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 Scope 
 

This Report presents the developments, results and recommendations of Task 3.2 of WP3: " Screening 

of the observability and controllability of the target indicators". This task was led by PML and carried 

out by all the project partners, in a strict and effective collaboration between months 8 and 13 of the 

project. A significant part of the work was developed during a two-day hands-on workshop in Trieste 

(8-10 October 2021) hosted by OGS. This event was key in facilitating the definition of the analysis 

protocols common to all models used by the partners, ensuring the comparability of their results. This 

comparability was further enhanced by performing the analysis on the same high-performance-

computer, kindly provided by the Italian CINECA. 

In the SEAMLESS Grant Agreement, Task WP3.2 is subdivided in two subtasks: 

Task 3.2a Observability and controllability analysis, which aims at identifying what ecosystem 

indicators can be estimated by assimilating biogeochemical variables in the CMEMS models. This 

objective was achieved through a sensitivity analysis of the simulated indicators with respect the 

observable variables.  

Task 3.2b Parameters for ensemble generation, which aims at identifying what model parameters 

should be perturbed to represent the uncertainty of the ecosystem indicators in ensemble assimilative 

simulations. This objective was achieved through a sensitivity analysis of the simulated indicators with 

respect to the model parameters.  

This report presents the work of Task 3.2 in three mains sections. Firstly, we summarized the methods 

that are common to the two sub-tasks 3.2a and 3.2b. Then, the motivation, approach and outcomes 

of the two tasks are presented and discussed in two separate sections.   

 Methods 

2.1 The models 

The sensitivity analyses were performed by using five biogeochemical models run operationally in the 

Monitoring and Forecasting Centers (MFCs) of the Copernicus Marine Service, here used in one-

dimensional configurations. These models differ for their level of complexity, which is here defined 

using the number of plankton functional types (PFTs) in the model equations, for simplicity: "high-

complexity" models have 4 PFTs or more, otherwise they have an intermediate complexity. The 

complexity is expected to have implications on which ecosystem indicators are observable and 

controllable when using the different models.  

The intermediate complexity models are:  

The PISCES model (Aumont et al. 2015) is a semi-complex carbon-based model that simulates marine 

biological productivity and carbon biomass based upon 5 main nutrients: nitrate, ammonium, 
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phosphate, silicate and iron. Its architecture includes 24 BGC variables grouped into four main 

compartments: nutrients, phytoplankton, zooplankton, and detritus. The phytoplankton 

compartment (PHY) is represented by two different classes, the nanophytoplankton and the diatoms, 

while the zooplankton compartment contain two species, meso- and microzooplankton. the detritus 

compartment is divided in 2 pools: the dissolved organic carbon (DOC) and the particulate organic 

matters including the small particles and the big particles which mostly differ by their sinking velocity. 

PISCES has been used in global simulations (e.g., Bopp et al., 2015), environmental studies (e.g., 

Brasseur et al., 2009), climate studies (Lefort et al., 2015), in regional scale studies (e.g., Sotillo et al., 

2015) and analysed in parameter sensitivity analyses (e.g., Garnier et al., 2016). PISCES is used in the 

CMEMS global (GLO) and Iberian-Biscay-Irish (IBI) MFCs and it is applied in an Atlantic configuration in 

SEAMLESS. 

The ECOSMO model (Daewel and Schrum, 2013) is an intermediate complexity model with four 

nutrients (nitrate, ammonium, phosphate and silicate) and three phytoplankton groups (flagellates, 

diatoms and nitrogen fixing cyanobacteria). Chlorophyll is included as a prognostic variable following 

Bagniewski et al. (2011). Zooplankton are represented by two size classes (micro and meso). In 

addition the model includes particulate and dissolved organic matter and oxygen.  A simple 

representation of the sediment layer including sedimentation, resuspension, remineralization and 

denitrification under low oxygen conditions is included in the model. The model currency is carbon 

and a fixed Redfield ratio is applied to the other elements. ECOSMO was originally developed for the 

North and Baltic Sea, but was coupled to the ocean model HYCOM and adapted to the North Atlantic 

and Arctic. ECOSMO is used in the Arctic (ARC) MFC real time operational BGC model since April 2017. 

The ERGOM model (Neumann, 2000) is an intermediate complex nitrogen-based model that was 

originally developed for the Baltic Sea and later extended for the North Sea (Maar et al., 2011). ERGOM 

simulates the BGC cycling in the coastal seas using three phytoplankton groups (cyanobacteria, 

flagellates, diatoms), two zooplankton size groups, four nutrient groups (nitrate, ammonium, 

phosphate, and silicate), two detritus groups (N-Detritus and Si-Detritus), oxygen and labile dissolved 

organic nitrogen in the water column. Further a carbonate system is included to compute partial 

pressure of CO2 (pCO2) and the pH value. In our configuration, chlorophyll-a concentration is not light-

dependent and is computed diagnostically. ERGOM is used in the Baltic MFC. ERGOM has been used 

in different studies, e.g. to study inflows to the Gulf of Finland (Lessin et al., 2014) and to assess 

strongly-coupled data assimilation (Goodliff et al., 2019). 

The high-complexity models are ERSEM (Baretta et al.; 1995, Butenschön et al., 2016) in North West 

shelf -seas MFC) and BFM (Vichi et al., 2007 and Vichi et al., 2015) have several features in common, 

both in the structures and outputs, making it convenient to list their difference rather than describing 

them separately, here and in the section of the results, respectively. They both distinguish between 

five chemical components: carbon, chlorophyll, nitrogen, phosphorus and silicon, using variable 

stoichiometry for the simulated plankton groups (e.g., Geider et al., 1997; Baretta et al., 1995). The 

models split phytoplankton into four functional types largely based on their size (e.g., Baretta et al., 

1995): picophytoplankton, nanophytoplankton, diatoms and dinoflagellates. Each Phytoplankton 

Functional Type (PFT) biomass is represented in terms of chlorophyll, carbon, nitrogen and 
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phosphorous, with diatoms also represented by silicon.  Model predators are composed of three 

(ERSEM), or four (BFM) zooplankton types, with organic material being decomposed by one functional 

type of heterotrophic bacteria. The model inorganic component consists of nutrients (nitrate, 

phosphate, silicate, ammonium and carbon) and dissolved oxygen. The carbonate system is also 

included in both ERSEM (Artioli et al., 2012) and BFM (Cossarini et al., 2015;  Canu et al., 2015) models. 

The ERSEM configuration used in SEAMLESS is the one of Butenschön et al. (2016), with the addition 

of a bio-optical module (Skákala et al., a, 2020), capable of resolving underwater light both spectrally 

and directionally. The BFM configuration is the one described in Salon et al. (2019), Lazzari et al. (2012, 

2016). ERSEM and BFM are used in the CMEMS North-West Shelf-Seas (NWS) and Mediterranean 

(MED) MFCs, respectively. 

