient charging systems. In the follow-
ing, we present the charging events datasets and statistical  
analyses.

Datasets relating to the registration of charging events were  
collated during the year 2019 by the Municipal Area of  
Barcelona (“Area Metropolitana de Barcelona”, AMB) in 
Spain, and the city of Turku in Finland. The two datasets were  
heterogeneous in structure and information, and had the  
following structures:

•    The AMB data refers to public charging points, managed  
by the municipality, and is divided in two subsets:

a)    The first subset contains information about the charging 
events, such as charging point (CP) ID, connector type, 
charge start time; charge stop time, charge duration (minutes), 
energy delivered (kWh), vehicle manufacturer (optional)  
and, model (optional);

b)    The second subset contains information about the CP such 
as: location (address), longitude, latitude, typology of  
connectors and charging mode at the charging point (i.e.: 
Schuko 3kW 16A mode 1, Mennekes 7 kW 16A mode 
3, Mennekes 43 kW 63A mode 3, CHAdeMO 55kW  
125A mode 4), and charging point makers.

In this data, “charging point” refers to a CS that contains more 
than one plug at which an EV can be charged. In the following, we 

will refer to “slow” chargers for 3 kW and 7 kW charging points  
and to “fast” chargers for 43 kW and 55 kW charging points.

•    The Turku dataset contains information about charging events 
at public charging points and contain the following infor-
mation: station ID, station name, charge start time, charge 
stop time, charge duration, energy delivered (Wh), plug type 
(alternative current [AC] or direct current [DC]), and cumu-
lative energy delivered (Wh). AC refers to 22 kW chargers 
operating with alternating current, while DC refers to 50 kW  
chargers operating with direct current. In this set AC can be 
assimilated to slow charges, while DC are fast charges.

The definition of “slow” and “fast” charges is not straightfor-
ward. Indeed, if we consider charging time, “slow” charges take 
one or more hours to complete, while “fast” charges are able to 
refill up to 80% of the battery capacity in about a half-hour22.  
Clearly, this classification of “slow” or “fast” depends on both 
the charging power and the battery size, and can be replaced 
by other definitions. For example, recent work23 considered 
as “fast” all chargers with a power level equal or greater than  
36 kW, regardless of whether it was delivered with alternating  
or direct current.

The classification of the charger types can refer to the  
maximum power level and to the connectors used. Chargers 
can be classified according to three different levels, as reported  
in Table 1.

Level 1 is typically implemented at residential sites and it can 
be accomplished without specific equipment. The connector  
adopted in Level 1 is the J1772. However, this type of charg-
ing is not present in Europe24. On the other hand, Europe 
adopted the Mennekes IEC 62196 Type 2 connector, which 
meets the specification for Level 225. Finally, for Level 3, the  
connector depends on car manufacturers: Japan the Charging 
de Move (CHAdeMO) is standard; other manufacturers use the 
Combined Charging System (CCS) or “Combo” plug; in China, 
the Guobiao recommended standard (known worldwide as  
GB/T) is used, while the brand Tesla uses its proprietary plug. 
In the following, we will refer to a single charge plug as a  
charging point (CP). 

We performed the analysis of the main statistical parameters 
relating to the data sets, such as the average and standard devia-
tion of the duration of the charge and the energy exchanged,  
as a function of external variables such as the start time of the  
charge, the days of the week, and seasonality. Furthermore, we 
investigated the correlations between EV models and data set 
parameters, as well as the correlation between parameters. The 

Table 1. Main characteristics of different charger levels (24–26). AC: alternative 
current; DC: direct current.

Power level Typical use Voltage Typical power Charging time

Level 1 Home, work 120 AC 2 kW 4–11 h 

Level 2 Home, work, public 208–240 AC 7 kW 20 kW 1–6 h 

Level 3 DC fast – ultrafast 480–900 DC 100 kW < 30 min 
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statistical analysis outputs allow generating different possible 
charging demand scenarios, which can be the input of the  
charging infrastructure design and demand management algo-
rithms. In particular, the procedure used builds the hourly  
distribution of arrivals using the non-parametric fitting method.  
Moreover, we assumed that the duration of the charge and  
energy demand in a given time interval both follow a Gaussian 
distribution, with mean and variance values derived from 
the data sets for the selected time interval. We modelled the  
stochastic nature of the arrivals adding a white noise signal to the  
NPD. A similar variability has been added to the charge dura-
tion and energy distributions. This approach allows generating 
load demand scenarios for different levels of EV penetration, 
by varying the average number of users per day. The workflow  
of the generation process is illustrated in Figure 1. 

The synthetic profiles represent the instantaneous average 
power demand at the CS. The average power is defined as the 
ratio between the energy and charge duration values for the 
given time interval. We assumed that the charging time reported 
in the data sets corresponds to the time it takes to deliver  
the charging energy to the vehicle.

Results and discussion
The results of the statistical analysis of the Barcelona and 
Turku datasets are presented below. We illustrate the criteria 

for excluding some records from subsequent analysis. We also  
report the results for the CSs’ occupation, the correlations 
between energy and duration of the charges, and the distribution 
of the average power at the CPs. For the Barcelona dataset, 
the possible correlation between the EV battery size and the  
charged energy is also investigated. 

A procedure for creating charging profiles from statistical  
analysis is presented. These profiles are used as input in a size 
optimization algorithm of a photovoltaic system, and the result 
is compared with that obtained with other synthesis profiles. 
Based on the feedback with the data, we proposed a size opti-
mization procedure that provides better outcomes for low CS  
utilization scenarios.

AMB dataset (Barcelona)
The AMB dataset contains the charging registrations at each 
CP. This is combined with another dataset containing informa-
tion about the CS. The CSs are identified by an ID and can be  
divided into three types:

• one CS with two Mennekes 7 kW CPs (CS Id=1);

• 11 CSs with two Schuko 3kW CPs (CS Id from 2 to 11);

•  10 CSs with one Mennekes 43 kW CP, one CHAd-
eMO 55kW CP and one Combo CCS 55 kW CP  
(CS Id from 12 to 21).

Figure 1. Synthetic profiles generation workflow.
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Table 2. Typical usage of a charge station based on its typology. CP: charging point.

CPs typology N charge/year Maximum charge/day Minimum charge/day N charge/day

Slow 286.7 1.69 0.15 0.79

Fast 3302.9 14.03 3.78 9.05

Figure 2. Number of charges in 2019 at slow charging stations (CS) (a) and fast CSs (b) for the Area Metropolitana de Barcelona (AMB) 
dataset.

In the following, charges of EVs at the Schuko 3kW and  
Mennekes 7 kW CPs are referred to as “slow”, while the other  
ones as “fast”.

We also defined a single charging infrastructure (CI) as the 
set of CS identified by the same address and geographic  
coordinates. Consequently, we obtained:

a)  10 CIs that included two Schuko 3kW CPs, one  
Mennekes 43 kW CP, one CHAdeMO 55kW CP, and  
one COMBO CCS 55 kW CP.

b)  One CI that included two Mennekes 7 kW CPs and  
two Schuko 3kW CPs.

The original dataset consisted of about 38,000 records classified 
as charging registrations. Records with zero energy exchange 
(around 4.7% of the dataset) were removed from the dataset.  
In addition, records with average charging power, defined 
as the ratio between energy delivered and charge duration, 
greater than the maximum nominal power of the CP, were also  
removed. Table 2 reports statistical figures on the usage of the 
CPs based on their typology, such as the daily and yearly aver-
age number of charges as well as the maximum and minimum  
number of daily charges.

The distribution of the charges among CSs is illustrated in  
Figure 2. With the exception of the CS labelled as 1, correspond-
ing to CI number 2 only equipped with slow chargers, all the 

other CIs were composed of CSs labelled x and x+10 for the 
slow and fast CSs, respectively (for example, slow CS number 2  
and fast CS number 12 correspond to the same CI. Table 3  
reports the number of stations present at each location, classified  
as slow or fast CS, with relative usage.

