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life noun 

\ ˈlīf \ 

an organismic state characterized by capacity for metabolism, growth, reaction to stimuli, and 

reproduction 

Old English līf, of Germanic origin; related to Dutch lijf, German Leib ‘body’; akin to Old English libban to live: akin to Old High 

German lebēn to live 

Adapted from the Merriam-Webster online dictionary 

 

 

In 2001, the members of twenty international research groups described in a 

landmark publication the first draft of the sequenced human genome.1 Known as 

the Human Genome Project, this massive undertaking spanned over a decade and 

was funded $3 billion by the United States government.2 The result was a massive 

list of four repeating characters - A, C, T, and G – that looked similar to this 

sequence: 

DNA sequence for the gene Rapid Alkalinization Factor in Nicotiana tabacum.3 

Each of these four characters symbolizes one of four nucleotides, the molecular 

building blocks of deoxyribonucleic acid (DNA). In sequence they form the genetic 

code of an organism, similar to how letters form the words in a cooking recipe. 

This genetic code is present in all living organisms, including in nearly all cells of 



the human body, and the very specific order of the nucleotides determines how 

our bodies function and what it looks like. Even small changes in this code can 

determine traits such as the presence of a widow’s peak, a smooth or cleft chin, 

or whether the individual suffers from a photic sneeze reflex.4–7 Unfortunately, 

variations in the genetic code can also be directly linked to hereditary afflictions 

such as cystic fibrosis, Huntington’s disease, and Duchenne muscular dystrophy.8–

10 

Unlike books or recipes, where characters are printed on paper, the genetic code 

is “written” as large DNA molecules, called chromosomes. These are biological 

polymers constructed from a lengthy sequence of covalently bound nucleotides, 

of which almost all human cell types contain twenty-three pairs. For each normal 

pair of chromosomes, one was inherited from the mother, one from the father. 

By storing, replicating, and sharing the genetic code, information on how an 

organism is built and how it should function can be passed on from one 

generation to the other. This system constitutes the basis of reproduction and the 

evolution of life. 

Of course, even the best recipe is only a collection of words until a chef reads it 

and prepares the dish. The central dogma of molecular biology describes how the 

information stored in DNA is transcribed to ribonucleic acid (RNA), which is then 

translated to proteins. This completes the analogy: If DNA constitutes the original 

cookbook for an organism, RNA transcripts are copies of the recipes sent out to 

the chefs, and proteins are the dishes that are eventually prepared.  

Predicted mRNA transcript for the gene Rapid Alkalinization Factor in Nicotiana tabacum.11 The 

open reading frame for translation to protein is highlighted in bold with the respective start and 

stop codons shaded in gray. 



RNA is a short-lived variant of DNA, where the nucleotide T is replaced with U, and 

usually consists of one strand, compared to the more stable double-stranded 

DNA. RNA destined to be translated into a protein sequence is called messenger 

RNA (mRNA). Proteins, being another key macromolecule to life, carry out the bulk 

of tasks in a cell, such as facilitating chemical reactions, transporting molecules, 

and transducing environmental signals. It is therefore not far-fetched at all to 

describe proteins as the key biomolecular machines of life. 

While DNA and RNA are built from only four distinct molecular building blocks, 

proteins consist of a diverse set of twenty base molecules called amino acids – 

twenty-two if the two rare amino acids selenocysteine and pyrrolysine are 

included. To bridge this numerical difference during translation from mRNA to 

protein, each amino acid is encoded by a combination of three nucleotides. Each 

of these triplets is called a codon and either corresponds to one of the twenty 

proteinogenic amino acids or signals the end of the sequence. By applying this 

genetic code to the mRNA sequence, it can be translated to a protein sequence. 

Amino acid sequence for the protein Rapid Alkalinization Factor in Nicotiana tabacum.12 

Each section of DNA that encodes for a protein is called a gene. The collection of 

all genes of a cell or an organism is called a genome. Similarly, all RNA transcripts 

constitute the transcriptome, and all proteins combined form the proteome. These 

terms gave rise to the names of three research fields where the full set of genes, 

transcripts, or proteins are studied in a holistic approach: genomics, 

transcriptomics, and proteomics. All three of these -omics fields are characterized 

by high-throughput analysis methods that generate large amounts of 

experimental data and therefore require specialized bioinformatics solutions to 

process and interpret the results. 

It is important to note that fully elucidating the path from gene to protein is not 

as simple as it might initially appear. Genes only take up a small fraction of the 

chromosome, which implies that most of the DNA is non-coding, meaning it is 

never translated to functional proteins. Nevertheless, these non-coding regions 

play an important role in, for instance, gene regulation.13 Non-coding DNA can 

also be transcribed into non-coding RNA, which can carry out important functions 

ranging from post-transcriptional gene regulation (microRNA) to protein 



translation (ribosomal RNA).14 However, other types of non-coding RNA, most 

notably long non-coding RNA, have been observed. While many long non-coding 

RNAs have been functionally annotated or even linked to pathological 

mechanisms15,16, their functionality mostly remains an ongoing investigation.17 

Furthermore, due to the triplet codon system and the fact that DNA is double 

stranded, genes can be located on the DNA in six different reading frames that 

could eventually each be translated into a different protein sequence. The 

eventually translated open reading frame always starts at a specific start codon – 

which matches the amino acid methionine – so mRNA usually contains an 

untranslated region, as annotated on the RNA transcript shown above. 

Complicating matters even further, primary transcripts in eukaryotes undergo 

splicing events, where parts of the sequence are removed, with the flanking 

regions spliced together again. Consequently, one DNA sequence can be spliced 

into multiple mature mRNA variants, leading to different proteins called protein 

isoforms. Next to these complicating qualitative factors, RNA transcription and 

protein translation are highly regulated quantitative processes. mRNA and protein 

quantities display a very high dynamic range, for instance from a few copies to 105 

and 107 copies, respectively, in the case of mouse fibroblasts.18 

Because transcription and translation are such complex systems, complete 

knowledge of the genome sequence does not easily allow us to predict protein 

levels or protein activity in a cell. In other words, the DNA recipes do not simply 

allow us to know which protein dishes will be prepared. A better take on the 

cooking analogy is therefore that DNA provides us with an ingredient list for a 

restaurant. It can tell us something about the type of restaurant: Is it a human, a 

mouse, or a plant restaurant? If a strange ingredient is on the list, we can 

understand why the food did not taste well; some mutations can be easily linked 

to hereditary afflictions. However, the full list does not tell us when an ingredient 

will be used, or how the chef puts everything together into each dish. Often, it is 

the exact interplay of ingredients that makes a dish delicious or disgusting. The 

same is true in molecular biology, where it is the interplay between proteins that 

defines function versus dysfunction, or health versus disease.  

While the first full draft of the human genome sequence was a major achievement 

in biology, information from the other -omics levels is thus also required to fully 

elucidate the function and dysfunction of biological systems. The Human Genome 



Project provided us with a comprehensive list of genes that, on the one hand, 

proved immediately useful to increase our understanding of many genetic 

disorders. On the other hand, it provided an ideal starting point to develop and 

improve methodologies to study the transcriptome and the proteome. 

Unravelling the genome was, therefore, only the beginning of the exploration of 

life. 

 

Proteins are the major molecular workhorses of the cell: The bulk of the tasks 

required for the healthy functioning cells are carried out by proteins. These tasks 

range from mechanical actions, such as the contraction of muscle tissue, to 

catalyzing the biochemical reactions of cellular metabolism. Proteins carry out 

these functions through their specific structure, often by providing an ideal 

physicochemical surface to interface with metabolites or other proteins (Figure 1). 

So how does a linear protein sequence become a fully functional molecule with a 

specific three-dimensional (3D) structure? 

 
Figure 1: Structure of the Rapid Alkalinization Factor 23 (RALF23) protein (yellow) complexed with 

two other proteins, FER (blue) and LLG2 (red), and several carbohydrates (ball-and-stick 

structures). RALF23 induces the protein complex, which then regulates immune signaling in 

Arabidopsis thaliana. Left: Cartoon representation, right: Contact surface representation. Structure 

downloaded from PDBe (https://www.ebi.ac.uk/pdbe/entry/pdb/6a5e/. 

Indeed, directly after RNA translation, proteins are little more than a simple chain 

of amino acids. However, due to their specific ordering, physicochemical 

interactions between the amino acids push this random coil towards a specific 

stably folded 3D structure. The initial sequence is often called a polypeptide – or 

oligopeptide for shorter sequences – and the amino acid order constitutes the 

protein’s primary structure. Certain simple folding patterns, such as alpha helices 

https://www.ebi.ac.uk/pdbe/entry/pdb/6a5e/


and beta sheets, are omnipresent in larger 3D structures and form the secondary 

structure. These secondary structure elements combine to create the tertiary 

structure, which completes the full protein. If multiple proteins interface with each 

other into one functional multimeric protein complex, this is called the quaternary 

structure (Figure 2). 

 
Figure 2: Illustration of the four levels of protein structure. Adapted from OpenStax Microbiology 

(CC-BY 4.0). 

Protein folding is highly dependent on environmental factors, such as 

temperature and acidity. If a correctly folded protein is subjected to high 

temperatures or to chemical substances such as salts, solvents, strong acids, or 

strong bases, the weak interactions between amino acids – mainly hydrogen 

bonds – are lost. This denaturation process results in loss of quaternary, tertiary, 

and secondary structure, and typically causes the protein to stop functioning. 