 

2.2 The marine ecosystem indicators 

The ecosystem indicators targeted by this project have been selected taking account of: (1) United 

Nations Sustainable Development Goals (UN SDGs); (2) The Global Ocean Observing System Essential 

Ocean and Biodiversity Variables (EOVs and EBVs); (3) CMEMS Ocean Monitoring Indicators (OMIs) 

and CMEMS user needs. Additional technical criteria for the selection of the indicators are: i) the 

capability to simulate them reliably with the state-of-the-art biogeochemical models run by modern 

operational centres; ii) the potential capability to constrain the simulation of these indicators by using 

the current operational monitoring infrastructures. Assessing such potential capability is the ultimate 

objective of this work. 

The list of the SEAMLESS indicators includes: 

A) Particulate Organic Carbon 
B) Trophic efficiency 
C) Primary production 
D) pH 
E) Dissolved oxygen 

F) Phytoplankton functional types 

G) Phytoplankton phenology 

In the following paragraphs, a brief description of each indicator is given along with its computational 

definition adapted to the different SEAMLESS model formulations.   

 A) the Particulate Organic Carbon (POC) is defined here as the non-living carbon fraction of 

particulate organic matter, i.e. the detritus, and is computed as the average concentration of the 0-

200m layer from the model output, or 0-bottom in shallower areas. Three models (BFM, ERGOM and 

ECOSMO) have one state variable for the particulate detritus, ERSEM and PISCES have two state 

variables that are summed. The unit is mmolC m-3. 

B) the trophic efficiency is the ratio of production at one trophic level to production at the next lower 

trophic level. It can be calculated by the percentage of energy that consumers in one trophic level gain 

and convert into biomass from the total stored energy of the previous trophic level. (Eddy et a., 2021). 

Alternatively, as commonly done in food web and ecosystem modelling, the ratio between the 
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biomass of upper and lower trophic levels can be used as a proxy measure of the trophic transfer 

efficiency within the food web (Armengol et al., 2019; Eddy et al., 2021). Considering that SEAMLESS 

target the link between primary producers and high trophic level components, the trophic efficiency 

indicator is defined as the ratio between biomass of zooplankton and phytoplankton. Given the fact 

that different model has a different complexity in describing the food web (i.e., number of functional 

groups describing primary producers, consumers and predators), the definitions of primary producer 

trophic level and of predator trophic level depends on the specific model as shown in the Table 1.1:  

Table 2.1 Definition of trophic efficiency (i.e. the ratio of biomass of consumer trophic level and 

biomass of primary producer trophic level) in the SEAMLESS models, which are characterized by 

different numbers and types of phytoplankton groups 

Model primary producer 
trophic level 

consumer trophic 
level 

note 

PISCES Sum of all 2 phyto o 
groups 

 

Sum of all 2 zoo 
groups 

 

 

ECOSMO Sum of all 3 phyto 
groups 

 

Sum of all 2 zoo 
groups plus detritus 

 

 

ERGOM Sum of all 3 phyto 
groups 

Sum of all 2 zoo 
groups 

Nitrogen biomasses are converted 
into carbon using Redfield ratio 

BFM sum of 3 out of 4 
phyto groups 

sum of all 4 zoo 
groups 

Heterotrophic Nano Flagellates group 
is excluded because it channels 
energy mostly in microbial food web 
(bacterial) and it is preyed by other 
zoopl. groups 

ERSEM sum of all 4 phyto 
groups 

sum of all 3 zoo 
groups 

 

 

Biomasses of primary producer and consumer are computed as the vertical integral of the 

concentrations of the state variables in the 0-200m layer in deep ocean waters. Trophic efficiency has 

not unit (i.e., biomass over biomass). 

C) the primary production is the synthesis of organic compounds from dissolved carbon dioxide 

through photosynthesis as source of energy. Models compute primary production as the difference 

between gross primary production (photosynthesis) and the internal phytoplankton respiration 

according to their specific formulations.  Primary production is computed as the vertical integral of 

the 0-200m layer. The unit is mmolC m-2 d-1. 

 

D) the pH is a measure of the ocean acidity. All CMEMS models feature a carbonate system 

formulation that provides the pH as a diagnostic variable in total scale and at the in situ condition. The 

pH is computed as the vertical average of the 0-200m layer from the model output. pH has no unit. 
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E) the dissolved oxygen is a state variable in all CMEMS models. The oxygen indicator refers to the 

concentration of oxygen at the depth of 150m (model output is averaged in the layer 145-155m) or at 

the bottom of the water column for shallow water areas. The unit is mmolO2 m-3.   

F) the Phytoplankton Functional Types (PFT) indicator is defined as the ratio between large 

phytoplankton biomass and total phytoplankton biomass.  It measures the dominance of the large 

phytoplankton groups over the whole phytoplankton community. Large phytoplankton sustains the 

herbivorous food chain (large phyto-mesozoo-fishes) while small phytoplankton is comparatively 

more relevant to the microbial food web (Cushing, 1989; Legendre and Rassoulzadegan, 1995). Our 

PFT ratio indicators provides an indication of the relative importance of the two pathways. Given the 

different formulations of the SEAMLESS/CMEMS models, the large phytoplankton consists of the 

diatoms group in ERSEM, ECOSMO, ERGOM and PISCES, and the sum of diatoms and dinoflagellates 

groups in BFM. The ratio has no unit.   

G) the Phytoplankton phenology consists of three indicators: the value of the maximum of chlorophyll 

concentration in the layer 0-5m (mgChl m-3), the depth of the maximum of chlorophyll during the 

summer period (m) and the timing of the bloom, i.e. the tome of the year when the two maxima occur 

(day).  

 

2.3 The observable variables 

To constrain the biogeochemical indicators listed in Section 2.2, we need to identify which observable 

variables should be assimilated, coherently with the objective of this work. The criteria for the 

preliminary selection of these observable variables are that: i) they can be monitored operationally by 

current observational platforms, and ii) they are simulated by the current operational models. 

The specific definitions of the observed variables require considering how the variables are defined in 

the different assimilative models of CMEMS. For example, ocean-colour chlorophyll observations 

match different types and numbers of phytoplankton functional types in models of different 

complexity. In addition, the definition of the observable variables differs in relation to the observation 

platform; for example, ocean-colour refers to chlorophyll up to the mixed layer depth (MLD), while 

biogeochemical-Argo and gliders refers to chlorophyll profiles and transects (e.g. 0-1000m). Finally, 

we note that some model variables are directly constrained in the CMEMS assimilation schemes. For 

example, the phytoplankton carbon content are updated along with chlorophyll by using the prior 

chlorophyll:carbon ratio in the NWS system (e.g. Skakala et al., 2018). Therefore, we took account of 

the characteristic of the assimilative and observational systems of CMEMS to define the observable 

variable in Table 2. 