As shown in Figure 2, the average daily demand for slow CSs 
was lower than one user per day, with the exception of three 
stations (number 6, 9 and 11) that exceeded 365 users per 
year. Instead, as shown in Figure 2(b), the demand for fast 
CSs was always greater than three users/day, and the stations  
number 14, 16 and 20 were the Busiest.

The average charging duration was estimated to be of about 
42 minutes with a standard deviation of about 90 minutes. 
On the other hand, the average energy delivered was about 
10 kWh with a standard deviation of nearly 7.8 kWh (Table 3).  
When selecting only slow chargers (3kW or 7kW), we obtained 
an average charging duration of about 182 minutes with a stand-
ard deviation of about 263 minutes, while the average energy 
delivered was about 4 kWh with a standard deviation of about  
5 kWh (Table 3). The large value obtained for the standard 
deviation was due to the presence of several charging events  
with a duration longer than a day.

If only fast (43 kW AC and 50–55 kW DC) chargers were 
selected, the average charge duration was about 29 minutes with 
a standard deviation of about 18 minutes and a median value 
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Table 3. Usage of charge stations at each location.

CI name Slow 
CS Id

No. Of 
charges (year)

Fast 
CS Id

No. Of 
charges (year)

Total no. Of 
charges (year)

Sant Andreu da la Barca: Pg. Rafael de Casanova FGC 1 280 280

Badalona: C. Anna Tugas - Pg. Olof Palmer 2 269 12 1582 1851

Barberà del Vallés: C. Arquímedes, 8 3 55 13 2399 2454

Cornellà de Llobregat: Carrer de Baltasar Oriol i Mercer 4 315 14 4679 4994

El Prat de Llobregat: Pl. Volateria (Mas Blau) 5 72 15 3704 3776

Gavà: C. del Progres, 54 6 616 16 5121 5737

L’Hospitalet de Ll.: C. Salvador Espriu - Gran Via de les 
Corts Catalanes

7 257 17 3824 4081

Montcada i Reixac: C. Tarragona - C. Pla de Matabous 8 171 18 1378 1549

Pallejà: Rda. Santa Eulalia - C. Joan Maragall 9 397 19 2389 2786

Sant Cugat del Vallès: Av. Via Augusta, 3 10 201 20 4305 4506

Sant Joan Despí: C. TV3 - C. Jacint Verdaguer 11 521 21 3648 4169

of 26 minutes. On the other hand, the average energy deliv-
ered was about 10.7 kWh with a standard deviation of 7.7 kWh  
(Table 4). The mean value and the standard deviation for the 
energy at each CP are shown in Figure 3(a) for slow CPs and  
Figure 3(b) for fast CPs. 

Figure 4(a) and Figure 4(b) report the mean value and the 
standard deviation of charge durations for slow and fast CPs,  
respectively.

Figure 3 clearly shows that the distribution of the mean energy 
delivered during the charging operation was more homogene-
ous for fast chargers when compared to slow chargers. The same 
behaviour was observed for the distribution of the mean charging  
duration (Figure 4). This suggests the fast charge “behaviour” 
could be predicted with a higher degree of confidence compared  
to the slow one.

From the analysis of the number of users present at the CPs 
during each day of the year 2019, we found that the four avail-
able CPs at CS b) (two 7 kW CPs and two 3kW CPs, station 3)  
were never simultaneously occupied, and the maximum occu-
pation rate at the CS was three at a time. Similarly, we found 
that fast CS were never fully deployed, as the occupancy was  
never greater than one, although there were three CPs in each 
station. Finally, as shown in Figure 5, the occupancy at slow  
CSs sometimes saturated the two available CPs. However, this 
could be due to a parking duration longer than the charging  
time.

The average power delivered during the charges was defined 
as the ratio between the energy delivered and the charge dura-
tion. For the CS at 7 kW (slow charging), we found a large 

number of events at very low average power (below 0.2 kW)  
(Figure 6). A possible explanation could be that EVs remained 
connected to the charger even after their charge ended. On the  
other hand, analysing the distribution of the fast and slow  
(3 kW) CSs, we observed maximum peaks at 17 kW and 2 kW,  
respectively.

Interestingly, some events using slow chargers were able to 
deliver up to 3 kW (Figure 6) that corresponded to the maxi-
mum available power at that station. On the other hand, at the  
fast-CSs, no event delivered the maximum available power of 
55kW. This is due to the maximum power only being deliv-
ered when the battery could accept it, which only happens  
when the battery is large enough and the SOC is sufficiently  
low. The distribution of charge duration at 7 kW CS showed  
the most pronounced peak between 0 and 100 minutes, while  
two other peaks were found at 200 and 700 minutes  
(Figure 6). Overall, 96% of the charge duration lasted less  
than 800 minutes. Fast and 3 kW CS charge duration distribu-
tions presented a Poisson-like form, with long tails: for 3 kW  
CSs, 83% of charge durations were below 250 minutes, and 
the percentage rose to 98% if we considered the interval until 
800 minutes. Finally, for fast charges, 66% of the durations  
were within the 15–40 minutes.

Daily and seasonal effects on charges distribution. The hourly 
distribution of the mean duration of the charges at their start-
ing time for both slow and fast chargers, shows that during  
night-time, charges tended to be longer compared to early morn-
ing during weekdays (Figure 7 (a)), while for weekend charges 
this tendency was less pronounced. On the other hand, the 
hourly distribution of the number of the charging events at their  
starting time, for weekdays (Monday to Friday) and weekends 
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Figure 4. Mean charging duration and standard deviation (Std. Dev.) for slow (a) and fast (b) charging stations (CSs).

Table 4. Statistical parameters for Area Metropolitana de Barcelona (AMB) datasets. Stdev: 
Standard deviation.

Dataset Number of 
records/charges

Mean charging 
duration (min)

Stdev 
duration (min)

Mean energy 
(kWh)

Stdev energy 
(kWh)

Entire 36192 41.99 90.37 10.09 7.76

Slow 3163 181.56 262.96 4.11 4.91

Fast 33029 28.67 17.57 10.66 7.74

Figure 3. Mean value and standard deviation (Std. Dev.) of the energy delivered during the charge for slow charging stations (3 and 7 kW) 
(a) and fast charges (b).

(Saturday and Sunday), showed that charges were mainly 
concentrated between 7 am and 10 pm, with a peak around  
6 pm (Figure 7 (b)).

From the analysis of the distribution of charges during week-
ends compared to weekdays, with a little shift toward later   
hours (7 am–9 pm during weekdays, 11 am–10 pm during  
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weekends). On the other hand, while analysing previous param-
eters for slow chargers during working days and weekend days  
(Figure 8), the mean charge duration and number of charges  
did not considerably change during a typical working or  
weekend day. The distribution of the starting hour showed 
some shifts in the peaks and a reduction of the number of  
charges during the weekend.

The analysis for fast chargers showed that the mean charge 
duration was quite homogeneous for different hours and days 
with a slight increase during the night-time of working days  
(12 pm – 5am) (Figure 9). Instead, the number of fast charges 
was larger during an average working day rather than during an 
average weekend day, with charges mostly occurring during 

daytime (from 7 am to 9 pm for working days and from  
11 am to 10 pm during weekend days). 

The distributions of start time for slow and fast charges were 
similar with a peak at late afternoon for workdays and two 
peaks, around noon and in the late afternoon, during the  
weekends. As shown in Table 5, the average daily number of  
charges during weekends was estimated to be about 64% and  
47% of the average number of charges during working days,  
for fast and slow chargers respectively.

Figure 10 shows the seasonal mean duration and mean energy 
consumption of fast and slow chargers. The difference between 

Figure 5. Number of users at slow charge stations (CSs). 
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the longest duration (in winter [December-February]) and  
the shortest duration (in summer [June-August]) was estimated 
to be about 7.5% and 18.5% for fast and slow chargers, respec-
tively (Figure 10 (a) and Figure 10 (b)). On the other hand, the 
difference between the highest (fall [September-November])  
and lowest (spring [March-May]) energy delivered was esti-
mated to be about 6.6% and 20% for fast and slow chargers,  
respectively (Figure 10 (c) and Figure 10 (d)).