Well-known day-to-day examples of protein denaturation are the cooking of meat 

or eggs. An egg can not only be “cooked” through heating, but also by mixing with 

acid. 

While protein folding is fully reproducible within a healthy cellular environment 

and mainly determined by the primary amino acid sequence, acquiring an in-

depth understanding of the entire process has been a considerable challenge in 

molecular biology. Although we now know virtually all human protein sequences, 

their functions are not always known. As protein structure is linked to protein 

function, understanding protein folding can bridge our knowledge from protein 

sequence to protein function. Traditionally, protein structures are determined 

experimentally through nuclear magnetic resonance spectroscopy or X-ray 

crystallography and are later mapped to the primary sequence. Although in silico 

physicochemical modelling of the entire process is possible through molecular 

dynamics simulations, it comes with considerable computational cost. To this end, 

citizen science projects have been setup to combine the computational power of 



ordinary consumer PCs into one distributed system. One such project, 

Folding@Home, occasionally held the position of the world’s most powerful 

computer system thanks to its large userbase.19–21 More recently, truly impressive 

advances have been made by applying deep learning to the problem of protein 

folding.22 However, these approaches only predict the outcome of folding, and do 

not elucidate the folding process itself. 

 

After translation, not all proteins are “finished”. Many proteins undergo 

modification to attain their fully functional form, and nearly all proteins will 

undergo modifications while carrying out their function. Of note, also during 

translation, nascent proteins can be modified before protein folding occurs.23 A 

classic example of a protein that undergoes post-translational modifications (PTMs) 

in its maturation process is insulin. First, a signal peptide is proteolytically 

removed from the sequence. Then, sulfur bridges form between the two active 

chains of the sequence. Finally, a third chain of the sequence, which initially linked 

the two active chains, is also proteolytically removed, yielding the mature and 

functional insulin hormone. 

Most PTMs, however, occur during a protein’s lifespan and involve the addition or 

removal of chemical groups to either the protein’s amino acid side chains, or to 

one of the two ends of the sequence – the amino- (N-terminus) or carboxyl-

terminus (C-terminus). PTMs can thus greatly expand the chemical diversity 

offered by the twenty amino acids, placing another layer of complexity between 

DNA and functional proteins. The addition of molecular groups can range from 

quite small groups, such as phosphorylation, to very large groups, such as 

ubiquitination. A protein can, for instance, be phosphorylated to change its 

conformational structure, which enables or disables function, essentially turning 

the protein on or off. Ubiquitin, by contrast, is itself a protein and is attached to 

other proteins where it often functions as a signal for degradation in the 

proteasome – the protein recycling plant of the cell. Most of these targeted PTMs 

are applied enzymatically by other proteins, carry out a direct function, and are 

crucial to regulate a variety of cellular processes such as protein activity and cell 

signaling cascades. However, harsh environments within the cell, most notably 

due to oxidative stress, can also lead to untargeted PTMs such as oxidation or 

carbonylation.  



 

Proteins are essential to each of the characteristics of life: metabolism, growth, 

reaction to stimuli, and reproduction. Some notable examples include enzymes, 

which catalyze metabolic reactions; cyclins, which closely regulate the cell cycle 

and cell division; protein kinases, which phosphorylate other proteins as part of 

complex signaling cascades that allow the cell to respond to stimuli and adapt to 

its surroundings; and antibodies, which can very specifically bind to specific 

pathogens or toxins, and are therefore central to the adaptive immune system. 

To fully comprehend these complex cellular systems in both health and in disease, 

an in-depth study of proteins is thus required. Although the blueprint of proteins 

can be found in the genome, and transcript levels can be analyzed as a proxy for 

protein quantities, many layers of complexity can only be studied at the proteome 

level. Indeed, a single gene can lead to various protein isoforms; protein quantities 

depend not only on transcription, but also on protein translation and degradation; 

and the presence of PTMs, which is often key to protein activity regulation, can 

only be studied on the proteins themselves. Proteomics is the field that studies 

these complex protein systems in a holistic approach, leveraging high-throughput 

analysis methods such as liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS). 



 

 

analytical chemistry noun 

an·a lyt ic al chem·is try | \ a-nə-ˈli-ti-kəl ˈke-mə-strē \ 

the science of separation, identification, and quantification of chemical components of substances 

analytic borrowed from Late Latin analyticus, borrowed from Greek analytikós, from analýein "to loosen, dissolve, resolve 

into constitutent elements", from ana- + lýein "to loosen, dissolve, destroy" 

earlier chymist, chimist, borrowed from Middle French & Medieval Latin; Middle French chimiste, borrowed from Medieval 

Latin chymista, chimista, short for alchemista, alkimista: transmutation of base metals into gold, the philosopher's stone," 

borrowed from Arabic al-kīmiyāʼ, from al "the" + kīmiyāʼ "art of transmuting base metals," borrowed, perhaps via Syriac 

kīmiyā, from Late Greek chymeîā, chēmeîā, of uncertain origin 

Adapted from the Merriam-Webster online dictionary 

 

The method of choice for the high throughput analysis of proteomes is liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS). LC-MS/MS 

provides a highly sensitive platform where analytes are first separated by 

physicochemical properties such as hydrophobicity and are subsequently 

identified and quantified by their mass. In a sense, a mass spectrometer can be 

seen as a large molecular scale.  

 

The term chromatography combines the Greek words for color and writing, and 

was coined by botanist Mikhail Tsvet when describing the colorful separation of 

plant pigments when dissolved and then applied to a sheet of paper.24 The same 

general principles are implemented in modern liquid chromatography (LC) 

techniques. The analyte mixture is dissolved in a mobile phase and passed 

through a columnar stationary phase. Differential interactions of the analytes with 

each of the two phases results in a variable retention or elution, and thus leads to 

a separation of the analytes over time.  

The most common form of LC in proteomics is reversed-phase high performance 

liquid chromatography (RP-HPLC). It is characterized by a hydrophobic stationary 

phase – typically octadecyl carbon chains bound to a silica substrate – and a 

hydrophilic mobile phase – usually a varying mixture of water and a slightly more 

hydrophobic organic solvent, such as acetonitrile. In contrast to traditional LC, 

high performance LC uses high pressure pumps to push the mobile phase 

containing the sample through a much smaller column with smaller adsorbent 



particles as stationary phase. This results in an increased interaction of analytes 

with the mobile phase and improves separation between different analytes. In RP-

HPLC, the sample is loaded onto the column in a highly hydrophilic mixture of the 

mobile phase. Consequently, the analytes manifest a high affinity for the 

stationary phase, which therefore retains most of the analytes. Next, the mobile 

phase is made ever more hydrophobic by gradually increasing the ratio of organic 

solvent to water in the mixture. This progressively competes with the stationary 

phase for the affinity of the analytes, resulting in a gradual elution in which the 

most hydrophilic analytes elute first while the most hydrophobic analytes elute 

last. The exact time at which an analyte elutes from the column is called its 

retention time. This value is highly dependent on the gradient of the mobile 

phase, the specific properties of the stationary phase, the operational pressures, 

the temperatures, and the pH of the solvent. 

In proteomics, the chromatography step is crucial to reduce the complexity of the 

sample that enters the mass spectrometer at any time point, as the mass 

spectrometer is limited by its cycle time – the time it takes to record data for a 

specific analyte. Chromatography also introduces an additional analytical 

dimension into proteomics data, which has been historically underused due to its 

limited reproducibility across labs. However, with the rise of more demanding 

proteomics identification workflows, improvements in instrumentation and 

advances in computational solutions – mainly machine learning – retention time 

has seen increasing interest as a valuable data point for protein identification. 

 

A mass spectrometer operates under vacuum and measures the ratio of the 

analyte’s mass to its charge state (m/z). Therefore, analytes need to be charged 

and in a gaseous state before being injected into the mass spectrometer. Analytes 

eluting from the chromatography column are, however, dissolved in the liquid 

mobile phase. In 2002, John B. Fenn was awarded the Nobel Prize in Chemistry for 

his invention of electrospray ionization (ESI) in the 1980s which solves this 

problem. In ESI, eluting analytes are pushed from the LC straight into a needle 

held in close proximity to the mass spectrometer inlet, and a high voltage is 

applied between the needle and the inlet. The result is a three step ionization 

process: (1) A spray of droplets exits the tube, with each droplet carrying a high 

charge, (2) applied heat evaporates the solvent in the droplets, making the 



droplets increasingly smaller, and (3) due to the reducing surface area but 

unchanged charge, analytes are ejected from the droplets as charged ions, 

becoming gaseous.25 This elegant solution made the combination of LC with 

MS/MS an attractive platform for high-throughput analytical experiments.26 

However, ionization is not a completely efficient process. Some analytes ionize 

more easily, and are therefore more detectable by ESI-MS. The ionization 

efficiency also depends on the complexity of the analyte mixture being ionized, 

due to an effect called ionization competition, where analytes that would be 

ionized in a low complexity mixture, do not get ionized if many other (more easily 

ionizable) analytes are present. The process of ionization competition is not yet 

fully understood and can have downstream effects on the identification and 

quantification of the respective analytes.27 

Another ionization method is matrix assisted laser desorption/ionization (MALDI). 