  



 

Project SEAMLESS No 101004032 Start / Duration 1 January 2021/ 36 Months 

Dissemination Public Nature Report 

Date 25/05/2022 Version 1.0 

 

Page 9 of 30 

Table 2.2 List and definition of the observable variables in the sensitivity analysis 

Observable variable Model state variables perturbed along with the observed 
variable  

1 Chlorophyll ocean colour Chlorophyll and C, N, P (, Si) 
Apply the same perturbation on all PFTs 
state variables 

In MLD 

2 Chlorophyll from floats 
and gliders 

As above 0-1000 m or 0-
bottom 

3 POC Small phytoplankton + small particulate 
detritus + heterotrophic nano flagellates 
+ bacteria 
Small means < 20 micron 

 0-1000m or 0-
bottom 

4 Nitrate Nitrate  0-1000 m or 0-
bottom 

5 Phosphate Phosphate  0-1000 m or 0-
bottom 

6 oxygen Oxygen 0-1000m or 0-bottom 

7 pH  & pCO2 Dissolved Inorganic Carbon (DIC)  0-1000m or 0-
bottom 

 

2.4 The sites and set-up of the simulations 

The analyses were performed at the 5 ocean sites shown in Figure 1 and synthesized in Table 3. They 

cover all the regions where the biogeochemical models described in Section 2.1.3 are used by the 

Copernicus Marine Service MFC. The configuration of the models for these sites was described 

thoroughly in the Deliverable 2.2 of SEAMLESS. 

Two sites were selected to run multi-model ensemble analysis in contrasting environmental 

conditions.  These are: 1) the coastal mesotrophic site Station “L4”; and 2) the oligotrophic open ocean 

site “BATS”. These are characterized by different trophic regimes, phytoplankton cycles, and vertical 

hydrodynamics as synthetized in column 2 of Table 3. 

In each of the remaining sites, analyses were performed using the specific models employed in that 

region by the Copernicus Marine Service (see third column in Table 3). The objective of these 

additional analyses was to corroborate the results obtained with those same models at sites BATS and 

L4, where those models had been applied for the first time in this work. 

The set-up of the multi-model simulations at sites L4 and BATS used common climatological values for 

the initial conditions of the model state variables, derived from public datasets of the two data-rich 

sites (see Table 4). Atmospheric reanalyses were used to force the models. Seven-year long spin-up 

were performed to stabilize the levels of the physical and biogeochemical variables prior the target 

year of the analyses. The analyses focused on two contrasting periods of the year, i.e. when water 

column is either fully mixed or stratified, to evaluate the impact of the physical condition on the 

controllability of the ecosystem indicators. Given the different environmental characteristics of BATS 

and L4, different three-month periods were identified for the two sites (Table 4). 
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During the spin-up simulations, both biogeochemical and physical variable were nudged to 

climatological monthly values derived from available data. During the analyses target period, only 

physical nudging was applied, to guarantee an unconstrained evaluation of the sensitivities of the 

ecosystem indicators. 

The simulations were performed on the High-Performance-Computer infrastructures of CINECA using 

the software of the SEAMLESS prototype described extensively in Deliverables 2.1 and 2.2       

 

 

Figure 2.1 Sites (red circles) of the CMEMS Monitoring and Forecasting Centres (MFC) configured in 

the SEAMLESS prototype for the 1D simulations described in Table 3 below.  

 

Table 2.3 Description of the sites where the SEAMLESS prototype was configured to perform the 

observability and controllability analyses. 

Site location  
(MFC domain) 

Site characteristics Model applied 
(partner) 

Previous 1D studies 

M 
66°N, 2°E 
(Arctic) 

Spring-bloom system, 
open-ocean site; ~ 
2000m deep 

ECOSMO (NERSC) Gharamti et al., 2017 

Arkona Basin 
54°53’ N13°52’E 
(Baltic) 

Mesotrophic, near 
coastal site; 42 m deep; 
seasonally stratified 

ERGOM (AWI) Walter et al., 2006 
  

L4  
50°15’ N 4°13’ W 
(North-West shelf-sea) 

Mesotrophic coastal 
site; 50 m deep; 
seasonally stratified 

ERSEM (PML); 
ECOSMO (NERSC); 
ERGOM (AWI); 
BFM (OGS); 
PISCES (UGA) 

Butenschön et al., 
2016 

BOUSSOLE  
43°22’N, 7°54’E 
(Mediterranean Sea) 

Meso/oligo-trophic 
open-ocean site; 2400 
m deep 

BFM (OGS) 
 

CMEMS SE 2018-
2020 Bioptimod 
project  

BATS  
31°40′N 64°10′W 
(Global-Atlantic) 

Oligotrophic open-
ocean site; 4500 m 
deep; general strong 
stratification 

ERSEM (PML); 
ECOSMO(NERSC); 
ERGOM (AWI); 
BFM (OGS); 
PISCES (UGA) 

Butenschön et al., 
2016 
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Table 2.4. Set-up of the model simulations the multi-model ensemble sites    

Site BATS L4 

Initial 
condition
s 

Climatology from data of BATS 
station 
(http://bats.bios.edu/bats-data/) 

Climatology from data of Western Channel 
Observatory 
(https://www.westernchannelobservatory.org.uk
/) 

Meteo 
forcings 

ERA5 reanalysis of Copernicus 
Climate Change Service (C3S) 
Climate Data Store (CDS)  
(https://cds.climate.copernicus.e
u) 

ERA5 reanalysis of Copernicus Climate Change 
Service (C3S) Climate Data Store (CDS)  
(https://cds.climate.copernicus.eu) 

Spin-up 5 years 7.5 years 

Stratified 
period 

15/06/2019-14/09/2019 01/06/2014-01/09/2014 

Fully 
mixed 
period 

01/01/2019-31/03/2019 01/11/2014-31/01/2015 

 

 Results part 1 – What marine ecosystem indicators 

can we estimate by means of data assimilation?  

3.1 Introduction 

This section describes the specific methods and results of Task 3.2a "Observability and controllability 

analysis". The aim of this subtask is to identify what ecosystem indicators can be estimated by 

assimilating biogeochemical variables in the CMEMS model. This objective was achieved through a 

sensitivity analysis of the simulated indicators with respect to the initial conditions of the observable 

variables. 

3.2 Sensitivity analysis approach 

Data assimilation analyses typically correct the values of the observed variables toward the 

observations of those variables, or towards functions of those observations. These analyses can 

impact also model variables that are not observed, e.g. target ecosystem indicators, in two different 

ways. The direct way is in a multivariate analysis step, where estimated covariances among variables 

are used to update (or "re-initialize") variables that are linked to the observed ones. The indirect way 

is through the simulated ecosystem processes during the integration of the model equations, i.e. in 

the forecast-step re-initialized in the analysis. In both ways, we expect that the re-initialization, i.e. 

assimilation, of an observed variable has an impact on the unobserved indicator if they are linked in 

the coded ecosystem processes.  Here we focused on the controllability from daily to seasonal scale, 

which are of main interest in an operational forecast system like CMEMS and we evaluated the 

average impact of the re-initialization over three-month long simulation periods.  
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Therefore, assessing the sensitivity of a simulated ecosystem indicator with respect to the re-

initialization, i.e., initial conditions, of the observed variables was adopted as pragmatic approach to 

the controllability analysis. Other approaches have been applied in the literature with low-complexity 

models (e.g., Villaverde et al., 2019), but they still appear unpractical with higher complexity models 

like the marine ecosystem ones used in SEAMLESS.  