The shorter duration observed for fast chargers during the  
summer, compared to the longer one observed during the  

winter, could be related to fast charges requiring a longer  
time to be completed at low temperatures27. On the other hand,  
the different seasonal trend observed between slow and fast  
charges might be related to the highly random behaviour in the  
slow charge usage.

Correlation among EV battery size and charge parameters. 
Some charging registrations in the AMB dataset included  
information about the EV model plugged into the charg-
ing station. Further information was gathered from factory  
datasheets or technical journals.

Figure 6. Distribution of the average power delivered during charging (left) and charge duration (right) at 7 kW station, 3 kW 
stations, and fast stations.
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Figure 7. Average duration (a) and number of charges (b) distributions for slow and fast chargers together.

Figure 8. Average duration (a) and number of charges (b) distributions for slow chargers as a function of working day or weekend day 
hours.

Figure 9. Average duration (a) and number of charges (b) distributions for fast chargers as a function of working and weekend day hours.
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We combined data extracted from the AMB dataset for  
registered EV models with battery information retrieved from  
factory datasheets or technical journals28. Battery data were usu-
ally available for the latest models. Some EV models can have  
on-board batteries of different size. In that case, we chose to 
include only the battery of greatest size. The smallest battery 
size was 3.1 kWh for the Volta BNC, while the greatest size 
was 100 kWh for Tesla X and S. The collected data are reported  
in Table 6.

We tried analysing the correlation between charge duration 
and the fraction of energy delivered with respect to the battery  
size of these EVs, which is a measure of the change in the  
SOC.

Using the Pearson correlation coefficient, which is a measure 
of the linear dependence of two random variables29, we found 
a correlation coefficient of 0.54 and 0.41 for the slow and 
fast charger datasets, respectively (Figure 11). This indicated  

Table 5. Average parameters for weekend and working days.

Dataset N of events/day/CS 
Monday-Friday

N of events/ 
day/CS Saturday 
and Sunday

Mean duration 
Monday-Friday 
(min)

Mean duration 
Saturday and 
Sunday (min)

Mean energy 
Monday-
Friday (kWh)

Mean energy 
Saturday and 
Sunday (kWh)

Slow 0.94 0.44 228.01 176.92 4.18 3.97

Fast 10.1 6.5 28.42 29.87 10.59 11.86

Figure 10. Seasonal variation of average charging parameters: (a) fast charge duration; (b) slow charge duration; (c) fast charge energy 
consumption; (d) slow charge energy consumption.
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Table 6. Information on battery for the EV models. This table was 
reproduced from the AMB dataset and kept uncorrected, and therefore 
includes missing or duplicate misspelt manufacturer names.

ID Manufacturer Model Battery (kWh)

1 Mitsubishi OUTLANDER 13.8

2 Mitsubishi OUTLANDER PHEV 13.8

3 Mitsubishi I MIEV 16

4 Mitsubishi I-MIEV 16

5 Nissan E-NV200 22

6 Nissan ZE0 /A/A02 24

7 Nissan LEAF 51

8 Opel AMPERA ELÈCTRIC 60

9 Peugeot ION 16

10 Peugeot PARTNER FG L1 20.5

11 Renault TWIZY 6.1

12 Renault TWIZY 45 6.1

13 Renault FLUENCE 22

14 Renault FLUENCE Z.E. 22

15 Renault ZOE 240 22

16 Renault KANGOO 31

17 Renault KANGOO EXPRESS ZE 31

18 Renault KANGOO ZE 31

19 Renault ZOE 47

20 Smart BRAUS ELECTRIC 16.7

21 Smart ELECTRIC DRIVE 16.7

22 Smart FORFOUR 16.7

23 Smart FORTWO ELECTRIC 16.7

24 Tesla MODEL 3 75

25 Tesla S 90D 90

26 Tesla MODEL X 100

27 Tesla S 100

28 Tesla S 4X4 100

29 toyota PRIUS PLUG-IN 4.4

30 Vectrix VX1 8

31 VolkWagen E-UP! 25.5

32 VolkWagen E-GOLF 55.7

33 VolkWagen GOLF 55.7

34 VolkWagen GOLF GTE 55,7

35 ZERO MOTORCYCLES DS ZF9 13
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a weak correlation among these variables, especially for fast  
charges.

This weak correlation can depend on different factors. For slow 
charges, a possible explanation would be a habit of leaving 
the car plugged after the charge is finished22. For fast charges,  
the reason can be a tendency to charge even if the battery SOC  
is high or charge the battery until a SOC is close to 100%. In 
this case, the energy delivered is low, but the charging time 
could be longer since the charge is in the constant voltage phase, 

where the current is continually reduced to maintain a constant  
voltage. However, Figure 11(b) shows that most of the charges 
were within a duration range of fewer than 60 minutes. Indeed,  
analysis of the charge distributions showed that 73% of all 
the events charged less than 40% of the battery energy in less 
than 60 minutes. For slow charges, 80% filled less than 40%  
SOC in less than 200 minutes. Figure 12 reports the histograms 
for slow (a) and fast (b) charge distributions, as a function of 
the charge duration and the fraction of energy delivered with  
respect to the battery size.

ID Manufacturer Model Battery (kWh)

36 ZERO MOTORCYCLES S ZF9 15,3

37 VOLTA BCN 3.1

38 Passat PHEV 9.9

39 XC90 T8 TWIN ENGINE 11.6

40 Audi A3 E-TRON 8.8

41 Audi A3 SPORTBACK E-TRON 8.8

42 BMW 225xe 7.6

43 BMW 225xe ACTIVE TOURER 10

44 BMW 225xe iPerformance 10

45 BMW 330e 12

46 BMW C-EVOLUTION 8.1

47 BMW E-EVOLUTION 8.1

48 BMW i3 42.2

49 BMW i3 REX 42.2

50 BMW i8 7.1

51 BYD E6 82

52 Citroen C-ZERO 14.5

53 Citroen C-ZERO SEDUCTION 16

54 Citroen N. BERLINGO 22.5

55 HYUNDAI IONIQ 28

56 HYUNDAI KONA 64

57 Jaguar I-PACE 90

58 KIA NIRO PHEV 8.9

59 KIA OPTIMA 10

60 KIA SOUL EV 30

61 LEMEV STREAM 4

62 MERCEDES-BENZ GLC 350 E 4MATIC 13.5

63 MINI COUNTRYMAN 7.6
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Turku dataset (Finland)
Data gathered for the city of Turku did not have information 
about the composition of the CSs. Moreover, a single physi-
cal address could be associated to more than one station ID. 
Therefore, we assumed that each CS was composed of a single  
CP and, one or more CPs corresponding to the same address,  
was considered as a CI. Consequently, we obtained:

• five CIs composed of two AC CPs;

• one CI composed of four AC CPs;

• one CI composed of one direct current (DC) CP;

• one CI composed of 2two AC CPs and one DC CP;

The power of the AC and DC CSs was not reported in the data-
set, however, from city records, it was found to be 22 kW 
and 50 kW, respectively. The relevant statistical parameters 
for charging duration and energy delivered are presented in  
Table 7. As for the AMB dataset, DC charges (fast and ultrafast 
chargers) tended to be used more often than AC chargers.

We could see a significant variability in the Turku dataset  
(Table 5), especially for the AC charger where the standard 
deviation of the charge duration was quite remarkable com-
pared to DC chargers. On the other hand, DC chargers had a 
non-negligible variability in the energy delivered compared to  
AC chargers. Figure 13 and Figure 14 show the most relevant 
statistical parameters for each AC CP, together with the number 

Figure 11. Correlation between the fraction of energy delivered and the charge duration for slow charges (a) and fast charges (b).

Figure 12. Slow (a) and fast (b) charge distribution as a function of charge duration and fraction of energy delivered.
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of events per year. Interesting, compared to the other CSs, the 
CS number 6441 delivered a considerable amount of energy  
(Figure 13) but with the lowest usage rate (Figure 14).

Data from the only two available DC CSs showed very simi-
lar values, both for the energy delivered and for the charge  
duration (Table 8).

