
Accelerating tracers
in FESOM2 on GPU's

Gijs van den Oord, David Guibert, Alessio Sclocco, Erwan Raffin, Ben van
Werkhoven, Natalya Rakowski, Nicolay Koldunov, Dmitry Sidorenko

6PM from RSE's of NLeSC and ATOS offered to modeling groups
around Europe:

• EMAC/MEDINA (Cyprus Institute)

• DALES (Delft University of Technology)

• RTE+RRTMGP-C++ (Wageningen University and Research)

• RegCM (Abdus Salam ICTP Trieste)

• BLOM (University of Bergen)

• AGRIF (INRIA, Grenoble)

• …

• FESOM2 (Alfred Wegener Institute, Bremerhaven)

• https://github.com/FESOM/fesom2

• Coupled to ECHAM6 in AWI-CM

• Coupled to OpenIFS (NextGEMS, …)

By N. Koldunov and

D. Sein

• Unstructured mesh: local refinement

• Arbitrary Lagrangian-Eulerian vertical
coordinate

• Good parallel scaling: up to ~100 mesh nodes
per core

Koldunov, N., et al. "Scalability and some optimization of the Finite-

volumE Sea ice–Ocean Model, Version 2.0 (FESOM2)." GMD 12.9

(2019): 3991-4012.

• Tracers: temperature and salinity sequentially

• Tracer transport slow, memory-bound, but scales
well with no. MPI tasks

• Future plans: add ocean biochemistry tracers

• Flux-corrected transport slowest routine

• Variables on vertices, edges or faces
(Arakawa B-grid).

• Fluxes on layer interfaces, other variables
on midpoints.

• Memory layout (Fortran): (vertical,
horizontal).

• Loops typically have inner z-loop, bounds
depend on outer loop variable Danilov, Sergey, et al. "The finite-volume sea ice–ocean model

(fesom2)." GMD 10.2 (2017): 765-789.

Scalars

Velocities

Fluxes

do n = 1, myDim_nod2D
nu1 = ulevels_nod2D(n)
nl1 = nlevels_nod2D(n)
do nz = nu1, nl1 - 1
flux = fct_plus(nz, n) * dt / areasvol(nz,n) + flux_eps
fct_plus(nz, n) = min(1.0, fct_ttf_max(nz, n) / flux)
flux = fct_minus(nz, n) * dt / areasvol(nz, n) - flux_eps
fct_minus(nz, n) = min(1.0, fct_ttf_min(nz, n) / flux)

end do
end do

Threads

Blocks

• ~20% speedup tracer transport
• Not a portable solution
• No maintenance possible from FESOM

development team
• Large effort for small code section

Flux limiting loop over vertices (oce_adv_tra_fct routine)

!$acc parallel loop gang present(…)
do n = 1, myDim_nod2D
nu1 = ulevels_nod2D(n)
nl1 = nlevels_nod2D(n)
!$acc loop vector private(flux)
do nz = nu1, nl1 - 1
flux = fct_plus(nz, n) * dt / areasvol(nz,n) + flux_eps
fct_plus(nz, n) = min(1.0, fct_ttf_max(nz, n) / flux)
flux = fct_minus(nz, n) * dt / areasvol(nz, n) - flux_eps
fct_minus(nz, n) = min(1.0, fct_ttf_min(nz, n) / flux)

end do
end do

• ~7x speedup of oce_adv_tra_fct routine (no data movement)
• Somewhat portable solution.
• Can be supported by FESOM2 developers.
• In few months, full tracer transport code running on GPU's.

Flux limiting loop over vertices (oce_adv_tra_fct routine)

• Minimally intrusive port: (almost) no changes to actual Fortran code.

• Data movement between kernels minimized.

• Asynchronous kernel execution where possible.
• Overlap MPI communication and PCIe data transfers.
• Overlap horizontal and vertical advection/diffusion kernels.

• Explicitly tuned thread block size to 128 for Nvidia A100 GPU's

• Enable MPS daemon to mitigate context switches between MPI tasks on shared GPU's

Low-
order hor.

adv.

Low-
order

vert. adv.

Implicit
part

Hor.
advection

Vert.
Advection

Flux
corrected
transport

Hor.
diffusion

Vert.
Diffusion

Implicit
diffusive

part

STORM test case
Number of vertices: 5576658
Number of faces: 11095119
Resolution: 10-3 km
Rectangular analog: 0.1 degree
Number of layers: 47

JUWELS-BOOSTER
Processor: 2 x AMD EPYC 7402 (24 cores)
GPU: 4 x Nvidia A100
Memory: 512 GB DDR4-3200
Network: 4 × Mellanox HDR200 InfiniBand
Compiler: PGI (NVHPC) v22.3

2x

Tracer transport Full model

Conclusions:

• In principle, FESOM2 data structures and loops are a good fit for GPU's.

• Openacc seems the most appropriate technology to leverage GPU
acceleration for FESOM2.

• Naïve openacc gives 2x speedup of tracer part for low core counts,
speedup vanishes at high multiplicity.

• FESOM2 is a balanced code with many loops, partial port has limited
effect

Wish list:

• Kernel optimization: leverage !$acc collapse(2)by
replacing z-bounds with conditionals or pre-computed masks.

• Extensive validation of results.

• Extend the 'naïve' OpenACC effort to dynamics, sea ice and SSH
solver

• Support CUDA-aware MPI to speed up halo exchanges in
accelerated routines.

• Good solution to merge OpenACC directives/optimizations with
current OpenMP parallelization efforts.

ESiWACE2 has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 823988