The sensitivities of the ecosystem indicators with respect to the observable variables were computed 

performing Monte-Carlo based ensemble simulations. In these simulations, the initial conditions of 

the observed variable were perturbed stochastically, ensemble simulations were performed, and 

spatial-temporal averages of the ecosystem indicators were computed.  

The sensitivities are defined as follows: 

𝑠𝑖,𝑗 =  
𝑠𝑡𝑑 (𝑦𝑖̿)

𝑠𝑡𝑑 (𝑥𝑗
0)

  
𝑚𝑒𝑎𝑛 (𝑥𝑗

0)

𝑚𝑒𝑎𝑛 (𝑦̿)
         eq. 1 

 Where 𝑠𝑖,𝑗 is the sensitivity of the ecosystem indicator, i.e. 𝑦𝑖  with respect to the initial condition of 

the observable variable  𝑥𝑗
0. The double average bars ( ̿ ) indicate that indicator and observable 

variable are averaged with respect to the vertical layers of the water column over which the indicator 

is defined (see Section 2.2) and with respect to the time-length of the simulation period (see Table 4). 

"Std" and "mean" represent the standard deviation and mean value of the variable across the Monte 

Carlo ensemble. 

The sensitivity 𝑠𝑖,𝑗 normalizes the dispersion of the variables by their average values and is therefore 

dimensionless. The higher its value, the higher is the impact of the observed variable on the ecosystem 

indicator, i.e. the observability of the latter. 

The set-up of the sensitivity analysis followed well-established practices (e.g., Sankar et al., 2018): 

• The probability distributions of the observable variable were set as uniform, centred on the 

climatological value of the variable at the study sites, with threshold +/- 50% of the nominal 

values for all variables, but 10% for DIC which has high absolute values. 

• The number of Monte-Carlo simulation was set equal to n x 1000, where n=10 is the number 

of ecosystem indicators. 

The analysis was performed using the SEAMLESS prototype software, run on the CINECA High-

Performance Computer.  

3.3 Results and discussion 

The results of the controllability analysis are synthetized in Figure 3.1 for both BATS (upper panel) 

and L4 (lower panel).  

The controllability of the ecosystem indicators depends on the ocean sites to some extent since their 

sensitivities are different at station BATS and L4. For example, the indicators related to the plankton 

production (e.g., NPP, phenology, efficiency and POC) are more sensitive at BATS than at L4, with 
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respect to the vertical observations of nutrients and chlorophyll (ARGO_NO3, ARGO_PO4 and 

ARGO_CHL). This is likely related to the different trophic regimes and depths of the two sites: L4 is a 

mesotrophic shallow coastal site, while BATS is oligotrophic and in the open-ocean, see Figure 2.1).  

The controllability of the indicators at two sites depends upon their trophic regimes. At the 

oligotrophic BATS, the primary production is phosphate limited in the simulations of most SEAMLESS 

models (not shown), and this is coherent with previous literature findings (e.g. Steinberg et al., 2001). 

That explains the control of phosphate observations (ARGO_PO4) upon all the ecosystem indicators 

simulated at BATS (upper panel in Figure 3.1), in both mixed (more evident) and stratified conditions 

(less evident). On the other hand, in the mesotrophic L4 (lower panel), nutrients limit production at 

the surface only in the summer stratified season. That explains the marked control of phosphate 

profiles on both the maximum and timing of the surface chlorophyll during the stratified season ("Max 

chl 5m" and "Max chl Timing", respectively). On the other hand, at L4, nutrient profiles do not control 

indicators in the winter fully mixed conditions, when nutrients concentrations are higher and plankton 

production is lower because light-limited. 
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Figure 3.1. Results of the sensitivity analysis of the ecosystem indicators with respect to the observed 

variables at station BATS (upper panel) and L4 (lower panel).  The height of the bars shows the 

magnitude of the sensitivities in eq.1, for the ten ecosystem indicators (rows), with respect to the 

seven observed variables (columns), during two representative seasons (mixed and stratified water 

column), computed with each of the five biogeochemical models (colours). 
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Plankton production and efficiency indicators are often more sensible to POC profiles than to the 

chlorophyll ones, at both sites and water column conditions. This is because chlorophyll is a prognostic 

variable in all the models (but ERGOM), and its ratio to carbon is variable as a function of the light 

conditions. On the other hand, the indicators NPP, trophic efficiency and PFTs are defined in carbon 

units, or in nitrogen units that have a constant Redfield ratio to carbon (that is the case of ERGOM, 

Section 2.2). That suggests that the carbon-related observations (i.e., POC) have a relative stronger 

control than chlorophyll observations on production indicators measured in nutrient units. In our 

ERGOM configuration, chlorophyll has a fixed ratio to nutrients and therefore its ocean-colour and 

profiles observations controls trophic efficiency as strongly as the phosphate and POC profiles.     

The observability of some indicators is related to the physical state of the water column, more than 

to the trophic characteristics of the ocean site. This is the case of ocean colour observations, which 

are defined as chlorophyll in the mixed layer. When the column is stratified, ocean colour can control 

only the magnitude and timing of the surface chlorophyll maximum, which is defined in the upper 5 

meters at both sites. 

On the other hand, ocean colour can control several biogeochemical indicators when the water 

column is fully mixed, at both L4 and BATS. At L4, the mixed layer depth reaches the bottom of the 

water column when fully mixed and ocean colour can control indicators integrated from surface to 

the bottom 50 m deep. At BATS the simulated maximum depth of the mixed layer reaches the 200 m 

(not shown), and ocean colour can control the POC, NPP and the phytoplankton indicators that are 

integrated from the surface to that same depth (see the definitions in Section 2.2).  

The features of the oxygen and pH are different from those of the other ecosystem indicators. They 

are sensible only to the direct measurements of oxygen itself and dissolved inorganic carbon (DIC) 

which forces the carbonate system. Symmetrically, oxygen and DIC observations can control the above 

two indicators only, for most of the models. For oxygen, these results are explained by the fact that 

the oxygen levels do not significantly limit the ecosystem production at the sites and depth 

investigated in this work. Similarly, DIC limitation is not effective at the sites, or even represented in 

the models, considered in this work. Therefore, it only influences the prognostic variables of the 

carbonate systems.  

Interestingly, oxygen simulations are less controllable by the observations when the water column is 

mixed and gas exchanges with the atmosphere at the surface impact the concentrations in the whole 

water column. When the water column is stratified, the oxygen profile keeps memory of the initial 

conditions throughout the simulation period. 