Figure 15 shows the distribution of the average power deliv-
ered during the charges (left panels), and the distribution for 
charge durations (right panels), for AC and DC chargers. The  
power distribution of AC charges showed that most of the charg-
ing events (99%) used less than half of the available power. 
The DC power distribution produced two main peaks: the  
most pronounced was observed between 10 and 15 kW, while a 
second peak was observed around 2 kW. Overall, 85% of the  
charge events had an average power lower than 30 kW.

AC and DC charge duration distributions showed a Poisson-
like shape, with a long tail for the AC distribution. For AC, 92% 

of charge durations lasted between 0 and 400 minutes. On the 
other hand, for DC charges, 72% of the charge was achieved  
in less than 30 minutes.

Daily and seasonal effects on charge distributions. As done 
for the AMB dataset, we analysed the hourly distribution of 
charging events. Figure 16(a) reports the hourly distribution of  
the number of charging events at their starting time (for both 
AC and DC), while Figure 16(b) shows their mean duration.  
Most charges started around 8 am during workdays, with a  
second peak at noon, followed by another local maximum  
around 4 pm for workdays (Figure 16(a)). The duration of the 
charges started in the morning and late afternoon was longer,  
compared to the other times of the day (Figure 16(b)).

Hourly distribution of AC charges showed a remarkable high 
peak at 8 am (Figure 17(a)) during working days but it disap-
peared during weekends. Other peaks observed during working  
days were around noon and 4 pm. Interestingly, during  
weekends, the majority of charges occurred around noon. On 

Table 7. Mean values and standard deviations for different charge topology. CS: charging station; Stdev: Standard 
deviation.

Dataset N charge/year/CS N events/day/CS Mean 
duration (min)

Stdev duration 
(min)

Mean energy 
(kWh)

Stdev energy 
(kWh)

Entire 363 1 195.31 502.38 6.31 6.64

AC 335.4 0.9 232.28 547.33 5.77 5.45

DC 584.5 1.6 25.58 25.88 8.80 10.14

Figure 13. Mean value and standard deviation of the energy (in kWh) for alternative current (AC) chargers.
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Figure 14. Number of charge events (yearly), mean value and standard deviation (St. dev.) of the duration (min) for alternative 
current (AC) chargers.

Table 8. Statistics for the two direct current (DC) charging points (CPs). Stdev: standard 
deviation.

DC CP ID N charge/year Mean 
duration (min)

Stdev duration 
(min)

Mean energy 
(kWh)

Stdev energy 
(kWh)

1126 480 21.8 15.0 9.2 8.5

3023 689 28.2 30.9 8.5 11.1

average, we could conclude the number of daily charges were 
higher during working days than during weekends. Simi-
larly to the charge duration, the longest charging sessions were  
usually observed in the morning (although with a small number  
of occurrences) as well as in the afternoon (Figure 17(b)).

Regarding the DC CSs, the number of hourly charges, was 
slightly higher during weekends than during working days  
(Figure 18(a)). Moreover, DC charges were more frequent 
in the early afternoon during weekends and in the late after-
noon during working days (Figure 18(a)). Finally, the average 
charging duration did not show any particular pattern during  
working days and weekends (Figure 18(b)).

Summary statistics for the Turku dataset (Table 9) showed that 
AC charges were more frequent during weekends when they 
tended to be shorter and to deliver more energy compared to  
working days. On the other hand, DC charges were more  

frequent during working days when they delivered more energy  
and lasted longer.

Figure 19 illustrates the seasonal influence on charge duration  
and energy delivered. 

For AC charges, the difference between the longest duration  
(fall) and the shortest (spring) was around 44% (Figure 19(a)), 
while the energy difference between the winter (highest 
value) and spring (lowest value) periods was around 14%  
(Figure 19(c)). On the other hand, for DC charges, the shortest 
charging duration was observed in the summer period  
(Figure 19(b)), and the difference with the longest charging  
duration (winter) was around 24% (Figure 19(d)). Finally, the  
difference between the highest average energy delivered  
(winter) and the lowest one (summer) was around 18%. As 
for the AMB data, only the fast (DC) charge duration appear  
to follow the same seasonal trend as the delivered energy  
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(Figure 19(b), and Figure 19 (d)), with a correlation coef-
ficient of about 0.88. However, no relevant correlation was  
observed for AC chargers.

Simulation results
Simulation of the load demand at a CS was carried out using 
synthetic load profiles obtained from the statistical analysis  
of charge events. The fit of the charge registration data was used 
to build a Nonparametric Statistical Distribution (NPD) of the 
frequency of hourly arrivals at the CSs for working days and  
weekends. Nonparametric estimations of the distribution func-
tion of data are not related to any specific a priori distribu-
tion and allow to generating random values that reproduce  
the observations closely. Among the nonparametric estimates, 
we chose a kernel density estimation (KDE), which estimates 
the probability density function (PDF) of a random variable 
making use of a kernel function K (x, h), and a smoothing 
parameter, h, called the bandwidth. It allows creating a smooth  
curve from a dataset, from which inferences about the popu-
lation can be made. The kernel function is a generic function  
with the following properties:

1.      Symmetric with respect to zero: K(x, h) = K(–x, h);

2.      Normalized: ( , ) 1;K x h dx
−

∞

∞
=∫

3.      lim ( , ) 0.
x

K x h
→−∞

=

The smoothness of the resulting curve depends on the band-
width parameter. A large bandwidth leads to a very smooth 
(i.e. high-bias) density distribution, while a small bandwidth 
leads to an unsmooth (i.e. high-variance) density distribution.  
KDE is made by weighting the distances of all data from each 
value of the independent variable. Mathematically, the PDF 
estimate at a point x within a group of points{x

1
, x

2
,…,x

N
}  

is given by:

1
( ) ( , )N

ih if x K x x h== −∑                                                            (1)

A Gaussian kernel function was used in (1) and the KDE  
procedure was implemented with the Distribution Fitting Tool 
in Matlab® software. An open-source alternative to perform the  
analysis is GNU Octave software30.  

Figure 15. Distribution of the average power delivered during charging (left) and charge duration (right) at alternative current 
(AC) and direct current (DC) stations.
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Figure 16. Distribution of the number of charges during the day (a) and mean charge durations (b).

Figure 17. Distribution of number of charges (a) and average duration (b) during working days and weekends for alternative current (AC) 
charging points.

Figure 18. Distribution of number of charges (a) and average duration (b) during working days and weekends for direct current (DC) 
charging points (CPs).
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Figure 19. Seasonal influence on average charge parameters: (a) alternative current (AC) charge duration; (b) direct current (DC) charge 
duration; (c) AC charge energy delivered; (d) DC charge energy delivered.

NPDs for slow and fast chargers during working days and 
weekends are shown in Figure 20. The bandwidth of the fit  
was set at 45 minutes.

We obtained the distribution of arrivals for a given number of  
users/day from the NPDs. Using the statistical parameters 
obtained from the analysis of the AMB dataset, such as the  

average energy and charge durations as a function of time and 
day, and their respective variances, we could generate several  
possible scenarios of charge demand. These profiles can be 
used to obtain information on different variables of interest for  
CI management, such as energy demand and queuing. In the  
following, we will refer to these profiles as “stochastic synthetic  
profiles”. The workflow is illustrated in Figure 1.

Table 9. Mean values of charge duration and energy exchange for working days and weekends.  AC: alternative current; 
DC: direct current; CS: charging station;

Dataset N of events/day/CS 
Mon-Fri

N of events/ 
day/CS Sat & Sun

Mean duration 
Monday-Friday 
(min)

Mean duration 
Saturday and 
Sunday

Mean energy 
Monday-Friday 
(kWh)

Mean energy 
Saturday & 
Sunday (kWh)

Entire 0.8 1.1 199.98 178.72 6.21 6.67

AC 0.7 1.0 233.43 227.75 5.67 6.17

DC 1.7 1.6 26.36 23.69 9.02 8.27
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To construct the energy demand at CI, we started from the  
synthetic profile for each type of CP, for working days and the 
weekend. Each synthetic profile is generated starting from the  
corresponding NPD, to which white noise is added to repro-
duce the randomness of the process. Given the number of 
users for fast and slow CPs, we obtain a timeline of arrivals.  
To determine the charge duration and the energy required by 
each arrival, we made the hypothesis that both followed a  
Gaussian distribution with mean and standard deviation values 
obtained from the input data for the corresponding time. We  
then calculated the average power for the charge request as the 
ratio between energy and duration. The profile is the summation 
of all the arrivals contributions over time. We only consid-
ered positive values from the Gaussian distribution, and the  
resulting distributions resembled those reported in Figure 6. 
To increase the variability of the simulated process, we added 

a white noise signal to the charge duration and exchanged  
energy. 