MALDI was routinely used in in combination with (two-dimensional) gel 

electrophoresis in proteomics, as it allows for specific spots on the gel to be 

immediately ionized and injected into the mass spectrometer.28–30 However, with 

the increasing popularity of the high throughput LC-ESI-MS platform, MALDI has 

been mostly relegated to specialized applications. One such example is imaging 

MS, where m/z values are measured across a two-dimensional surface or a 3D 

volume to create a mass spectrometric image of a tissue sample.31 

 

In general, a mass spectrometer requires three parts to perform its function: An 

ion source, a mass analyzer, and a detector. The ion source converts the analytes 

into gaseous ions, as was discussed above. Next, the mass analyzer filters or 

separates ions based on their mass-to-charge ratio (m/z). Finally, the ions are 

passed to the detector which converts the presence of an ion into a measurable 

electric signal. During downstream data analysis, the exact mass of the analytes 

can be calculated by multiplying the m/z with the inferred charge state.32 

The most common mass analyzers in proteomics are the quadrupole mass filter, 

linear ion trap, orbitrap, and time-of-flight analyzer. The quadrupole and linear 

ion trap work in a very similar fashion: A specific radio frequency (RF) field is 

applied across four (or more) parallel rods that influences the path of ions based 

on their m/z. Ions with a stable oscillating path can pass through on a parallel 

trajectory between the rods, while all other ions are ejected perpendicularly (or 



collide with the rods). This allows filtering of ions on m/z based on path stability. 

While an ion trap – as the name implies – first accumulates ions to be detected, a 

quadrupole can act as a filter for a constant stream of ions. In a quadrupole mass 

filter, depending on the RF field, ions within a very small window around a specific 

m/z can pass through and hit the detector placed at the end of the rods.33 This 

principle is reversed in the linear ion trap, where the detector is placed next to the 

rods and ions that do not have a stable oscillation will be ejected to the side to hit 

the detector.34 In both cases, the mass analyzers sequentially change the RF field 

to scan over a predefined mass range. The result is a mass spectrum with the 

selected m/z window on the x-axis and the signal of ions hitting the detector on 

the y-axis. Analytes can then be identified by the peak m/z and quantified by the 

peak height. 

In an orbitrap, the mass analyzer and detector are combined into one system. The 

orbitrap consists of a barrel-shaped outer electrode and a spindle-shaped axial 

electrode. When ions enter the orbitrap, they start orbiting the axial electrode, 

hence the name. Depending on their m/z, ions will follow a distinct oscillating path 

from left to right along the spindle. The frequencies of these oscillations are 

directly linked to the ions’ m/z values and the compound trace signals of the 

mixture of oscillating ions can be decomposed into mass spectra using a Fourier 

transform.35 

A time-of-flight mass analyzer separates analytes based on their velocity after 

having been accelerated in an electric field. Ions with a higher charge state will 

undergo a stronger pull from the electric field and will gain more speed, while 

heavier ions will end up with a lower speed due to their greater inertia. As a result, 

the time it takes for an ion to reach the detector is a proxy for its m/z. Depending 

on the initial velocity of the ions, the flight time will be slightly different. This can 

be corrected with a reflectron, an electrostatic “mirror”. Ions with a higher initial 

velocity will reach further into the reflectron, requiring more time to be reflected 

by the electrostatic field, which ultimately compensates for differences in initial 

ion velocity.36 

Mass analyzers can be combined in various configurations, as each mass analyzer 

has its advantages and disadvantages in terms of resolution, mass accuracy, 

operating speed, etc. The most common setups for proteomics applications are 



triple quadrupole, quadrupole - time-of-flight, and quadrupole - ion trap / orbitrap 

hybrid mass spectrometers.37 

After ionization and mass analysis, the third and final step in a typical mass 

spectrometer is detection. Various detectors exist, and the type that is used 

mostly depends on the mass analyzer with which it is coupled. Quadrupoles, ion 

traps and time-of-flight mass analyzers are typically combined with a detector that 

generates a signal when being hit by an ion. Notable examples of such detectors 

are the electron multiplier and the microchannel plate detector. The orbitrap, 

however, has its detector built in. The oscillating ions induce image currents on 

the outer electrode, which can be amplified and measured.38 

 

To identify an analyte in a complex sample, the exact mass is not always 

sufficiently informative, even with the additional dimension of retention time. 

When increasingly more analytes are present in the sample, or an increasingly 

large number of analytes needs to be considered, the probability of encountering 

isomers increases drastically. Isomers are analytes with different chemical 

structures but the same atomic composition, and consequently the exact same 

mass. Another source of information on the analytes is therefore required. 

Tandem mass spectrometry (MS/MS) solves this issue by not only measuring the 

m/z of the full ion, but also the m/z values of different parts of the ion. For 

example, the intact mass is useless to distinguish the fictive analytes ABC and ACB. 

However, knowing that the intact ion consists of a partial ion AC and a partial ion 

CB helps to identify it as analyte ACB. 

In MS/MS, the mass spectrometer operates in two phases: MS1 and MS2. In the 

MS1 phase, the intact masses of the precursor ions are measured. When an ion 

of interest is found in the MS1 survey spectrum, the mass spectrometer will only 

allow ions with that specific m/z to pass through to a fragmentation cell. There, 

intact precursor ions are broken down into fragment ions by being brought into 

collision with inert gas molecules (CID or HCD), or by being bombarded with 

electrons (ETD or ECD). For specific applications multiple fragmentation methods 

can be combined. For the identification of post-translational modifications, for 

instance, ETD supplemented with HCD fragmentation has been shown to 

generate spectra that are rich in both b-, y-, c- and z- ions, providing more evidence 

to localize the modification on the peptide sequence.39 In the MS2 phase, the 



resulting fragment ions are measured in a second scan which provides the full 

fragmentation spectrum (or MS2 spectrum) for each precursor ion. Finally, during 

data analysis, analytes can be identified through the combined information from 

the MS1 peak and the MS2 spectrum. While fragmentation is a stochastic process, 

it is generally reproducible.40 This is of key importance to this dissertation: Given 

an analyte, the resulting MS2 spectra can be predicted. However, different 

fragmentation methods lead to different types and quantities of fragment ions, 

and consequently this needs to be considered during prediction.   



 

proteomics noun 

pro·te o mics | \ ˌpr -t -ˈ -miks \ 

a branch of biotechnology concerned with applying the techniques of molecular biology, 

biochemistry, and genetics to analyzing the structure, function, and interactions of the proteins 

produced by the genes of a particular cell, tissue, or organism, with organizing the information in 

databases, and with applications of the data 

Prote(in) + -omics (after genomics: German Genom, from Gen + -om as in Chromosom). Borrowed from French protéine, from 

Late Greek prōteîos "of the first quality" (from Greek prôtos "first, foremost" + -eios, adjective suffix) + -ine, from Latin -īna, 

from feminine of -īnus, adjective suffix. 

Adapted from the Merriam-Webster online dictionary 

 

The most common modern LC-MS/MS-based proteomics workflow is bottom-up 

proteomics, where full proteins are digested into short peptide sequences before 

being loaded onto the column (Figure 3). After their analysis by LC-MS/MS, the 

presence of full proteins is then inferred from the identified peptides. This process 

is called protein inference and remains a complex issue in the field.41 Most 

advantages to bottom-up proteomics compared to the analysis of intact proteins 

– aptly named top-down proteomics – are the result of a reduction in analyte 

variability. Proteins differ enormously in their size and in their physicochemical 

properties, which can be challenging for both LC and MS/MS. By digesting proteins 

into short peptides with a suitable enzyme, a reasonably consistent length of 

peptide sequences is obtained. This results in an increased separation efficiency 

by LC and in an increased sensitivity of the mass spectrometer. Depending on the 

enzyme, the properties of the resulting peptides can be optimized for LC-MS/MS. 

Trypsin, for instance, cleaves after arginine or lysine. Due to the relative 

occurrence of these amino acids in most organisms, a tryptic digest results in 

peptides with an average length of 11 amino acids. As both arginine and lysine 

carry a positive charge at neutral pH, both the ionization and fragmentation 

efficiency of the resulting peptides is greatly improved. The use of digestion 

enzymes to identify proteins was first proposed in the late 80s.42 Soon after, in the 

early 90s, the method was combined with LC-MS/MS.43 

 
Figure 3. Overview of the LC-MS/MS bottom-up proteomics workflow. 



 

As was described in 1.2.4, in MS/MS analytes are identified by both the MS1 peak 

and a full MS2 spectrum, which contains fragment ions of the analyte. In 

proteomics, the full analytes correspond to peptides, and the fragment ions are 

mostly the result of a single breakage along the backbone of the peptide, which 

leads to one N-terminal and one C-terminal fragment per peptide molecule. By 

fragmenting many molecule “copies” of the same peptide simultaneously, 

breakage on various positions along the backbone can be observed. The result is 

a fragmentation spectrum containing peptide fragments with various pieces of its 

full sequence. In an ideal situation, a peptide with sequence ACDE would result in 

fragment ions for A, AC, ACD, CDE, DE, and E. The availability of all fragment ions in 

a spectrum would allow us to ladder sequence the peptide from its MS2 spectrum. 