Finally, we note that the controllability of the indicators depends upon the model being used. For 

example, at BATS, phosphate observations have in general a stronger control on the indicators when 

using ECOSMO, rather than PISCES or ERSEM. These latter two models, on the other hand, have a 

stronger control on the indicators when constrained by nitrate profiles. Ultimately, these differences 

among models are linked to what nutrient is limiting the plankton production in the simulations. Such 

limitations are related to the model formulations rather than to the model performance, making less 

intuitive the controllability of indicators by different models. For example, nutrients have opposite 
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controllability on ECOSMO and ERSEM indicators, while both the models simulate comparable levels 

of nitrate and phosphate (Figure 3.2). 

Controllability is not linked clearly to the complexity of the models. Models of different complexity 

can have similar controllability of some indicators. This is the case of PISCES and ERSEM with respect 

to nutrient constrain on the indicators, as mentioned above. Models of similar complexity can control 

in rather different measure the indicators. For example, the impact of ocean colour observations on 

ERSEM is closer to ECOSMO than to BFM.       

Phosphate (mmol L-1) 

 
 

Nitrate (mmol L-1) 

 

Figure 3.2 Model ensemble simulations at BATS of phosphate (left) and nitrate (right).  

3.4 Concluding remarks on the results of part 1 

The controllability analysis provided useful information on which, when, and where observations can 

be used to constrain the simulation of the SEAMLESS ecosystem indicators. However, the analyses 

were performed in simplified one-dimensional configurations, thus they provide a screening 

indication on the controllability of the indicators. Indicators that resulted controllable here, are good 

candidates for corroborations with the full 3-Dimensional CMEMS models. Such corroboration will be 

carried out in Task 3.3. 

In summary, key screening results to be prioritized in the corroboration of Task 3.3 are the following: 

1. ocean colour observations can control most of the ecosystem indicators in those seasons 

when the water column is mixed, in both coastal and ocean sites;  

2. ocean colour observations can control surface indicators when the water column is 

stratified; 

3. profiles of POC concentrations can constrain relatively well the SEAMLESS ecosystem 

indicators, but oxygen and pH, at both sites and physical conditions; 

4. oxygen and DIC observations can constrain indicators based on oxygen concentrations and 

carbonate system variables.  
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Other results of the analysis can be translated in recommendations of "don'ts": 

5. Ocean colour should not be used to control indicators below the mixed layer not only in the 

deep ocean, but neither in shallow but stratified coastal waters; 

6. Oxygen and DIC observations cannot be used to constrain any indicator but oxygen and 

carbonate systems, respectively. 

7. Chlorophyll is less suitable than carbon-based observations to constrain plankton production-

related indicators 

8. Observations of the non-limiting nutrient are less effective than the ones of the limiting 

nutrient in constraining the indicators, provided that the model represents correctly what the 

limiting nutrient is in the ecosystem. 

Regarding the methodology, we evaluated the sensitivity of the indicators averaged over three-month 

long simulation periods. Such relatively long period is coherent with our choice to simulate the sites 

during periods when the water column is rather consistently mixed or stratified, increasing the 

likelihood that the impact of the perturbation of the initial conditions persists in time. Also, the impact 

might have the time to emerge in a three month period but not on shorter scales, e.g. carbon flux at 

depth might be registered after relatively long periods following a bloom observed by ocean-colour.   

However, the predictability might be shorter for some indicators in some circumstances, for example 

during the onset of the stratification or in highly productive periods. In such cases, the averaging 

period should be shorter and compatible to expected predictability of the indicator, e.g., week(s).   

Finally, regarding differences among models, one should not assume that a model that fits well the 

observations of an indicator, is also better than a less skilled model in constraining that indicators. It 

is important to verify that a good model-fit is supported by a realistic representation of the ecosystem 

properties, rather than by compensating errors. An example is the correct representation of the 

correct-nutrient limitation mentioned above. Provided this verification, one can use the magnitude of 

the sensitivities in Figure 3.1 to assess if their specific model is suitable to constrain and indicator with 

selected observations. If the sensitivity is close to zero, the model is not suitable. On the other hand, 

setting a minimum threshold for controllability is not relevant in the one-dimensional exercise. We 

recommend to verify the capacity of the specific model in three-dimensional configurations, expected 

in the future Deliverable 3.4 " Observability of the target indicators in the 3D CMEMS MFC systems 

(twin experiments)". 
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4 Results part 2 – Sensitivity of the indicators and 

identifiability of the model parameters  
 

4.1 Introduction 

This section describes the specific methods and results of Task 3.2b Parameters for ensemble 

generation. The first aim of this subtask is to identify what model parameters should be perturbed to 

represent the uncertainty of the ecosystem indicators in ensemble assimilative simulations. This aim 

was pursued through a sensitivity analysis of the simulated indicators with respect to the model 

parameters in one-dimensional model configurations. The second aim is to assess which parameters 

can potentially be identified by constraining (e.g., by assimilating) the observable variables defined in 

Section 2.3.  This aim was pursued through a sensitivity analysis of the observable variables with 

respect to the model parameters in one-dimensional model configurations. This approach is 

underpinned by the assumption that if an observable variable is sensitive to a parameter, then the 

opposite holds: the same parameter is "sensible" to, and can be constrained by that same observable 

variable.  

We pursued the two above aims concurrently, by performing a joint sensitivity analysis of both the 

indicators and the observable variables with respect the model parameters in a Monte-Carlo based 

simulation framework, as described in the Methods of this section.  

To investigate and compare the sensitivities of the different models, we performed the sensitivity 

analysis and ranked the parameters of all the models configured for the same reference stations L4 

(representing a mesotrophic costal site) and BATS (representing an oligotrophic open-ocean site). In 

addition, to corroborate the selection of the parameters to be perturbed in the different CMEMS MFCs 

model domains, we performed the analysis of the one-dimensional models configured for their 

regional sites. The results of these two analyses are presented in two sections. 

Concluding remarks drawn from the outcomes of the analysis are synthetized in a final section. 

 

4.2  Methods of the sensitivity analysis with respect to the parameters  

For each CMEMS model, a Monte Carlo sampling-based sensitivity analysis was applied to rank the 

importance of all their m parameters X = (X1, X2, …, Xi …, Xm). A crude Monte Carlo sampling scheme 

was used to generate a number n of realizations of the input factor vector X. These realizations were 

input to n model simulations that computed the target model output y = (y1, y2, …, yj …, yl) which 

includes the l spatial-temporal averages of the ecosystem indicators plus the observable variables.  