Two examples of the synthetic profiles used in the simulations 
are shown in Figure 21. Considering the typical CI for AMB, 
which was composed of two slow CPs (3 kW) and three fast  
CPs (50 kW), we compared the profile for a single run (one 
week) with the average profile over 1000 simulations. Figure 21  
(top) shows the results for an average of one and nine daily 
users for slow and fast charges, respectively. The choice of these  
values was in line with the AMB statistics reported in Table 2.  
The profile had no superposition of charge requests, since the 
number of users per day was very low, especially for slow 
charges, while fast charges had generally short duration. If the 
users’ number increases, as can happen in a perspective of an 
EV market growth, the profiles start showing some overlap. 

Figure 20. Non-parametric distribution for the number of charges for the Area Metropolitana de Barcelona (AMB) dataset. Top 
left: slow charges during working days; top right: slow charges during weekend; bottom left: fast charges during working days; bottom right: 
fast charges during weekend. The whole duration in minutes corresponds to one day.
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The bottom of Figure 21 shows the results for a tripled number  
of daily users at the CI (six users at slow charges and 30 at  
fast charges on average per day), where some simultaneous  
charge requests are present.

Average data shown in Figure 21 smoothed the peaks and dis-
tributed the charging requests more evenly. This could affect 
the outcome of an optimal size procedure for a CI, especially  

if auxiliary services were present, such as a renewable energy 
source and storage systems. In the present work, to check the 
impact of the profiles used as input in sizing problems, we  
considered the CI of type b) for AMB and we evaluated the 
optimal size of a photovoltaic (PV) system to install in the CI 
according to different load profiles. The presence of a PV system 
reduce the dependence on the grid and can contribute to lower 
pollutant emissions, especially when coupled with a storage  

Figure 21. Synthetic load profiles for the actual user inflow (top, for an average of one and nine daily users for slow and fast 
charges, respectively) and for a projection with tripled influx (bottom, six users at slow charges and 30 at fast charges on 
average per day). The blue line represents the load for a single simulation, while the red line is the average load over 1000 runs for one 
week. The length of each profile is one week.
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system31,32. We have considered a scenario that sees a photo-
voltaic (PV) system without storage to power an IC, as it appeared 
to be the solution used in the city for public charging. In gen-
eral, the optimization problem involves the charging structure.  
However, we limited our analysis to the size of the renewa-
ble source, to be able to evaluate the results of the optimization 
for different synthetic profiles on the real data, using the load 
curve of an existing station.  For the definition of the optima  
size, we used the economic criterion of the net present value 
(NPV) which allowed comparing the advantage of an investment  
over another scenario. NPV is expressed as follows:

1 (1 )
N t

tt
FNPV I

k== −
+∑                                                              (2)

where:

N is the time horizon of the investment in years; F
t
 is the cash 

flows in the tth year, calculated as the difference between cash  
flow without and with the PV system; I is the initial investment 
for the PV system; k is the interest rate fixed at 3%. A positive  
NPV means the investment is convenient. The analysis was  
carried out over the entire depreciation period of the infrastruc-
ture, which was assumed to be of 20 years, i.e., the medium 
PV life. In this approach, the PV size is determined accord-
ing to the charging profiles, grid energy costs, device investment  
and operational costs. The analysis was proposed in 33 for a PV 
and storage system. However, in this work we only report the  
simplified version without the storage.

The optimization procedure consisted in minimizing the objec-
tive function represented by the daily operating cost of the 
system, which in this case was only the cost of the energy  
supplied by the grid. The operational cost of the PV was  
assumed to be negligible, while the degradation was considered.  
The formal expression of the optimization problem is as  
follows:

24
1min min ( ( ) ( ) )e r grid degrhC C h P h t C== ∆ +∑                            (3)

where:

C
e
 is the daily cost [€]; C

r
(h) is the price of the energy at time h 

[€/kWh];

C
degr

 is the degradation cost of the PV system [€/day];

P
grid

(h) is the power withdrawn from the grid at time h [W];

Δt is the sample time, which in this analysis was equal to one hour.

The model of the system must respect a series of constraints  
listed below:

( )( ) ( ) L
PV PV

L

h
grid grid

P
P h P hη η

η
+ =                                               (4)

( )min Max
grid grid gridP P h P≤ ≤                                                                (5)

( )min Max
PV PV PVP P h P≤ ≤                                                                 (6)

( ) ( )mpptPVP h P h≤                                                                        (7)

where:

P
grid

 is the power withdrawn from the grid;

P
PV

 is the power supplied by the photovoltaic system;

P
L
 is the power required by the load;

P
mppt

 is the maximum extractable PV power;

η
grid

 is the efficiency of the network converter;

η
PV

 is the efficiency of the photovoltaic system converter;

η
L
 is the efficiency of the output converter.

Equation (4) represents the power balance of the system and 
takes into account the efficiencies to ensure the charging  
power required by the load at the hth hour. Equation (5) and  
Equation (6) define the operating limits of the system based on 
the minimum and maximum power of the sources. Equation (7)  
limits the power that can be drawn from the photovoltaic system  
to the maximum extractable power P

mppt
 in the hth hour.

The optimization procedure inputs were as follows:

a)  Price of electricity: 2019 data were retrieved from the 
Comisión Nacional de los Mercados y la Competencia 
(CNMC) website34;

b)  Cost of the photovoltaic system: 1.2 €/Wp and 0.019 
€/Wp, for the capital expenditure (CAPEX), namely 
the investment costs, and the operating expenditure  
(OPEX) to run the system35,36;

c)  Productivity of the PV system: data were taken from 
the “Performance of grid-connected PV” tool of 
the Photovoltaic Geographical Information System  
(PVGIS)37. The data contained the monthly production 
for an installed peak PV power of 1 kWp and system  
loss of 14% (mounting configuration: slope 35⁰,  
azimuth 0⁰) from the PVGIS-SARAH database, for the  
selected locations.

d)  Efficiencies of the conversion systems: some new solu-
tions showed efficiencies higher than 0.933. However,  
efficiency values of 0.9 were used for all systems.

We used the average annual values for electricity and insula-
tion prices. For the charging power profiles, we used different 
statistic approaches, to compare the results and determine the  
optimal sizing, and to understand possible differences. In all 
cases, the power load profile was extracted from the dataset of 
charging events. The profiles used in the procedure were the  
following:

1.  The first profile was obtained using the average val-
ues of the energy and charge durations for each time 
step, in minutes, to build the average power profile  
weighted by the frequency distribution of arrivals.

2.  The second profile was the average of 5,000  
synthetic load profiles.
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3.  The third profile was obtained with the same proce-
dure as profile 2 using mode values instead of mean  
values.

For profiles 2 and 3, we used an average occupancy of one user/
day for slow chargers and nine users/day for fast chargers. The 
three profiles are shown in Figure 22. Profiles 2 and 3 showed 
a similar intermittent pattern, while profile 1 was smoother.  
This indicates that the synthetic profiles emphasize the charg-
ing habit patterns, which are more pronounced than in the 
profile obtained using the average of the data. Power peaks  
were more pronounced for profile 3.

Optimal PV size results obtained through this procedure using 
the three different profiles were 13.2 KW, 10.9 kW and 11.3 
kW for profile 1, 2, and 3, respectively. We observed that using  
the average values of the entire AMB dataset gave a slightly 
larger optimal size for the PV compared to the other load profiles.  
Considering the average annual power production for an 11kW 
PV system (black line, Figure 22), we can see that for profile 1, 
there were fewer time intervals when the load was lower than 
the PV production, i.e., time intervals for which PV produc-
tion did not contribute to cost saving. In fact, in the analysis  
we did not consider selling PV energy to the grid. We stress out 

that the analysis was made for a specific case that reflectings the 
observed situation in AMB. The presence of a storage system  
modifies the results and the convenience of the investments.