Unfortunately, the reality is quite different. Due to the stochasticity of 

fragmentation, many types of backbone ions can be present at different charge 

states, many ions will be missing, and many non-backbone ions can be observed 

in the spectrum. These non-backbone ions are mostly internal fragments 

(multiple amino acids), and immonium ions (single amino acids), which originate 

from multiple consecutive fragmentation events of the same precursor. Variants 

of backbone ions, where a neutral loss of water or ammonia has induced a 

corresponding mass shift, can also be observed in most fragmentation spectra.44 

Additionally, noise may be present and not all peaks will have a sufficient intensity 

to be distinguishable (Figure 4). Therefore, early on in MS/MS-based proteomics 

history, computational methods were developed to identify peptide 

fragmentation spectra.45 

 
Figure 4. Comparison of the theoretical spectrum with only y-ions versus the observed spectrum 

for peptide DECEQALAAEPK. 
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Depending on the fragmentation method, three different covalent bonds 

between two consecutive amino acids can break, resulting in three different pairs 

of N-terminal and C-terminal ions: a-x, b-y, and c-z (Figure 5). CID mostly produces 

b and y ions; HCD mostly produces a, b, and y ions, while ETD and ECD mostly 

produce c and z ions. By convention, ions are numbered by the distance of their 

breakage point from the N-terminus for N-terminal ions, and from the C-terminus 

for C-terminal ions. This number also corresponds to the number of amino acids 

that make up the ion.  

 

Figure 5. Chemical structure of a peptide with four amino acids (left). Amino acids can break at 

different covalent bonds along the backbone, resulting in three different pairs of fragment ions 

per peptide bond. Chemical structures for the a2, b2, c2, x2, y2, and z2 ions (right). Adapted from 

upload.wikimedia.org/wikipedia/commons/b/b2/6_sequence_ions.png (CC-BY-SA 4.0). 

 

In data-dependent acquisition (DDA) mode, the mass spectrometer operates in 

two phases, as was described in section 1.2.4. In the MS1 phase, precursor ions 

are measured, and the most interesting precursor peaks are selected for 

fragmentation and acquisition in the MS2 phase (Figure 6). Usually, the mass 

spectrometer is set to select the N most intense precursor peaks for MS2 

acquisition. However, due to stochastic effects in the mass spectrometer, these 

will not always be the same across technical replicate runs. While this is not an 

issue for more abundant proteins, which will produce multiple high-intensity 

peptides, it renders the reliable identification of low abundance proteins more 

difficult.46,47 

https://pload.wikimedia.org/wikipedia/commons/b/b2/6_sequence_ions.png


 

Figure 6. Overview of the MS1 and MS2 scans in a data-dependent acquisition proteomics 

workflow. 

 

To address the stochasticity issues that are inherent to DDA workflows and that 

hinder full reproducibility, data-independent acquisition (DIA) was proposed. In 

DIA workflows, no selection of specific precursor peaks for fragmentation takes 

place. Instead, after the MS1 scan, all precursors in a wide mass range are 

simultaneously fragmented and acquired. The result is that DIA MS runs have a 

much-improved reproducibility compared to DDA. However, the identification 

process is drastically more complex due to the highly chimeric MS2 spectra that 

contain superimposed fragmentation spectra for many peptides.48,49 

 
Figure 7. Overview of the MS2 scan in a data-independent acquisition proteomics workflow. 

 

Each peptide acquired by DDA MS results in information on the precursor (its 

retention time, mass, and intensity) and information on the fragment ions (a full 

MS2 spectrum). The goal of proteomics search engines is to use this information 

to identify the peptide that generated it. During later processing steps, protein 

presence can be inferred from the set of identified peptides. 

As briefly alluded to in 1.3.2, directly interpreting MS2 spectra is notoriously 

difficult due to the different types of backbone ions at multiple charge states, the 



presence of noise peaks and non-backbone ions, and the absence of many 

expected peaks. Nevertheless, this approach, called de novo identification, has its 

uses in specific workflows. In routine proteomics experiments, however, this 

problem is overcome by including prior knowledge on the peptides that are 

expected in the sample. Thanks to advances in genomics, databases, such as 

Uniprot, are available with sequences for all expected proteins of a given 

species.50 Database search engines use these databases as a starting point to limit 

the search space – the amount of peptide sequences that need to be considered. 

This search space reduction is essential when considering that, for example, one 

hundred quintillion (1020) different 10 amino-acid-long peptides could be 

assembled using the 20 proteinogenic amino acids. To put this number into 

perspective, at the time of writing, less than 3 million peptides (of various lengths, 

not only 10 amino acids) are listed in the human PeptideAtlas of peptides 

identified by MS.51 

With a protein sequence database as starting point, search engines loosely 

replicate all LC-MS/MS steps in silico (Figure 8). First, all proteins are in silico 

digested following the cleavage rules of the enzyme that was used during sample 

preparation. For example, following the cleavage rules for trypsin, a protein will 

be split at each occurrence of lysine or arginine. As proteolytic enzymes never 

achieve complete efficiency, one or two missed cleavages should be allowed. 

When allowing for two missed cleavages, the 20,588 proteins in the human 

UniProtKB/Swiss-Prot proteome – the curated component of UniProt – can be 

tryptically digested into just under 2.2 million unique peptides with lengths 

ranging from six to thirty amino acids. 

 
Figure 8. A typical database search engine loosely replicates LC-MS/MS analysis in silico to perform 

peptide identification. 



This search space then needs to be expanded with expected modifications. In 

routine proteomics workflows, only the most common modifications, such as 

methionine oxidation, are considered. Additionally, if the sample has been treated 

with an alkylation agent to prevent cysteine bridge formation after chemical 

reduction, the resulting modifications – mainly cysteine carbamidomethylation – 

are added to all occurrences of the respective amino acid. There is an important 

difference to the search space if a modification is added as variable, such as 

methionine oxidation, versus fixed, such as cysteine carbamidomethylation. While 

fixed modifications only add a mass shift to all affected residues, setting variable 

modifications results in an extension of the search space with different 

permutations of modified peptides, called peptidoforms. Considering a large 

number of variable modifications results in an exponential expansion of the 

search space due to combinatorial explosion. This can have detrimental effects 

on both the search time and the sensitivity of the search engine. 

Once the complete search space has been established, the search engine will 

iterate over all acquired MS2 spectra. For each spectrum, candidate peptides will 

be selected from the search space by filtering on one or more requirements. In 

most cases, only peptides that fall within a precursor mass window of the 

observed MS1 peak will be considered. The width of this window mostly depends 

on the mass accuracy of the mass analyzer that acquired the MS1 spectrum. Then, 

for all candidate peptides, a theoretical spectrum will be generated that contains 

the expected fragment ions. For each ion, the theoretical m/z can simply be 

calculated. The relative intensity, however, remains unknown. Traditional search 

engines therefore assume that all fragment ion peaks have an equal probability 

of being observed, or simply place more weight on some fragment ion types, such 

as y-ions. Then, for each candidate peptide-to-spectrum match (PSM), a scoring 

function is applied to assess the similarity between the theoretical and the 

observed spectrum. This scoring function can be based on the explained intensity 

– the sum of intensities of all matched peaks – peak counting, or combinations of 

the two.52 The candidate peptide with the best score will be selected as the 

identification for that spectrum. 

Many different implementations of this identification workflow exist, as is 

illustrated by the plethora of search engines that have been developed over the 

past three decades.53 Some specialized search engines alter the selection of 

candidate PSMs to allow for an unrestricted addition of variable modifications or 



amino acid variations. One such approach, called sequence-tag assisted 

searching, looks for fragment ion peak patterns linked to short sequences of 

amino acids. Candidate peptides can then be restricted by containing the 

identified sequence tag, instead of falling within the precursor mass window.54,55 

Another approach, called open modification searching, removes the filtering step 

altogether and uses highly efficient algorithms or vast computational resources 

to reach a manageable search speed.56,57 The advantage of not filtering on 

precursor mass is that the precursor mass shift introduced by modifications or 

amino acids variations does not hinder the identification of the fragmentation 

spectrum. The difference between theoretical and observed precursor mass can 

be used in a later step to identify the modification or amino acid variation, even if 

it was not part of the initial search space.58 A second advantage of not filtering on 

precursor mass, is that if the reported MS1 m/z does not match the MS2 spectrum, 

it can still be identified. A mismatched MS1 m/z can be the result of an inaccurate 

charge state assignment or the selection of an isotope instead of the 

monoisotopic peak. 

In another identification method, called spectral library searching, the sequence 

database is replaced with a library of previously identified experimental peptide 

spectra. This brings two highly attractive potential advantages: (1) the use of 

empirical fragmentation spectra instead of theoretical spectra can result in 

increased sensitivity, and (2) the search space is restricted to peptides that are 

known to be identifiable by mass spectrometry.59 However, the second advantage 

is also the method’s main disadvantage: only peptides that have already been 

identified before can be identified in the library search. This method can therefore 

only be applied in non-explorative studies on species that have been well-

investigated by LC-MS/MS before. 

Different LC-MS/MS protocols often require different identification workflows. For 

DIA, two main search approaches exist: Spectrum-centric methods and peptide-

centric methods. Spectrum-centric searching is akin to traditional searching for 

DDA where for each spectrum, candidate peptides are considered. Of course, in 

the case of DIA, each MS2 spectrum can contain multiple peptides. The peptide-

centric methods were borrowed from targeted proteomics, where for each 

peptide in the search space it is determined if a signal can be found in the MS data 

or not. Currently, the most popular identification workflow for DIA is spectrum-

centric spectral library searching, using a custom DDA library that was acquired 



on the same samples as the DIA data. This method, however, transfers the 

acquisition limitations of DDA to DIA runs, as no peptides can be identified by DIA 

that were not identified by DDA. 