The input-output relationship was represented by means of a multiple-regression model: 

𝑦𝑗 = 𝑏0 + ∑ 𝑏𝑖,𝑗𝑋𝑖
𝑚
𝑖=1 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠      eq. 4.1 
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and the standardized regression coefficients βi,j were used as global sensitivity indices of the input 

factors (Saltelli et al., 2008): 

𝛽𝑖,𝑗 =
𝑏𝑖,𝑗𝜎𝑋𝑖

𝜎𝑦𝑗

         eq. 4.2 

Where 𝜎𝑋𝑖
 and 𝜎𝑦𝑗

are the standard deviations of the realizations of the input factor Xi and of the 

model output yj, respectively. The regression coefficients in Eq. (4.2) provide meaningful parameter 

rankings only when the linear regression explains a relatively large fraction of the model output 

variability (Saltelli et al., 2000).  

The higher the absolute value of βi,j , the higher is the rank of the associated parameter Xi with respect 

to the indicator or observable variably yi. 

The set-up of the sensitivity analysis followed well-established practices (e.g., Sankar et al., 2018): 

• The probability distributions of the parameters were set as uniform, centred on the 

climatological value of the variable at the study sites, with threshold +/- 30% the nominal 

value. 

• The number of Monte-Carlo simulation was set equal to m x 30, where m is the number of 

model parameters. 

The sensitivity/ranking analyses of all the models were first performed at the sites L4 and BATS. For 

each site, the sensitivity analyses were performed in two contrasting periods, i.e., when the water 

column is mixed or seasonally stratified (see Section 2.4). To derive a synthetic index, the overall 

ranking of each parameter was computed by averaging the βi,j across indicators and observable 

variables, sites, and simulation periods. Such average sensitivity provides an indication of the overall 

impact of the parameter on the relevant model outputs, including contrasting physical conditions of 

the water column. 

Additional analyses were performed with each CMEMS model at their regional site. 

To compare the rankings of parameters in different models, we mapped the parameters into broad 

groups, as suggested in Sankar et al., 2018 (see Table 4.1). Such groups represent categories such as 

biogeochemical processes and functional groups. 

The analyses were performed using the SEAMLESS prototype software, run on the CINECA High-

Performance Computer.  

  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/regression-coefficient
https://www.sciencedirect.com/science/article/pii/S0304380018300395#bib0310
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Table 4.1 Group of parameters defining categories such as biogeochemical processes and functional 

groups that are common to the different models investigated in this work (modified from Sankar et 

al., 2018). 

 

 

 

4.3 Results and discussion 

The results of the sensitivity and ranking analyses of all the models at the representative sites L4 and 

BATS and of each model in its regional sites are presented separately in the following.  

4.3.1 Representative sites BATS and L4 

The most relevant parameters of each model are listed in Table 4.2.  

In PISCES, the constants defining the parameterization of bacterial remineralization of organic matter 

resulted the most relevant (groups 10-12). In fact, this intermediate complexity model does not 

include bacteria as a dynamic state variable. The parameters linked to the plankton growth (i.e. to the 

light and temperature forcings and maximum growth rate) and plankton food chain (zooplankton 

grazing rates and preferences) were also important. 

In ECOSMO, the light parameter resulted the most important. Followed by plankton growth and 

grazing rates. The remineralization parameters are relatively less important. Interestingly, the 

phosphate half saturation ranked among the 10 most important parameters. This finding is coherent 

with the sensitivity of the ecosystem indicators to the observations of nitrate in Figure 3.1. 



 

Project SEAMLESS No 101004032 Start / Duration 1 January 2021/ 36 Months 

Dissemination Public Nature Report 

Date 25/05/2022 Version 1.0 

 

Page 21 of 30 

In ERGOM, plankton trophic links and sediment remineralization parameters ranked comparatively 

high. The relevance of light-related parameters ranked fourth, but with a comparatively low score 

(66%). 

In both the high-complexity models, BFM and ERSEM, the light and bacteria-related parameters 

scored the highest ranks. These are followed by quite different plankton-related parameters in the 

two models: in BFM the parameters linked to the small types of plankton are more important (i.e., 

picophytoplankton and microzooplankton), while in ERSEM the parameters linked to the large types 

of plankton are more important (diatoms and nanophytoplankton). An additional interesting 

difference among the two models regards the ranking of the nutrient limitation parameters. In BFM 

phosphate-related parameters are relatively important: the minimum phosphorus to carbon ratio in 

picophytoplankton ranks 8. This result contrasts with the higher importance of four nitrate-related 

parameters in ERSEM: the maximum nitrogen to carbon ratio as well as threshold of nitrogen 

limitation for both diatoms and nanophytoplankton all rank among the 10 most important 

parameters. The differences in the nutrient-limitation parameters are coherent with the differences 

in the controllability of the indicators with respect to the observations of nitrate in ERSEM, rather than 

phosphate in BFM Figure 3.1.  

The difference in the sensitivities of BFM and ERSEM are likely related to differences in their 

formulations targeting the North-East Atlantic (ERSEM), dominated by larger size-fractions of plankton 

(Ciavatta et al., 2018), and the Mediterranean Sea (BFM), which is phosphate limited and dominated 

by smaller size-fractions of plankton (Ciavatta et al., 2019; Alvarez et al., 2022). 

 

Table 4.2 Rank of the parameters based on the overall sensitivities of the ecosystem indicators and 

observable variables simulated by the models at stations L4 and BATS. Notation and description of the 

parameters are reported. The score is computed by normalizing the βj in eq. 4.2 by the highest β value 

of the parameter ranking first. The Group refer to the categories 1-21 in Table 4.1. 

PISCES 

Rank Notation Description Score  Group 

 

1 dom_rem/xremik DOM remineralization rate 100% [10] 

2 dom_rem/xkdoc DOC half-saturation constant in limiting bacterial 
DOM degradation activity (Aumont et al, Eq 34) 

99% [12]  

3 Optics/parlux PAR : SWR ratio 93% [6] 

4 zoo/xprefn    Microzooplankton preference for nanophyto 91% [17] 

5 Dia/mumax0 Diatoms Max Growth 90% [1] 

6 Phy/logbp Nanophyto temperature sensitivity for growth 88% [5] 

7 zoo/grazrat    MicroZoo maximum grazing rate 85% [13] 

8 phy/mumax0   Nanophyto Max Growth 83% [1] 

9 dia/logbp Diatoms Temperature sensitivity for growth 81% [5] 

10 phy/padlopers  Nanophyto P-I slope 67% [1] 
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ECOSMO 

Rank Notation Description Score  Group 

Group 

1 g2 E-folding depth of visible fraction (m) 100% [6] 

2 muPs Maximum growth rate of small Phytoplankton 83%  [1] 

3 mPs Small Phytoplankton mortality rate 69%  [3] 

4 A non-visible fraction of shortwave radiation 66%  [6] 

5 GrZsP Grazing rate of small Zooplankton on 
Phytoplankton 

64%  [13] 

6 gammaZsp Small Zooplankton assimilation efficiency on 
Phytoplankton 

52%  [13] 

7 reminD Detritus remineralization rate 42%  [10,18] 

8 alfaPs Initial slope of P-I curve for small Phytoplankton 41%  [1] 

9 rPO4 PO4 half saturation 38%  [10] 