To verify which solutions was best for actual CIs usage, we  
considered the power profile of the charge registrations. We 
then calculated the NPV for CI+PV systems, with the hypoth-
esis that the load remained the same for the whole depreciation  
period. For this purpose, we selected the most and least busy CSs 
to build two hypothetical CIs according to these two scenarios  
(Table 10).

We assessed the NPV for the most and least crowded CSs, using 
the PV sizes obtained from the optimization procedures with  
profiles 1 to 3 and reported the results in Table 11.

Results showed that NPV was negative in all cases, mean-
ing the PV sizes obtained using the proposed profiles were not  
convenient (Table 11). On average, only 70% and 20% of the 
PV energy was used to match the power demand in the most 
and least crowded cases, respectively. This means that optimal  
PV sizes for the average profiles were overestimated for real 
profiles. We thus proposed a different approach that takes into 
account the demand fluctuations, and which involves a Monte 

Figure 22. The three load profiles used in the optimization procedure. Profile 1: average over dataset (blue solid line); Profile 2: 
average over 5000 synthetic load profiles; Profile 3: modal value over 5000 synthetic load profiles. The black line is the average annual power 
production for 11 kW photovoltaic systems (PV).

Table 10. Information on the most and less crowded charging 
stations (CSs) in the Area Metropolitana de Barcelona (AMB) 
database.

CS ID fast ID slow User/year fast User/year slow

Most crowded 16 6 5121 616

Less crowded 18 3 1378 55
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Table 11. Net present value (NPV, in k€) for two different 
photovoltaic system PV sizes in the most and least crowded charging 
infrastructures (CIs) scenarios.

PV size (kW) NPV most crowded CI (k€) NPV least crowded CI (k€)

13.5 (profile 1) -4.4 -12.7

10.5 (profile 2) -3.1 -9.7

11.3 (profile 3) -3.5 -10.5

Carlo simulation. In this approach, we estimated the optimal PV 
size using NPV criteria (Equation (3)–Equation(7)) on a single  
synthetic profile. This procedure was repeated N times. The 
result for the optimal PV size is the average of the N outputs.  
Figure 23 shows  the flowchart of this algorithm used for the  
MC simulation. Optimal PV sizes were then compared for 
different number of runs N, where N ranged from 10 up  
to 1500.

When defining the  profiles  we assumed an influx of one  
user/day at slow CPs and nine users/day at fast CPs in a typical 
CI (two slow CPs and three fast ones) to create synthetic  
profiles as those in Figure 21 (top panel). To simulate the uncer-
tainties on the arrivals, we added white noise to the NPDs of  
Figure 19.

Figure 24 shows the results of the MC simulations for the optimal 
PV size as a function of the number of runs. The red line repre-
sents the average value and converges rapidly to zero, meaning  
that investing in a PV system was not convenient. We also 
included the results when some financial incentives policies 
for the initial investment of the PV system were considered.  
Possible financial incentives were at governmental level on the  
CAPEX of the PV system. Considering a 10% discount on 
the initial PV cost, the PV system remained an unfavourable 
solution (yellow dashed line). With a 20% incentive, the 
solution appeared to converge to zero, although with many  
fluctuations. 

When the fluctuations on the arrival distributions were not 
included in the MC simulation, the results changed dramati-
cally. When the synthetic profiles were generated without adding 
white noise, the outcomes of the MC simulations converged to 
a solution for the PV size greater than zero if incentives were  
included.

The influence of the arrival fluctuations tended to disappear 
when the influx rate increased. As an example, Figure 25 reports  
the results of a MC simulation of the PV size, where the syn-
thetic profiles referred to an average influx of 18 users at fast 
CSs and two users at slow CSs, and included white noise. 
In that case, the simulations showed that the PV system was  
convenient, even without financial incentives.

We conclude that synthetic load profiles are convenient tools 
for analysing different scenarios of electric mobility spread. 

Figure 23. Flowchart of the MC simulation to determine the 
PV optimal size.
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Figure 24. Optimal photovoltaic system (PV) size as a function of the number of Monte Carlo simulation runs using synthetic 
profiles with white noise. Three scenarios were analysed: no financial incentives on the initial investment (solid red line); 10% discount 
incentives (yellow dashed line); 20% discount incentives (purple dashed-dotted line).

Figure 25. Optimal PV size as a function of the number of Monte Carlo simulation runs using synthetic profiles with white 
noise, for an average influx of 18 users at fast CSs and two users at slow CSs per day. The scenarios include: no financial incentives 
on the initial investment (solid blue line); 10% discount incentives (red dashed line); 20% discount incentives (yellow dashed-dotted line).
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However, when the usage rate of the charging infrastructure is 
low, data fluctuation must be considered, as it might heavily  
affect the load profiles. 

Conclusions
In this study, we analysed two EV charging events datasets, 
for the metropolitan area of Barcelona (Spain) and the city of  
Turku (Finland) at public stations. Charging events referred to 
different charge modes, such as slow (3 kW, 7 kW, 22 kW) and 
fast (43 kW, 50 kW, 55 kW) chargers. The statistical analysis  
revealed some distinct features for fast and slow charges. Spe-
cifically, the average fast charge duration was around 27 minutes  
for both datasets, with an average delivered energy of 10 kWh. 
Slow charges showed a much higher duration (around three 
hours) and less energy delivered (around 5 kWh). Moreover,  
slow charges showed a greater standard deviation in the dura-
tion distribution than fast charges, while the energy distribu-
tions had comparable standard deviations. Time and energy  
dispersions were higher for the Turku dataset than for AMB, 
likely because the Turku dataset was smaller than the AMB  
dataset. Different patterns emerged in the distributions of charg-
ing start times for fast and slow charges, with distinguishable  
features depending on the data set under consideration. For the 
AMB dataset, fast charge starting hours were relatively homoge-
neously distributed during daytime and early evening, while two 
peaks were visible in the distribution of slow charges starting  
times. For the Turku dataset, AC charges started predominantly 
during night-time and early morning, while DC charges started  
prevalently during daytime and late evening.

Statistical analysis of EV charge data might represent the  
starting point for inferring users’ profiles at charging stations for  
different mobility scenarios. Different synthetic profiles obtained 
in this work were used as inputs for an MC approach to deter-
mine the energy flow at a typical charging station. Analysis of  
energy flows at charging stations allowed the evaluation of the 
impact of different charge profiles to determine the optimal 
size of a PV system for a charging station. The NPV economic  
criterion used to determine the size of the PV system showed 
that overlooking fluctuations in charging profiles could lead  
to overestimating the optimal PV size. 

The management of EV demand addresses several issues, 
especially for the load increases due to a broader diffusion of  
electric mobility. Smart charge strategies, such as variable  
charging rates, can help mitigate the impact on the electric  
grid. This topic will be addressed in future work, using ancillary  
data and analysis from the present case study.

Data availability
Underlying data
Zenodo: Support data for “Modelling charge profiles of  
electric vehicles based on charges data”. https://doi.org/10.5281/
zenodo.572123328.

This project contains the following underlying data:

•  HISTORIC DATA 2019 ELECTROLINERES AMB.
csv: contains information on the charge events at the  

public charging points managed by the municipal-
ity in the metropolitan area of Barcelona. Fields are: 
charging point name; connector typology and number; 
charge start time; charge stop time; charge duration in  
minutes, energy delivered in kWh; vehicle manufacturer  
(optional); vehicle model (optional).

•  STATIC INFORMATION CHARGING POINTS AMB 
29042020.csv: contains the information about the  
public charging points of the metropolitan area of Bar-
celona. Fields are: charger typology (Quick/Normal);  
Charging point name and address; OCCP version; 
charger location; longitude; latitude; 7 flag fields for the  
connector type; observations; charging point maker.

