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6PM from RSE's of NLeSC and ATOS offered to modeling groups 
around Europe:

• EMAC/MEDINA (Cyprus Institute)

• DALES (Delft University of Technology)

• RTE+RRTMGP-C++ (Wageningen University and Research)

• RegCM (Abdus Salam ICTP Trieste)

• BLOM (University of Bergen)

• AGRIF (INRIA, Grenoble)

• …

• FESOM2 (Alfred Wegener Institute, Bremerhaven)



• https://github.com/FESOM/fesom2

• Coupled to ECHAM6 in AWI-CM

• Coupled to OpenIFS (NextGEMS, …)

By N. Koldunov and 

D. Sein



• Unstructured mesh: local refinement

• Arbitrary Lagrangian-Eulerian vertical 
coordinate

• Good parallel scaling: up to ~100 mesh nodes 
per core

Koldunov, N., et al. "Scalability and some optimization of the Finite-

volumE Sea ice–Ocean Model, Version 2.0 (FESOM2)." GMD 12.9 

(2019): 3991-4012.



• Tracers: temperature and salinity sequentially

• Tracer transport slow, memory-bound, but scales 
well with no. MPI tasks

• Future plans: add ocean biochemistry tracers

• Flux-corrected transport slowest routine



• Variables on vertices, edges or faces 
(Arakawa B-grid).

• Fluxes on layer interfaces, other variables 
on midpoints.

• Memory layout (Fortran): (vertical, 
horizontal).

• Loops typically have inner z-loop, bounds 
depend on outer loop variable Danilov, Sergey, et al. "The finite-volume sea ice–ocean model 

(fesom2)." GMD 10.2 (2017): 765-789.
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do n = 1, myDim_nod2D
nu1 = ulevels_nod2D(n)
nl1 = nlevels_nod2D(n)
do nz = nu1, nl1 - 1
flux = fct_plus(nz, n) * dt / areasvol(nz,n) + flux_eps
fct_plus(nz, n) = min(1.0, fct_ttf_max(nz, n) / flux)
flux = fct_minus(nz, n) * dt / areasvol(nz, n) - flux_eps
fct_minus(nz, n) = min(1.0, fct_ttf_min(nz, n) / flux)

end do
end do

Threads

Blocks

• ~20% speedup tracer transport
• Not a portable solution
• No maintenance possible from FESOM 

development team
• Large effort for small code section

Flux limiting loop over vertices (oce_adv_tra_fct routine)



!$acc parallel loop gang present(…)
do n = 1, myDim_nod2D
nu1 = ulevels_nod2D(n)
nl1 = nlevels_nod2D(n)
!$acc loop vector private(flux)
do nz = nu1, nl1 - 1
flux = fct_plus(nz, n) * dt / areasvol(nz,n) + flux_eps
fct_plus(nz, n) = min(1.0, fct_ttf_max(nz, n) / flux)
flux = fct_minus(nz, n) * dt / areasvol(nz, n) - flux_eps
fct_minus(nz, n) = min(1.0, fct_ttf_min(nz, n) / flux)

end do
end do

• ~7x speedup of oce_adv_tra_fct routine (no data movement)
• Somewhat portable solution.
• Can be supported by FESOM2 developers.
• In few months, full tracer transport code running on GPU's.

Flux limiting loop over vertices (oce_adv_tra_fct routine)



• Minimally intrusive port: (almost) no changes to actual Fortran code.

• Data movement between kernels minimized.

• Asynchronous kernel execution where possible.
• Overlap MPI communication and PCIe data transfers.
• Overlap horizontal and vertical advection/diffusion kernels.

• Explicitly tuned thread block size to 128 for Nvidia A100 GPU's

• Enable MPS daemon to mitigate context switches between MPI tasks on shared GPU's
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STORM test case
Number of vertices: 5576658
Number of faces: 11095119
Resolution: 10-3 km
Rectangular analog: 0.1 degree
Number of layers: 47

JUWELS-BOOSTER
Processor: 2 x AMD EPYC 7402 (24 cores)
GPU: 4 x Nvidia A100
Memory: 512 GB DDR4-3200
Network: 4 × Mellanox HDR200 InfiniBand
Compiler: PGI (NVHPC) v22.3
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Conclusions:

• In principle, FESOM2 data structures and loops are a good fit for GPU's.

• Openacc seems the most appropriate technology to leverage GPU 
acceleration for FESOM2.

• Naïve openacc gives 2x speedup of tracer part for low core counts, 
speedup vanishes at high multiplicity.

• FESOM2 is a balanced code with many loops, partial port has limited 
effect



Wish list:

• Kernel optimization: leverage !$acc collapse(2)by 
replacing z-bounds with conditionals or pre-computed masks.

• Extensive validation of results.

• Extend the 'naïve' OpenACC effort to dynamics, sea ice and SSH 
solver

• Support CUDA-aware MPI to speed up halo exchanges in 
accelerated routines.

• Good solution to merge OpenACC directives/optimizations with 
current OpenMP parallelization efforts.
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