10 Rg Half saturation rate for Zooplankton 37% [13,16] 

 

ERGOM 

Rank Notation Description Score  Group 

Group 

1 rp0 Diatoms uptake rate 100% [17] 

2 q10_rec sediment recycling q10 rule factor 98% [5] 

3 rfr Redfield ratio P/N 79% [1] 

4 imin_di minimal optimal light radiation, diatoms 66% [21] 

5 graz Zooplankton grazing rate 55% [13] 

6 deltao Phytoplankton mortality rate (pl -> dd) 49% [10] 

7 dn Detritus mineralization rate (dd -> aa) 45% [17 or 11] 

8 rf0 Flagellates uptake rate 44% [12] 

9 iv Ivlev constant, quadratic 42% [11] 

10 zcl1 Zooplankton closure parameter 40% [14] 

 

BFM 

Rank Notation Description Score  Group 

Group 

1 light/EPS0r Background shortwave attenuation 100% [21] 

2 light/pEIR_eow Photosynthetically active fraction of shortwave radiation 57% [6] 

3 B1/p_pu_ra Activity respiration fraction, bacteria 55% [9] 

4 Z5/p_pu  Assimilation efficiency, microzooplankton 44% [13] 

5 P3/p_q10 Q10 coefficient, picophytoplankton 40% [5] 

6 Z4/p_sds Exponent of density-dependent mortality, omnivorous 
mesozooplankton 

38% [14] 

7 P3/p_qlcPPY Reference Chla:C quotum, picophytoplankton 35% [1] 

8 P3/p_qplc Minimum phosphorus to carbon ratio, picophytoplankton 33% [4] 

9 P3/p_temp Cut-off threshold for temperature factor, 
picophytoplankton 

32% [5] 

10 P2/p_qlcPPY Reference Chla:C quotum, nanophytoplankton 32% [1] 
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ERSEM 

Rank Notation Description Score  Group 

Group 

1 light/PEIR_eow, photosynthetically active fraction of shortwave 
radiation, 

100% [6] 

2 B1/pu efficiency at high oxygen levels (bacteria) 92% [9] 

3 B1/sR1 maximum turn-over rate of DOM 83% [12] 

4 light/a0w absorption coefficient of clear water 74% [21] 

5 B1/rR2 fraction of semi-labile DOC available to bacteria 69% [12] 

6 P2/xqcn threshold for nitrogen limitation (relative to Redfield 
ratio) in nanophytoplankton 

61% [20] 

7 P1/xqn maximum nitrogen to carbon ratio (relative to Redfield 
ratio) for diatoms 

58% [20] 

8 P1/xqcn threshold for nitrogen limitation (relative to Redfield 
ratio) in diatoms 

57% [20] 

9 P2/xqn maximum nitrogen to carbon ratio (relative to Redfield 
ratio) for nanophytoplankton 

57% [20] 

10 P1/sum, maximum specific productivity at reference 
temperature for diatoms, 

52% [7] 

 

4.3.2 Regional sites 

The ranking of the parameters of the five CMEMS models computed in the one-dimensional sites in 

their CMEMS domain is presented in Table 4.3. In general, the ranking in the specific sites corroborate 

the groups of parameters that resulted among the ten most significant in the reference sites L4 and 

BATS. In particular, for each model, the same most relevant parameter was identified in the regional 

and reference sites. The only exception is ERGOM, which was most sensitive to the Phytoplankton 

mortality rate at ARCONA, rather than the diatoms uptake rate in BATS/L4. For some models, also the 

ranking of the subsequent parameter was substantially unchanged, a part some shifts of position. 

Interestingly, sinking parameters became relevant in ECOSMO/StatM.  

Thus, again, light-forcing parameters were in prominent positions in ECOSMO/StatM, BFM/Boussole 

and ERSEM/L4; bacteria parameterizations and parameters in PISCES/BATS, BFM/BOUSSOLE and 

ERSEM/L4; plankton-trophic and growth parameters in ECOSMO/StatM and ERGOM/ARCONA and, in 

a slightly lower positions, in PISCES/BATS, BFM/BOUSSOLE and ERSEM/L4.  

Interestingly, BFM kept plankton-trophic and growth parameters among the ten most relevant in the 

regional as in the reference sites. However, in BFM/BOUSSOLE, the above parameters refer to the 

large-size fraction of the plankton community (diatoms), while in BATS/L4 they were referring to the 

small size (Table 4.2). BOUSSOLE is a mesotrophic site, with relevant blooms of diatoms in the 

winter/spring season (Deliverable 2.2). These results indicate that the parameter ranking in BFM is 

robust but sensitive to the trophic regime and plankton structure of the site where the analysis is 

performed.  Also, in ERSEM/L4 the parameter related to the large-size fraction of the plankton 

community (diatoms and dinoflagellates), resultant relevant. But this is not dissimilar to the results 

obtained for the oligotrophic BATS. 
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Table 4.3 Rank of the parameters based on the overall sensitivities of the ecosystem indicators and 

observable variables simulated by the models at each regional site. Notation and description of the 

parameters are reported. The score is computed by normalizing the βj in eq. 4.2 by the highest β values 

of the parameter ranking first. The Group refer to the categories 1-21 in Table 4.1. 

PISCES/BATS 

Rank Notation Description Score  Group 

     

1 dom_rem/xremik DOM remineralization rate 100% [10] 

2 dom_rem/xkdoc DOC half-saturation constant in limiting bacterial DOM 
degradation activity (Aumont et al, Eq 34) 

99% [12] 

3 zoo/xprefn    Microzooplankton preference for nanophytoplankton 93% [17] 

4 Phy/logbp Nanophyto Temperature sensitivity for growth 86% [5] 

5 zoo/grazrat    MicroZoo maximum grazing rate 71% [13] 

6 phy/mumax0 Nanophyto Max Growth 70% [1] 

7 Zoo/resrat MicroZoo linear mortality & 64% [13] 

8 phy/pislope_s  Nanophyto P-I slope 60% [1] 

9 zoo/logbz    Temperature sensitivity for grazing 56% [5] 

10 phy/beta1    NanoPhyto absorption in blue part of the light 56% [21] 
 

ECOSMO/StatM 

Rank Notation Description Score  Group 

     

1 G2 e-folding depth of visible fraction (m) 100% [21] 

2 A non-visible fraction of shortwave radiation 83% [6] 

3 reminD Detritus remineralization rate 77% [10-18] 

4 sinkDet Detritus sinking rate 69% [19] 

5 muPs Maximum growth rate of small Phytoplankton 48% [1] 

6 muPl Maximum growth rate of large Phytoplankton 42% [1] 

7 GrZsP Grazing rate of small Zooplankton on Phytoplankton 40% [13] 

8 GrZlP Grazing rate of large Zooplankton on Phytoplankton 35% [13] 

9 gammaZsp Small Zooplankton assimilation efficiency on Phytopl 34% [13] 