•  Lataustapahtumat, julkiset latauslaitteet 2019.csv: con-
tains information on the charge events at the public 
charging points in the city of Turku. Fields are: data 
of record creation; charging station Id: charging sta-
tion name; charge start time; charge stop time; charge 
duration in minutes, energy delivered in Wh; plug 
type (AC/DC); cumulative energy of the dataset in  
Wh; average power of the charge in W.

Extended data
Zenodo: Support data for “Modelling charge profiles of  
electric vehicles based on charges data”. https://doi.org/10.5281/
zenodo.572123328.

This project contains the following extended data:

•  EV.csv: contains data on battery size retrieved from 
vehicle data sheet or manufacturer website. Fields are: 
record ID, vehicle manufacturer; vehicle model; battery  
size in kWh.

•  Charge2019_EV_AMB.csv: contains the data on 
charge requests contained in “HISTORIC DATA 
2019 ELECTROLINERES AMB.csv” file, combined 
with the information on vehicle battery contained in  
“EV.csv” file.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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Abstract: Electric Vehicles (EV) are introduced twice. 
Thank you for pointing out the mistake. We fixed it. 
 

○

The introduction provides a nice review of related work. However, it fails to clearly 
identify the gaps in current literature and thus motivate the original contributions of 
this work. At the end of the introduction, the reader should already be well aware of 
why such a statistical analysis is needed, as well as the application of Monte Carlo 
simulations and synthetic charging profiles generation, so that one may reach a 
suitable estimation of the requirements and investment needed to support such a 
charging infrastructure. 
Thank you for the valuable comment. We added the following sentence at the end of the 
Introduction: “The study of the charging profiles and the potential energy needs of electric 
vehicles is used for the correct design and planning of the activities of the charging 
structures. As far as the authors know, the impact of the different methodologies used to 
obtain these profiles on the optimization process has not been investigated. The present 
work aims to underline the impact that charging profiles obtained with different methods 
can have on determining the optimal investment for a renewable source implemented in 
charging infrastructure. We conducted statistical analysis on the data collected in some 
public recharging points in the cities of Barcelona and Turku. The results are the input to 
synthesize charging demand profiles according to different approaches. We compared the 
optimal PV sizes obtained with these different load profiles, highlighting that statistical 
approaches based on the measures of central tendency are not suitable for low usage 
rates of the charging infrastructures. Non-parametric statistical distribution (NPD)20 
combined with a Monte Carlo approach can provide more adequate results for this 
situation.” 
 

○

The Monte Carlo simulation process should be detailed, as besides the achieved 
results, there is nearly no information on how the process has been performed. 
Thank you for the suggestion. We add the following description: 
“We thus proposed a different approach that takes into account the demand fluctuations, 
and which involves a Monte Carlo simulation. In this approach, we estimated the optimal 
PV size using NPV criteria (eqs. (3)-(7)) on a single synthetic profile. This procedure was 
repeated N times. The result for the optimal PV size is the average of the N outputs. Figure 
23 shows the flowchart of this algorithm used for the MC simulation. Optimal PV sizes were 
then compared for different number of runs N, where N ranged from 10 up to 1500.  
 
Figure 23 is linked here.

○

 Figure 23. Flowchart of the MC simulation to determine the PV optimal size. When defining the  
profiles  we assumed an influx of one user/day at slow CPs and nine users/day at fast CPs in a 
typical CI (two slow CPs and three fast ones) to create synthetic profiles as those in Figure 21 (top 
panel). To simulate the uncertainties on the arrivals, we added white noise to the NPDs of Figure 
19” 
 

The overall organization of the document does not help the reader, in specific, the 
places where figures and tables are presented are often highly disconnected with the 
pieces of text that discuss them. This makes the analysis of such a large number of 
analyses even more difficult.

○
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Thanks a lot for bringing up this point. In the draft version, we provided the editor, the order of 
the figure as well as the one of the tables was consistent with the different paragraphs/sessions 
of the text. However, it is possible the final layout chosen by the journal, for some editing reasons 
might have moved some figures inappropriately within the main text. We are going to make a 
remark to the editor to see if this issue can be overcome and therefore the readability of the text 
can be improved. In addition, from our side, we have reviewed the entire structure of the text to 
assure that all figures and table are consistent with the text.

The results on the potential advantages and sizing of the PV system should be more 
clearly discussed. 
Thank you for your comment. We add the following sentence: 
“The presence of a PV system reduce the dependence on the grid and can contribute to 
lower pollutant emissions, especially when coupled with a storage system31, 32.” 
 And references 31 and 32:

○

Krim Y, Sechilariu M, Locment F. PV Benefits Assessment for PV-Powered Charging Stations 
for Electric Vehicles. Applied Sciences. 2021; 11(9):4127. 
https://doi.org/10.3390/app11094127

○

Yang M, Zhang L, Zhao Z, Wang L: Comprehensive benefits analysis of electric vehicle 
charging station integrated photovoltaic and energy storage. Journal of Cleaner 
Production. 2021; 302:126967. 10.1016/j.jclepro.2021.126967.

○
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The authors address in this paper the planning of public EV charging stations. Instead of using 
mobility data, they use collected data at existing charging stations in Barcelona and Turku and 
generate the needed daily/yearly demand distribution. 
 
Some remarks to the readability:

In the introduction, it is a good practice to mention clearly the goals of the research and the 
contributions beyond the state of the art. 
 

○

Start the “Results and discussion” Chapter by presenting shortly the processing workflow as 
in Fig 20. 
 

○
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A central result in section “Simulation results” is to build from the data set a kernel density 
estimation (KDE). The method has to be better described and/or references have to be 
added.

○

The optimization problem presented after Figure 21 “To check the impact of the profiles used as 
input in sizing problems” comes unexpected in the middle of the section. It solves the economic 
investment in a PV installation at a charging station. 
 
The authors should mention the motivation to choose this problem, given that the charging 
infrastructure is only lightly loaded (see last remark). 
In general adding PV without storage is not efficient, because the charging demand is in general 
not flexible in public CS, and the PV generation peak is not the same as the demand peak, as 
shown in Fig 22. 
 
However, as an application for using the (stochastic) charging load profiles, the optimization for 
sizing the PV installation for a CI is well formulated.

Provide at the beginning the reason for using the Monte Carlo instead the averaged 
profiles: “when the usage rate of the charging infrastructure is low, data fluctuation must be 
considered, as it might heavily affect the load profiles.”

○

Please specify: When applying Monte Carlo simulation, how is the stochastic profile defined, 
is the optimal PV size estimated still by solving (2-6)?

○

Here I have to mention a weakness of the paper in addressing or at least mentioning the real 
problems of charging infrastructure planning, which could make use of the computed synthetic 
load profiles  (Fig.21). 
 
Due to low EV penetration, the datasets didn’t show any overload of the CSs in the two cities, but 
resource problems would arise with the demand increase. Therefore, some questions for further 
research are:

How much can we upscale the future charging load (higher EV penetration) without 
changing the grid connection capacity (kW) of the CI? 
 

○

How much can we further increase the charging load if technologies such as smart charging 
with variable charging rates etc. are available at the CI and EV?

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes
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Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: EV charging optimization, smart grids, renewable energy communities

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 04 Feb 2022
Natascia Andrenacci, Ente per le Nuove Tecnologie, l'Energia e l'Ambiente (ENEA), Rome, 
Italy 

The authors would like to thank the reviewer for his comments and valuable input. In the 
following, we have tried to respond to the observations point by point. Our responses are shown 
in italics, and changes made to the text of the article are underlined. : 
 
In the introduction, it is a good practice to mention clearly the goals of the research and the 
contributions beyond the state of the art. 
Thank you for this suggestion. We add the following sentence to the introduction: 
“This work takes into consideration the data collected in some public charging points in the cities 
of Barcelona and Turku. The results of the statistical analysis of the data allow synthesizing 
profiles that represent an input to determine the optimal size of a renewable source 
(photovoltaic) to be used in a charging station. This work aims to underline the impact that 
profiles obtained with different methods can have on determining the optimal investment for a 
renewable source, especially in an early phase of the exploitation of the charging infrastructure.” 
 