 

Once a list of PSMs and their scores have been obtained by the search engine, it 

is important to assess which identifications can be trusted to be true and which 

cannot. A fixed score-threshold has proven to be unreliable, as the outcome of 

most scoring functions depends on a multitude of factors, such as the complexity 

and quality of the sample and the performance of the LC-MS/MS instruments.60 

The set of PSM scores for a single MS run follows a bimodal distribution, consisting 

of a superposition of correct and incorrect matches, with the assumption that 

high-scoring matches are more likely to be correct. (Figure 9, left). Unfortunately, 

the two groups of PSMs are rarely, if ever, perfectly separable. A method is 

therefore needed to set a score threshold that limits the number of false 

identifications. To estimate this number for each potential score threshold, the 

distribution of low-scoring, presumably false, PSMs needs to be modelled. 

The target-decoy method is one of the most common methods to assess the 

distribution of false PSMs. By adding decoy proteins to the search space – 

sequences that are known not to exist and, consequently, could not be present in 

the sample – a specific decoy score distribution can be extracted from the search 

engine output. Because search settings and query spectra are identical for target 

and decoy peptides, this decoy distribution can be assumed to approximate the 

score distribution of the incorrect target PSMs (Figure 9, right). 

 
Figure 9. Schematic presentation of a typical bimodal search engine score distribution of correct 

and incorrect matches (left) and the target-decoy approach to model the incorrect matches (right). 

The black vertical line denotes the score threshold corresponding to the estimated false discovery 

rate of 1%. 



Of key importance is that the decoy sequences are functionally indistinguishable 

from the target sequences for the search engine, and that both sets of sequences 

thus have similar properties in terms of peptide length distributions, and amino 

acid prevalences and combinations. Consequently, decoys are best generated by 

modifying the target database itself, by shuffling target sequences, reversing 

target sequences, or randomly creating new protein or peptide sequences that 

have similar properties to the targets. Reversing sequences is the most common 

approach, as it is simple, fast, and easily reproduced. 

Next, for any PSM score, a q-value can be calculated as the ratio of target to decoy 

PSMs that have a score that is equal or higher than that score. The lowest score 

with an associated q-value that matches the preferred false discovery rate (FDR) 

– the percentage of false positives over all positives, usually chosen at 1% – can 

then be selected as the threshold. In practice, this means that, among all PSMs 

with scores above or equal to that threshold score, for every 100 targets, 1 decoy 

is expected to be found. Note that because the lowest score with a q-value at the 

FDR threshold is always selected as the threshold score, q-values are modified to 

monotonically increase with decreasing scores. If a PSM has a lower q-value than 

a lower-scoring PSM, its q-value is replaced with the one of the lower-scoring 

PSM.61 

 

As will be detailed in the next chapter (1.4), the main goal of this dissertation is to 

employ machine learning to improve peptide identification strategies. We must 

therefore first define what makes or breaks a successful peptide identification 

workflow. The issue can be condensed into the three vertices of the triangle of 

successful peptide identification: high quality spectra, an ideal search space, and a 

performant scoring function (Figure 10). 

As the old adage says: “Garbage in, garbage out”. If the query spectra are of bad 

quality, even a perfect scoring function would not be able to make (m)any 

identifications. Multiple factors can influence the quality of an MS/MS spectrum. 

In an ideal situation, the spectrum would only contain the full set of peptide 

backbone fragment ions (Figure 4, left); in a worst-case scenario, no peptide ions 

and only noise peaks are visible. Quite obviously, contaminants, both of biological 

and laboratorial origins, can be present in the sample and generate non-peptide 

spectra. While these unidentifiable spectra are not a direct issue, as they are not 



of interest, the same contaminants could also be co-isolated for fragmentation 

and generate noise in a peptide MS2 spectrum. In such a case, the signal to noise 

ratio of the peptide-derived ions could be too low to make an identification. In 

other situations, the peptide itself may not ionize or fragment well, resulting in a 

low signal. 

 

Figure 10. Triangle of successful peptide identification. 

Peptides can also co-isolate, resulting in hard-to-identify, so-called chimeric 

spectra (Figure 11, top).62 An extreme – and intentional – example of co-isolation 

is found in DIA, as was discussed in 1.3.4. Another factor of spectrum quality can 

be found in the instrumentation. Some mass analyzers and detectors generate 

spectra with a higher resolution than others. Orbitrap spectra, for instance, can 

be interpreted with a mass tolerance of only 0.02 Da, while ion trap spectra 

require a tolerance of 0.5 Da or more; a 25-fold decrease in resolving power 

(Figure 11, bottom). The specific instrument settings, such as cycle time or ion 

injection time also impact spectrum quality.63 Ultimately, while many 

unintentional – and sometimes avoidable – sources of bad quality spectra exist, 

some might be unavoidable or inherent to the methodology used, such as in the 

case of DIA or ion trap acquisition. 

            
                   

              

                  

                           

                    



 

Figure 11. Top: Example of a chimeric spectrum (left) containing fragment ions of two distinct 

peptide spectra (right). Bottom: Scaled arrows indicating the difference in required mass tolerance 

windows for orbitrap and ion trap acquisition.  

The next vertex of the triangle is the search space. Ideally, the search space would 

contain all peptides (or better peptidoforms) that have been acquired in a 

spectrum, and nothing more. Of course, relevant peptides missing from the 

search space can result in an unidentified spectrum, or its spectrum could match 

to another, incorrect, peptide. Even though the score would probably be lower 

than that for the correct peptide, the incorrect PSM could nevertheless 

erroneously pass the FDR threshold. Potential contaminant proteins, such as 

products used in cell culture or keratin of human skin flakes, should therefore 

always be supplemented to the search space. Wrong conclusions have been made 

in several infamous cases, where key identifications turned out to be contaminant 

peptides that were wrongly omitted from the search space.64–66 

The presence of irrelevant peptides in the search space can also generate 

problematic results. While a manageable number of irrelevant peptides might 

lead to some false identifications, a very large number of irrelevant peptides can 

lead to an entire collapse of the search sensitivity.53 This effect is a consequence 

of the drastic increase in candidate peptides that need to be considered for each 

spectrum. The probability increases that many candidate PSMs attain high scores 

by random chance. In turn, this decreases the confidence in the best scoring PSM, 

or simply results in one of the incorrect candidate PSMs scoring higher than the 



correct PSM. The downstream effect is a large amount of high scoring decoy PSMs, 

which means that the score threshold for a 1% FDR will either be very high, or 

non-existent. In the latter case, no identifications can be made at all. 

Unfortunately, a perfect search space is incredibly hard to achieve, as both 

sensitivity and specificity need to be balanced. In fact, as a perfect search space is 

the exact sample protein composition, already knowing it renders the analysis 

unnecessary. Compiling a specific list of all potential peptidoforms that could be 

acquired by the mass spectrometer during a specific experiment is not 

straightforward. Even though canonical proteomes listed in databases such as 

UniProt are a good starting point, many more proteoforms or peptidoforms could 

be in the sample. The canonical proteome could be extended with non-canonical 

sequences, such as protein isoforms and amino acid variations. While such 

database expansions increase the comprehensiveness, the efficiency is greatly 

reduced due to the large number of irrelevant peptides. Indeed, the field of 

proteogenomics combines genomics and proteomics experiments to find these 

non-canonical proteins, and often struggles with large search spaces.67 Similarly, 

in immunopeptidomics experiments, where the goal is to identify MHC-presented 

peptides that are randomly cleaved by the proteasome, no specific cleavage rules 

can be applied to the protein sequences, also leading to a massive peptide search 

space.68 Moreover, the study of microbial proteomes, called metaproteomics, is 

also confronted with immense search spaces, as a multitude of species needs to 

be considered at once.69 The major form of search space expansion, however, lies 

in the addition of PTMs. As touched upon in section 1.3.5, considering all known 

PTMs and artefactual modifications massively increases the search space due to 

combinatorial explosion.  

While these methods for expanding the search space should increase the 

sensitivity of the search, they often struggle with the aforementioned “FDR 

collapse”. Some approaches have therefore been developed to improve sensitivity 

by reducing the search space again. In spectral library searching, for instance, only 

peptides that have been identified before can be added to the search space.59,70 

Then again, this goes against the novel discovery goal of many of the workflows 

described above. Iterative searching has been proposed in many variants as a 

more effective strategy to deal with large search spaces. In each iteration, either 

spectra that remained unidentified when matched to a normal search space are 

searched again with an expanded database, or all spectra are searched again with 



a more constricted search space in terms of proteins, but more open in terms of 

PTMs or cleavage rules.71–73 In a more specialized version of iterative searching, 

the annotated peaks of identified peptides are removed from the fragmentation 

spectra and the remaining peaks are subjected to a second search for chimeric 

spectra – spectra that contain multiple co-fragmented peptides.74,75 Nevertheless, 

the results of iterative searches must be very carefully controlled with elaborate 

statistical error rate estimations that can robustly deal with such approaches. A 

more promising method is the use of proteotypicity predictors. These prediction 

tools can be used to reduce the search space by excluding peptides that are either 

unlikely to be successfully cleaved by the digestion enzyme, and/or that are 

unlikely to ionize and fragment well in the mass spectrometer.76–78 

The final vertex of the triangle is the scoring function. Many scoring functions have 

been developed, some almost three decades ago.45,52,53,79 The primary goal of a 

scoring function is to assess the probability whether a candidate PSM is correct or 

not, and this can be achieved with the help of various metrics. The simplest of 

these metrics is peak counting: How many peaks in the spectrum can be explained 

by the candidate peptide. Another metric is the explained intensity: How much of 

the spectrum’s total peak intensity can be explained by the candidate peptide. 