10 Frr Fraction of dissolved from detritus 30% [10-18] 
 

ERGOM/ARCONA 

Rank Notation Description Score  Group 

1 deltao Phytoplankton mortality rate (pl -> dd) 100% [10] 

1 deltao Phytoplankton mortality rate (pl -> dd) 100% [10] 

2 rfr Redfield ratio P/N 85% [1] 

3 dn_sed Sediment mineralization rate (fl -> aa) 74% [19] 

4 iv Ivlev constant, quadratic 74% [11] 

5 q10_rec sediment recycling q10 rule factor 74% [5] 

6 graz Zooplankton grazing rate 73% [13] 

7 wpz Diatoms sinking velocity 65% [19] 

8 rp0 Diatoms uptake rate 64% [17] 

9 sfl_nn constant surface nitrate flux 64% [4] 

10 wdz Detritus sinking velocity 61% [18] 
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BFM/BOUSSOLE 

Rank Notation Description Score  Group 

     

1 light/EPS0r Background shortwave attenuation 100% [21] 

2 Z5/p_pu Assimilation efficiency, microzooplankton 67% [13] 

3 light/pEIR_eow Photosynthetically active fraction of shortwave 
radiation 

54% [6] 

4 Z5/p_sum Potential growth rate, microzooplankton 47% [13] 

5 P1/p_qlcPPY Reference Chla:C quotum, diatoms 42% [1] 

6 P1/p_qup Membrane affinity for P, diatoms 41% [4] 

7 Z5/p_pu_ea Fraction of activity excretion, microzooplankton 36% [14] 

8 P1/p_alpha_chl Initial slope of the P-E curve, diatoms 35% [1] 

9 P1/p_qplc Minimum phosphorus to carbon ratio, diatoms 33% [4] 

10 P1/p_srs Respiration rate at 10 degrees C, diatoms 33% [2] 

 

ERSEM/L4 

Rank Notation Description Score  Group 

     

1 light/PEIR_eow, photosynthetically active fraction of shortwave 
radiation, 

100% [6] 

2 B1/pu efficiency at high oxygen levels (bacteria) 74% [9] 

3 light/a0w absorption coefficient of clear water 71% [21] 

4 P1/sum, maximum specific productivity at reference 
temperature for diatoms, 

68% [7] 

5 P1/xqcn threshold for nitrogen limitation (relative to 
Redfield ratio) in diatoms 

64% [20] 

6 P1/xqn maximum nitrogen to carbon ratio (relative to 
Redfield ratio) for diatoms 

62% [20] 

7 B1/sR1 maximum turn-over rate of DOM 60% [12] 

8 B1/rR2 fraction of semi-labile DOC available to bacteria 53% [12] 

9 P1/alpha initial slope of PI-curve (mg C m^2/mg Chl/W/d) 51% [1] 

10 P4/xqcn threshold for nitrogen limitation (relative to 
Redfield ratio) in dinoflagellates 

49% [20] 

4.4 Concluding remarks on the results of Part 2 

The sensitivity and ranking analysis of the parameters provided useful information for each CMEMS 

model on: (i) which parameters should be perturbed to obtain ensemble distributions representing 

the uncertainty of the ecosystem indicators; (ii) which parameters has the potential to be controlled 

and estimated by the observable variables by means, e.g., of assimilative methods for state-

parameter. This information is relevant to the delivery of the subsequent tasks of WP3 and WP6.  

We noted that the analyses at the reference sites and the regional sites are coherent in identifying the 

most relevant parameter (rank 1) as well as the group of parameters that are within the ten most 

important. However, we also noted that the precise position of the parameters might change at the 
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reference and regional sites. We also noted some sensitivity to the regional sites, e.g., increased 

relevance of sinking rates and dependencies on the local trophic regime and plankton communities. 

Therefore, we suggest using the ranking at the regional sites (Table 4.3) if only few parameters need 

to be selected in computationally expensive ensemble and assimilative simulations with the full three-

dimensional CMEMS models. 

We also note that our Monte-Carlo based analyses were performed in simplified one-dimensional 

configurations, to exploit the computational efficiency of the configurations. The sensitivities might 

be different in three-dimensional configurations. For example, sinking parameters might have 

different impacts when horizontal transport is included in the simulation.  

Therefore, the ranking of the parameters provided in this work should be considered as a screening 

analysis. This provided a sub-set of parameters which will be tested further in the three-dimensional 

simulations.  

5 Notes on the sensitivity analysis approach 
In sections 3.4 and 4.4 we remarked the significance and the exploitability of the results we have 

obtained in Task 3.2 of SEAMLESS. We have also pointed out some implications of the methods on the 

specific results presented in two sections. Here we stress the most relevant implications of the 

sensitivity analyses methods that are common to the two sections. 

First, all the sensitivity experiments of Task 3.2 were performed in a 1-dimensional vertical modelling 

framework.  This is indeed a useful approach when it is necessary to perform simulations of very large 

ensembles, such as tens of thousands in our application with biogeochemical models with more than 

500 parameters. However, these 1D experiments are based on the approximation of horizontal 

homogeneity, e.g., negligible lateral transport and horizontal gradients. We mitigated this 

approximation by nudging the simulated physical variables to observed profiles, thus indirectly 

embedding effects that were not simulated. Nevertheless, we highlight that the conclusions obtained 

in Task 3.2 are only valid under the approximated one-dimensional representation of the ecosystem. 

In principle, indicators that are found poorly controllable in 1D, could become controllable in a 3D 

experimental framework exploiting information in observed horizontal patterns. Importantly, 

indicators that were found controllable, or parameters that were found sensitive in 1D, are good 

candidates to become the focus the analysis of 3D models. Task 3.3 of SEAMLESS will deal with 

assessing the controllability and sensitivities in the 3D configurations of the CMEMS models. 

Second, the sensitivity analyses took account of only few features of the assimilation approaches used 

in CMEMS. For example, the preservation of the phytoplankton internal nutrient ratios in the NWS 

and MED analysis systems, or the spreading of the ocean-colour observations throughout the mixed 

layer in most of the MFC. However, the analyses did not take account of some peculiarities of the 

assimilation algorithms used in the CMEMS systems. For example, the controllability of dynamical 

systems depends on the properties of the feedback loop operators of the assimilation systems, e.g., 

the Kalman gain matrix or the balancing equations in variational approaches. This feedback might 
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become relevant also for the identifiability of the parameters, when the assimilative systems is applied 

to state-parameter estimation, like in the CMEMS ARC MFC. The controllability analysis in Task 3.3 will 

refer more specifically to the assimilative systems used in the different MFCs. 

Finally, we assumed that the probability distributions of the observable variables and of the 

parameters were uniform in the sensitivity analyses. We note that this approach is rather common in 

the literature with marine models (e.g., Sankar et al., 2018) and was adopted here as well for the sake 

of simplicity. However, we note that more refined approaches have been adopted in the literature 

(e.g., Prieur et al., 2019). 
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