Start the “Results and discussion” Chapter by presenting shortly the processing workflow as 
in Fig 20. 
Thank you for this valuable suggestion. Indeed, it is more appropriate to introduce the workflow 
in an earlier stage. We moved Figure 20 from its original position to the end of the section 
“Methods”, along with a brief description of the procedure, which we report below for 
convenience: 
“We performed the analysis of the main statistical parameters relating to the data sets, such as 
the average and standard deviation of the duration of the charge and the energy exchanged, as 
a function of external variables such as the start time of the charge, the days of the week, and 
seasonality. Furthermore, we investigated the correlations between EV models and data set 
parameters, as well as the correlation between parameters. The statistical analysis outputs allow 
generating different possible charging demand scenarios, which can be the input of the charging 
infrastructure design and demand management algorithms. In particular, the procedure used 
builds the hourly distribution of arrivals using the non-parametric fitting method. Moreover, we 
assumed that the duration of the charge and energy demand in a given time interval both follow 
a Gaussian distribution, with mean and variance values derived from the data sets for the 
selected time interval. We modelled the stochastic nature of the arrivals adding a white noise 
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signal to the NPD. A similar variability has been added to the charge duration and energy 
distributions. This approach allows generating load demand scenarios for different levels of EV 
penetration, by varying the average number of users per day. The workflow of the generation 
process is illustrated in Figure 1. 
The synthetic profiles represent the instantaneous average power demand at the CS. The average 
power is defined as the ratio between the energy and charge duration values for the given time 
interval. We assumed that the charging time reported in the data sets corresponds to the time it 
takes to deliver the charging energy to the vehicle.” 
At the beginning of the “Results and discussion” Chapter we added the following: “The results of 
the statistical analysis of the Barcelona and Turku datasets are presented below. We illustrate the 
criteria for excluding some records from subsequent analysis. We also report the results for the 
CSs' occupation, the correlations between energy and duration of the charges, and the 
distribution of the average power at the CPs. For the Barcelona dataset, the possible correlation 
between the EV battery size and the charged energy is also investigated.  
A procedure for creating charging profiles from statistical analysis is presented. These profiles are 
used as input in a size optimization algorithm of a photovoltaic system, and the result is 
compared with that obtained with other synthesis profiles. Based on the feedback with the data, 
we proposed a size optimization procedure that provides better outcomes for low CS utilization 
scenarios.” 
 
A central result in section “Simulation results” is to build from the data set a kernel density 
estimation (KDE). The method has to be better described and/or references have to be 
added. 
Thank you for pointing out this missing definition. We add the following description to the text: 
Among the nonparametric estimates, we chose a kernel density estimation (KDE), which estimates 
the probability density function (PDF) of a random variable making use of a kernel function K(x,h), 
and a smoothing parameter, h, called the bandwidth. It allows creating a smooth curve from a 
dataset, from which inferences about the population can be made. The kernel function is a 
generic function with the following properties:

Symmetric with respect to zero: K(x,h)=K(-x,h);○

Normalized: ∫_(-∞)^∞▒〖K(x,h)dx=1〗;○

lim┬(x→∞)〖K(x,h)=lim┬(x→-∞) K(x,h)=0 〗.○

The smoothness of the resulting curve depends on the bandwidth parameter. A large bandwidth 
leads to a very smooth (i.e. high-bias) density distribution, while a small bandwidth leads to an 
unsmooth (i.e. high-variance) density distribution. KDE  is made by weighting the distances of all 
data from each value of the independent variable. Mathematically, the PDF estimate at a point x 
within a group of points {x_1,x_2,…,x_N} is given by: fhx= i=1NK(x-xi,h) 
[Illustration of equation can be seen here] 
 
The optimization problem presented after Figure 21 “To check the impact of the profiles 
used as input in sizing problems” comes unexpected in the middle of the section. It solves 
the economic investment in a PV installation at a charging station. 
Thank you for your remark. We reformulate the sentence to make it clearer: “Average data shown 
in Figure 21 smoothed the peaks and distributed the charging requests more evenly. This could 
affect the outcome of an optimal size procedure for a CI, especially if auxiliary services were 
present, such as a renewable energy source and storage systems. In the present work, to check 
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the impact of the profiles used as input in sizing problems, we considered the CI of type b) for 
AMB and we evaluated the optimal size of a photovoltaic (PV) system to install in the CI according 
to different load profiles. We have considered a scenario that sees a photovoltaic (PV) system 
without storage to power an IC, as it appeared to be the solution used in the city for public 
charging.” 
 
The authors should mention the motivation to choose this problem, given that the charging 
infrastructure is only lightly loaded (see last remark). 
The reasons for this choice reside in the fact that one charging infrastructure included in the 
study had photovoltaic panels without storage. Moreover, the presence of a PV system without 
storage emphasizes the effects of using more or less smoothed artificial profiles, which was our 
goal in this paper. 
 
In general adding PV without storage is not efficient, because the charging demand is in 
general not flexible in public CS, and the PV generation peak is not the same as the demand 
peak, as shown in Fig 22. 
We do agree that storage is necessary to exploit the PV energy more efficiently. However, in the 
public charging stations we analyzed, battery storage is usually not present. In another work to 
be published, we apply the optimization procedure to a complete PV+BES system. To address this 
point we add the following sentence after fig.22: “We stress out that the analysis was made for a 
specific case reflecting the observed situation in AMB. The presence of a storage system modifies 
the results and the convenience of the investments.” 
 
However, as an application for using the (stochastic) charging load profiles, the optimization 
for sizing the PV installation for a CI is well formulated. 
Provide at the beginning the reason for using the Monte Carlo instead the averaged 
profiles: “when the usage rate of the charging infrastructure is low, data fluctuation must be 
considered, as it might heavily affect the load profiles.” 
Thank you for the suggestion. We reformulated the sentence that introduces the method as the 
follows: “We thus proposed a different approach that takes into account the demand fluctuations, 
and which involves a Monte Carlo simulation. In this approach, we estimated the optimal PV size 
using NPV criteria (eqs. (3)-(7)) on a single synthetic profile. This procedure was repeated N times. 
The result for the optimal PV size is the average of the N outputs. Figure 23 shows the flowchart 
of this algorithm used for the MC simulation.. Optimal PV sizes were then compared for different 
number of runs N, where N ranged from 10 up to 1500.” (please note that equations have been 
renumerated). 
 
Please specify: When applying Monte Carlo simulation, how is the stochastic profile defined, 
is the optimal PV size estimated still by solving (2-6)? 
This point has been addressed in the sentence posted above. 
 
Here I have to mention a weakness of the paper in addressing or at least mentioning the 
real problems of charging infrastructure planning, which could make use of the computed 
synthetic load profiles  (Fig.21). 
Thank you for your annotation. Indeed, the problem of optimal sizing of charging stations is 
central. However, in our work, we wanted to emphasize the differences among the results 
obtained using different demand evaluation approaches. Thus, we preferred to compare the 
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results for the optimal PV size for different profiles in the existing CI configuration and evaluate 
them against the actual demand at the stations. We added the following sentence: “In general, 
the optimization problem involves the charging structure. However, we limited our analysis to the 
size of the renewable source, to be able to evaluate the results of the optimization for different 
synthetic profiles on the real data, using the load curve of an existing station”. 
 
Due to low EV penetration, the datasets didn’t show any overload of the CSs in the two 
cities, but resource problems would arise with the demand increase. Therefore, some 
questions for further research are: 
 
How much can we upscale the future charging load (higher EV penetration) without 
changing the grid connection capacity (kW) of the CI? 
 
How much can we further increase the charging load if technologies such as smart charging 
with variable charging rates etc. are available at the CI and EV? 
 
Thank you so much for these interesting insights for future research. The answer to both cannot 
be exhausted in a few sentences, and critically depends on the development of the charging 
network. The issue of smart charging is very interesting and will be addressed in a future paper. 
We add a sentence in the Conclusions “The management of EV demand addresses several issues, 
especially for the load increases due to a broader diffusion of electric mobility. Smart charge 
strategies, such as variable charging rates, can help mitigate the impact on the electric grid. This 
topic will be addressed in future work, using ancillary data and analysis from the present case 
study.”  
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