Most traditional search engine scores are based on one of these two metrics, or 

on a combination of both. While more modern approaches have improved upon 

traditional scoring functions80,81, one central assumption is always made: 

matching more high intensity peaks is better. While this assumption works well in 

most cases, it does not fully apply. Analysis of peptide fragmentation patterns 

shows that some peaks are consistently low in intensity, or even completely 

absent.82 In that sense, the absence of a peak can be just as much evidence for a 

peptide identification as the presence of a peak. Moreover, much information has 

been consistently underused by search engines. Additional information from the 

PSM, such as the mass errors between the theoretical and observed precursor 

and fragment ion masses, or orthogonal information, such as the observed 

retention time, is only rarely used in peptide identification workflows.83,84 As a 

result, while most scoring functions suffice for general proteomics workflows, 

there is room for improvement. 

Many novel and challenging proteomics identification workflows suffer from at 

least one suboptimal triangle vertex, which results in ambiguity in the 

identification process. To recover identification performance, the other two 



vertices need to compensate for the suboptimal one. For example, in DIA 

workflows, where spectra are profoundly chimeric, sample-specific spectral 

libraries bring both a reduction in search space size and an increased scoring 

function sensitivity. However, in recent years, it has been proven that machine 

learning paves a particularly promising road to further improve each of the 

triangle’s vertices and can therefore act as a key enabler of novel proteomics 

workflows.  

  



 

 

machine learning noun 

ma·chine learn·ing | \ mə-ˈsh n ˈlər-niŋ \ 

the process by which a computer is able to improve its own by continuously incorporating new 

data into an existing statistical model 

Middle French, from Latin machina, from Greek mēchanē (Doric dialect machana), from mēchos means, expedient 

Middle English lernen, from Old English leornian; akin to Old High German lernēn to learn, Old English last footprint, Latin 

lira furrow, track 

Adapted from the Merriam-Webster online dictionary 

 

 

 

Machine learning (ML) is a form of artificial intelligence where computer 

algorithms are written that can learn to recognize patterns in example data to 

subsequently make predictions or decisions based on new data without human 

intervention. It allows a computer to carry out (complex) tasks without the need 

for every step to be programmed. For instance, using a large collection of labeled 

pictures of apples or bananas, an ML algorithm can train a model that accurately 

classifies a new picture as either a banana or an apple. It can learn this task from 

the large number of available examples (called the training data) and does not 

need to be programmed specifically to do so. ML is especially useful when 

modelling an outcome that stems from complex interactions in high dimensional 

data. 

In the last decade, machine learning has found many applications, becoming a 

natural part of daily life. Notable examples are voice assistants, email spam 

filtering, content recommendations on streaming services, and facial recognition 

in smartphones. The use of machine learning has become increasingly popular 

due to an ever-growing amount of available data, continuously improving 

computers, and recent developments in ML algorithms. Because of its flexibility, 

ML techniques can be applied in virtually any field, as long as a sufficient amount 

of data is available and the learning task is predictable. Bioinformatics has been 

no exception to this rule, with exponentially more articles being published every 

year on machine learning applications in the field.85 



To carry out a complex task, a machine learning algorithm learns from example 

data. This training data set needs to be sufficiently large, depending on the 

complexity of the problem, to provide sufficient information on how the input 

data explains the requested output. Evaluation data can be used to evaluate the 

model during training, and test data gives an estimation of the final model’s 

performance after training is complete. Each item in an ML data set is called a 

sample and contains features and a label. The features are a structured set of data 

points describing each sample, while the label contains the desired output for the 

model. In the case of classification, this label should be a category; in the case of 

regression, the label should be a continuous number. A sample’s label is 

sometimes also called a target. To perform accurate predictions, an ML algorithm 

generalizes the relationship between the features and the labels into a model. If 

successful, applying this model to the test data features results in predictions that 

(closely) approximate the test data labels.86 

To learn a model that generalizes well beyond the training data, a balance must 

be found between underfitting and overfitting (Figure 12). Underfitting occurs when 

the model misses relevant patterns in the training data, while in overfitting the 

model erroneously learns from irrelevant patterns. Mostly, overfitting incorrectly 

homes in on small changes in the training data that are the result of random 

noise. Overfitting can therefore be avoided by limiting noise in the data, or by 

reducing the model complexity. Most ML algorithms include a regularization 

system that attempts to control overfitting. However, as more complex models 

can overcome underfitting, the ability to solve a prediction problem is often 

limited by this trade-off between more or less complex models.86 

 
Figure 12. Simplified example of overfitting, underfitting, and a good fit. Dots represent datapoints 

defined by two features (x- and y-axis) from two different classes (red and blue), where the learning 

task is to separate datapoints from each class. Adapted from 

https://commons.wikimedia.org/wiki/File:Overfitting.svg (CC-BY-SA 4.0). 

https://commons.wikimedia.org/wiki/File:Overfitting.svg


When training and testing ML models, it is important to simulate the real-world 

situation where the model would be deployed as accurately as possible. 

Therefore, the training data should be representative for the real-world 

application, and only features that are available in the real-world application can 

be used during training. Furthermore, careful consideration should be taken while 

preparing the training, testing, and evaluation data sets to prevent data leakage. 

As ML algorithms are simply optimized to find patterns, any unintentionally 

introduced pattern in the features that explains the targets could be exploited by 

the model, hindering its performance outside of the training setup. Test and 

evaluation datasets should therefore be completely unseen to the model, and 

random assignment of samples to subsamples can be used to remove biases 

within train, test, and evaluation data.86 

Since the more recent rise in popularity of deep learning (DL), ML algorithms have 

been classified into two categories: traditional ML and DL. One main difference 

between the two lies in the preparation of the data before learning. For traditional 

ML methods, the raw data needs to be parsed into a set of meaningful features 

before the ML algorithm is applied. This step is called feature engineering and 

usually takes up a significant portion of the work in developing an ML solution. In 

contrast, when developing DL models these efforts are shifted onto finding an 

optimal DL model architecture that can learn these meaningful features from the 

raw data itself. This process is a first step towards end-to-end learning, where an 

ML model can learn the complete process from raw data input to the requested 

output without human intervention. It must be noted that end-to-end learning is 

an end-goal that most DL models do not yet achieve, as this usually would require 

more complex models, which in turn require more advanced learning algorithms 

and vastly more training data. Currently, manually preprocessing the input data 

or splitting up the task into separate prediction steps often yields better results. 

The distinction between traditional ML and DL is not always as clear. Neural 

networks (NNs) are the main class of learning algorithms used in DL, but an NN 

does not always constitute DL. Deep learning is named for the fact that NNs can 

be layered, and deep neural networks contain many layers. Consequently, a 

shallow NN with less than three layers is usually not called deep learning. 

  



 

Many traditional ML algorithms have been developed over the last few decades. 

They can be divided into three main categories: unsupervised, semi-supervised, 

and supervised learning. In unsupervised learning, no labels are required in the 

training data. The most common unsupervised learning approaches are 

clustering methods, where samples are classified based on similarities in their 

features. New data can later be classified by their proximity to the existing 

clusters. In semi-supervised learning, only a part of the training data is labeled. 

This is especially useful when a large amount of training data is available, but only 

a minor fraction can be labeled. 

In contrast to unsupervised learning, in supervised learning all training data is 

labeled. To illustrate some of the common concepts and techniques in supervised 

learning, we can use linear regression – one of the simplest ML approaches – as 

an example. In linear regression, given a target 𝑦  and a feature 𝑥1 , a linear 

function 𝑦 = 𝜃0 + 𝑥1 ∙ 𝜃1  can be fit on the training data (Figure 13). In higher 

dimensional data, each feature will have a corresponding parameter 𝜃  in the 

linear function. The goodness-of-fit is captured by a loss function: The lower the 

loss, the better the model fits the sample. The average loss over the entire training 

data set is called the cost. Therefore, the learning task is to optimize the two 

parameters 𝜃0 and 𝜃1 – in this case the slope and the intercept – to approximate 

the target 𝑦 for each value of 𝑥1, which in turn minimizes the loss function and 

consequently minimizes the cost over the complete data set.  

 

Figure 13. Schematic example of linear regression with one feature 𝑥1 to predict the target 𝑦 with 

parameters 𝜃0  and 𝜃1 . Blue dots represent data points and the red line represents the linear 

regression model. 

  



This optimization problem can be solved using gradient descent, a central 

methodology in ML. First, the parameters 𝜃0  and 𝜃1  are initialized randomly, 

which will most likely result in a high cost. Then, the derivative of the cost function 

in terms of each parameter will point in the direction in which the parameter 

should be changed to reduce the cost. The parameters are then adjusted 

accordingly. Using this process, the parameters are adjusted iteratively, until the 

cost function converges on a local minimum, which means that the optimal values 

for 𝜃0  and 𝜃1  are found (Figure 14). For complex problems, initializing the 

parameters at different random values could result in convergence of the cost 

function at a different local minimum. For optimal results, gradient descent can 

be repeated with multiple random initializations. 

 

Figure 14. Schematic example of gradient descent in a two-dimensional parameter space. Color 

depicts the cost of the model at each combination of the two parameters, with a gradient from 

yellow (high cost) over green to blue (low cost). In this example, the gradient descent algorithm is 

initiated at different parameter combinations along a grid (blue dots) and each path can be 

followed from starting point to local minimum (blue lines). Progression of the gradient descent 

algorithm is shown in each panel from left to right. 

Adapted from https://commons.wikimedia.org/wiki/File:Gradient_Descent_in_2D.webm (CC-BY-

SA 4.0). 

Support Vector Machines (SVMs) are powerful ML models for binary classification. 

If two classes are perfectly linearly separable, the SVM will try to maximize the 

margins between the datapoints of the two classes to find an optimal separation 

line. SVMs can carry out this task in high dimensional feature spaces, in which the 

separation line is in fact a hyperplane. When the samples are not linearly 

separable, the SVM algorithm tries to minimize the distance of wrongly classified 

data points to the hyperplane. To extend the application of SVMs to non-linear 

relationships, kernel functions can be used that first transform the feature space, 

for instance using polynomial transformations. Extensions to apply the same 

https://commons.wikimedia.org/wiki/File:Gradient_Descent_in_2D.webm


methodologies to regression problems exist in the form of Support Vector 

Regressors.  

Decision trees are another example of supervised learning. Each node in a 

decision tree makes a binary decision based on one of the input features. At the 

end of each branch is a leaf that is associated with a prediction, which could be a 

class or a continuous value. The tree is constructed iteratively from the stem down 

to the leaves, and each nodes splits the data in the most informative way. This can 

be a reduction in information entropy or the reduction of any applicable loss 

function. 

Ensemble methods combine multiple models to achieve a better overall predictive 

performance. Multiple types of algorithms can be combined in various ways, such 

as averaging their predictions, to leverage each of the algorithm’s advantages. 

Similarly, many models of the same algorithm can be trained and combined. 

Popular examples of the latter are bootstrap aggregating, or bagging, and boosting. 

In the former, multiple weak learners are trained on different randomly sampled 

sections of the training dataset, usually using random sampling with replacement. 

In the latter, new weak learners are trained iteratively on the complete dataset. 

However, each sample is weighted by the performance of the previous weak 

learner: accurately predicted samples are weighted down, while poorly predicted 

samples are weighted up. Each weak learner will therefore specifically improve 

the mistakes made by the previous weak learners. The main advantages of many 

weak learners compared to one strong learner, is that potential overfitting of 

individual weak learners is averaged out, resulting in a better overall performance. 

Bagging can be applied with decision trees in the form of the random forest 

algorithm, and XGBoost is a relatively recent highly performing implementation 

of boosted decision trees.87,88 

 

Deep learning is mostly characterized by the use of neural networks, layers of 

individual models that make predictions based on the output of the previous 

layer. Its name stems from the analogy with the layering of biological neurons in 

a brain. As mentioned before, neural networks can be shallow, with only a few 

layers, or deep, having as many as dozens of layers. The basic building block of a 

neural network, a neuron, is a single linear regression model as was detailed in the 

previous section. In the first layer, each neuron receives all features as input. The 



neurons in the following layers, however, receive the output of the neurons in the 

previous layer. The outputs of the neurons in the final layer are the final prediction 

values. The intermediate layers are called hidden layers. In a single network, each 

layer can have a variable number of neurons, and as many layers can be used as 

is deemed necessary. Thanks to these simple building principles, neural networks 

are very flexible in their architecture, which can be individually optimized for each 

learning task. Several specialized deep learning techniques have been developed, 

allowing their application on various data types and numerous learning tasks. 

Convolutional neural networks (CNNs) were developed for image recognition, and 

both recurrent neural networks (RNNs) and transformer networks were 

developed for temporal problems, such as speech and language recognition.89 

Nevertheless, these more specialized models can be applied on entirely different 

problems that have similar input data. Various bioinformatics problems involve 

matrices or sequential data, such as protein sequences, which lends itself 

perfectly to these methods.85 

 

As described in section 1.3.5, proteomics search engines select the candidate 

PSMs with the highest score for each acquired spectrum. This score is obtained 

with a scoring function that measures the similarity between the observed 

spectrum and the PSM’s theoretical spectrum. Then, using the target-decoy 

method, only PSMs that have a score higher than the FDR threshold are classified 

as confidently identified. However, in most experiments, an overlap between true 

target and decoy score distributions is seen, indicating that at least some true 

targets are being misclassified as false. A better separation between the 

distributions of true targets and decoy PSMs would allow for a lower score 

threshold, and would therefore lead to more accepted true targets at a controlled 

FDR. Moreover, traditional scoring functions either focus on one simple similarity 

metric, or combine multiple metrics in a static and arbitrary manner. A more 

dynamic approach for integrating multiple metrics could result in a more sensitive 

scoring function that is specifically tuned to the data set at hand. 

In 2007, Lukas Käll and colleagues proposed to leverage ML to improve upon 

existing scoring functions.90 Their identification post-processing tool Percolator, 

which is now routinely applied, implements a semi-supervised SVM that classifies 

true and false PSMs. Each PSM is a sample, where individual scoring metrics are 



the features and the PSMs status – true target, or false target, or decoy – is the 

label. In contrast to previous ML-based scoring implementations, Percolator is 

retrained for each MS dataset specifically. This brings two drastic improvements: 

it does not require a pretrained model that perfectly matches the properties of 

the dataset at hand, and PSMs need not be manually curated to generate a high-

quality training data set. Instead, for each new data set, the decoy PSMs are used 

as negative examples, and the highest scoring PSMs are used as positive 

examples. Using cross validation, a robust classifier can be trained on these 

example PSMs and subsequently applied on the complete dataset. The classifier’s 

output probabilities (indicating whether a PSM is true or false) are then used as a 

new PSM score, on which the target decoy approach is repeated, and a new FDR 

threshold can be set. 

The major advantage of ML-based PSM rescoring, is that any informative feature 

can be used to distinguish true from false PSMs. The original Percolator 

implementation with the SEQUEST search engine uses twenty different features, 

ranging from the individual components of the original scoring function to PSM 

properties, such as peptide length, precursor charge, and the number of missed 

cleavages. The result is a much more sensitive scoring function that can be 

dynamically adapted to each data set. Over the years, Percolator has been 

improved by adding more ML features and increasing computational 

performance.83,91–93 Nevertheless, the same methodology is still in use today and 

has taken up a central spot in the proteomics data analysis toolkit.  

 

Another ML application in proteomics that is central to this thesis project is the 

prediction of peptide fragmentation spectra. While the exact m/z values of a 

peptide fragment ion can easily be calculated given its peptide sequence, peptide 

fragment ion peak intensities follow complex patterns that are not completely 

understood. They are, however, reproducible across experiments, given that 

similar experimental settings are used. In 2013, MS²PIP was published by Sven 

Degroeve, my co-promotor. It implements a random forest regressor to 

accurately predict peak intensities for b- and y-ions of ion trap CID fragmentation 

spectra that outperformed the then state-of-the-art.94 In a next version, released 

in 2015, the algorithms were improved and models for orbitrap HCD spectra were 

added.95  



 

In 2019, my colleague, Ana Sílvia Ferreira Diamantino Coelho e Silva, 

demonstrated how the combination of MS²PIP spectrum prediction and 

Percolator PSM rescoring can improve the sensitivity of peptide identification.96 

Various similarity measures can be calculated between the observed spectrum 

and the MS²PIP-predicted spectrum for each target or decoy PSM’s peptide. These 

metrics can then be added to the feature set Percolator uses for rescoring. 

Consequently, each candidate peptide is now not only scored on the basis of a 

comparison to a theoretical spectrum, which essentially only contains m/z values; 

instead, the observed spectrum can now be compared to a fully predicted 

spectrum which includes the peak intensity dimension (Figure 15). This additional 

information improves the classification accuracy of Percolator, which in turn 

improves the identification rate at a given FDR threshold. Ultimately, by combining 

these two machine learning techniques, an optimized scoring function can be 

generated that dynamically adapts to each specific MS data set. Such a data-

driven scoring function is ideal to recover the identification sensitivity of 

challenging proteomics workflows where the other vertices of the triangle of 

successful peptide identification – as detailed in section 1.3.7 – are suboptimal and 

either introduce identification ambiguity in the results, or suffer dramatic 

sensitivity loss because of this ambiguity. 

 

 
Figure 15. Examples of a predicted and an observed spectrum. Comparing the two provides 

valuable information for Percolator to generate a more sensitive identification score.  
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As shown in the introduction, ML paves a promising road to increase the 

identification sensitivity in challenging proteomics workflows. The focus of my 

PhD project has therefore been to investigate and implement various ML 

techniques in proteomics identification pipelines to ultimately improve peptide 

identification. This work can be divided into five research objectives: (1) improve 

and expand the use of peptide spectrum prediction, (2) apply spectrum prediction 

to develop a novel DIA-MS identification pipeline, (3) provide my perspective of 

the state-of-the-art of machine learning applications in proteomics, (4) apply 

machine learning-assisted rescoring of peptide identifications to a variety of 

challenging proteomics workflows, and (5) develop a next-generation 

fragmentation spectrum predictor for modified peptides. 

My first objective was to improve the peptide spectrum predictor MS²PIP and 

expand its use to other fragmentation methods, instruments, and labeling 

techniques. I first showed that many of these experimental settings lead to 

different fragmentation patterns and require specialized MS²PIP models to 

achieve a consistently high prediction accuracy. I then trained and evaluated such 

models on various publicly available proteomics data sets. The resulting models 

have been integrated in a robust web server I rebuilt from the ground up, and in 

a Python package, which is now available on the PyPI, Bioconda, and 

Biocontainers repositories.  

For my second objective, I worked together with colleagues from the Faculty of 

Pharmaceutical Sciences to investigate the use of MS²PIP-predicted spectral 

libraries for the proteome-wide identification of DIA-MS data. In this context, I 

developed a software workflow to generate an in silico predicted spectral library 

for any given fasta file of protein sequences. This workflow implements the newly 

trained MS²PIP models from the first objective and a custom trained Elude 

retention time prediction model. Ultimately, we showed that proteome-wide in 

silico predicted libraries outperform both proteome-wide sequence database 

searches and DDA spectral library searches of DIA-MS data. 

In my third objective, together with my colleague Robbin Bouwmeester, we 

provided our perspective on the use of ML in proteomics identification workflows. 

We listed the many applications of ML on proteomics data and showed how the 



combined use of these applications can enable novel, challenging proteomics 

workflows by reducing identification ambiguity. 

In my fourth objective, I enabled the use of predicted spectrum-based rescoring 

to a wide range of challenging proteomics workflows. I first combined the MS²PIP 

models developed in the first objective with the conceptual implementation of 

spectrum prediction-based rescoring of PSMs. I developed a fully functioning 

software pipeline that accepts PSMs of various proteomics search engines, 

extracts meaningful features from (1) the search engine identification, (2) the 

similarity with the MS²PIP-predicted spectrum, and (3) the similarity with a 

predicted retention time, and employs Percolator to rescore all PSMs with this 

extended feature set. This pipeline, called MS²Rescore, is available as a Python 

package with developer-friendly command line interface, and a user-friendly 

graphical user interface. Through several collaborations, and the supervision of a 

thesis student, I showed how MS²Rescore drastically improves the identification 

sensitivity in proteogenomics, metaproteomics, biopeptidomics, and 

immunopeptidomics workflows. 

In my fifth and final objective, I conceptualized a novel type of spectrum predictor 

that can generalize across peptides with any type of artefactual or post-

translational modification. This new prediction tool, called MS²DIP, uses CNNs to 

learn fragmentation patterns from the atomic composition of both unmodified 

and modified peptides. Its aim is to provide a highly accurate spectrum prediction 

for any modified peptide that can be used to increase the sensitivity in open 

modification search engines. 
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In this article, I describe the various improvements Sven Degroeve and I made to 

the MS²PIP peptide spectrum prediction tool. More importantly, I show for the 

first time how various experimental settings can influence peptide fragmentation 

patterns and consequently require specialized spectrum prediction models. I 

trained and evaluated two improved and four new prediction models on various 

public data sets. Furthermore, I developed a new prediction server from the 

ground up to be more robust and capable of handling the new prediction models. 

This web server brings user-friendly access to the new prediction models to any 

interested user. Additionally, the web server contains a developer-friendly 

application programming interface, which allows it to be integrated in other 

software. 

For this dissertation, two paragraphs were added to section 3.1.3.1 that describe 

the MS²PIP algorithm in more detail. 

https://doi.org/10.1093/nar/gkz299


 

MS²PIP is a data-driven tool that accurately predicts peak intensities for a given 

peptide’s fragmentation mass spectrum. Since the release of the MS²PIP web 

server in 2015, we have brought significant updates to both the tool and the web 

server. In addition to the original models for CID and HCD fragmentation, we have 

added specialized models for the TripleTOF 5600+ mass spectrometer, for TMT-

labeled peptides, for iTRAQ-labeled peptides, and for iTRAQ-labeled 

phosphopeptides. Because the fragmentation pattern is heavily altered in each of 

these cases, these additional models greatly improve the prediction accuracy for 

their corresponding data types. We have also substantially reduced the 

computational resources required to run MS²PIP, and have completely rebuilt the 

web server, which now allows predictions of up to 100,000 peptide sequences in 

a single request. The MS²PIP web server is freely available at 

https://iomics.ugent.be/ms2pip/. 

 

In high throughput tandem mass spectrometry, peptides are identified by 

analyzing their fragmentation spectra. These spectra are obtained by collision 

induced dissociation (CID) or higher-energy collisional dissociation (HCD), where 

peptides are made to collide with an inert gas, or by electron-transfer dissociation 

(ETD) or electron-capture dissociation (ECD), in which electrons are transferred to 

peptides. After fragmentation, the mass-to-charge ratios (m/z) and intensities of 

the resulting fragment ions are measured, yielding the two dimensions of a 

fragmentation spectrum. While the fragment ions’ m/z can easily be calculated for 

any given peptide, their intensities have proven to follow extremely complex 

patterns.97 

In 2013, we therefore developed the data-driven tool MS²PIP: MS² Peak Intensity 

Prediction94, which can predict fragment ion intensities. By applying machine 

learning algorithms on the vast amounts of data present in public proteomics 

repositories such as the PRIDE Archive 98,99, we could create generalized models 

that accurately predict the expected normalized MS2 peak intensities for a given 

peptide. While the first iteration of MS²PIP outperformed the then state-of-the art 

prediction tool PeptideART100, it was originally only trained for CID fragmentation 

spectra. As HCD fragmentation became more popular in the field, we therefore 

expanded MS²PIP with prediction models for HCD spectra. In 2015, we built the 

https://iomics.ugent.be/ms2pip/


MS²PIP web server to make these models easily available to all potential users, 

regardless of their computational resources.101 

Over the past few years, MS²PIP has been used by researchers to create 

proteome-wide spectral libraries for proteomics search engines (including data 

independent acquisition), to select discriminative transitions for targeted 

proteomics102,103, and to validate interesting peptide identifications (e.g. 

biomarkers).104,105 Moreover, we have also shown that MS²PIP predictions can be 

used to improve upon and even replace proteomics search engine output when 

rescoring peptide-to-spectrum matches.96 

Because of the great interest in, and steadily increasing relevance of, MS2 peak 

intensity prediction, we have continued to update and improve MS²PIP and the 

MS²PIP web server. We have updated MS²PIP to be more computationally 

efficient, we have rebuilt the MS²PIP web server to handle up to 100,000 peptide 

sequences per request instead of 1,000, and we have added specialized models 

for the TripleTOF 5600+ mass spectrometer and for isobaric labeled peptides. 

 

 

Rapid advances in machine learning research combined with larger and more 

diverse training datasets have allowed for more accurate MS²PIP predictive 

models. The Random Forest algorithm employed in the original MS²PIP has made 

room for a Gradient Tree Boosting algorithm96, which, in combination with more 

training data, has improved prediction accuracy. This improved prediction is 

especially noticeable for longer peptides and peptides with higher charge states, 

where the large performance differences between charge 2+ and 3+ observed for 

the original MS²PIP models have been significantly reduced in the new version 

(Figure 18). 

These advances are enabled by a novel feature engineering method that allows 

for a fixed number of features to be calculated from a variable peptide sequence 

length. For each peptide or fragment ion, a fixed set of statistics is calculated from 

each distribution of a physicochemical property across the sequence. These 

properties are iso-electric point, helicity, hydrophobicity, and basicity. The 

distribution statistics are minimum, maximum and the three quantiles (25%, 50%, 

and 75%). Additionally, the four physicochemical properties are also added for the 

N-terminus, the C-terminus, and the four amino acids around the fragmentation 



site. Combined with peptide length and precursor charge, this results in a fixed 

set of 74 features for any peptide, regardless of its length. Ultimately, this method 

allows for a single prediction model to be trained across peptide lengths and 

precursor charges, drastically increasing the amount of training data that can be 

used for training a single model, compared to the previous MS²PIP 

implementation. 

While mass shifts introduced by peptide modifications are considered by MS²PIP 

to extract the correct peaks from a spectrum, modifications are not encoded for 

peak intensity predictions. This means that MS²PIP can handle virtually any 

peptide modification, although its prediction accuracy might be reduced 

depending on the effect of the modification on peptide fragmentation. This 

mechanism, together with the new feature engineering method, enables MS²PIP 

to predict spectra for virtually all peptides that can be identified in standard 

shotgun proteomics setups, regardless of length, precursor charge, or 

modifications. 

In addition, we have drastically reduced the required computational resources for 

MS²PIP, while simultaneously further improving its prediction speed. The large 

memory footprint of the original version (requiring several gigabytes) has now 

been reduced to just a few hundred megabytes, depending on input request size. 

When run locally on a normal four core laptop, MS²PIP can predict peak intensities 

for a million peptides in less than five minutes. 

 

One of the most important changes in this new version of MS²PIP is the addition 

of specialized models for specific types of peptide spectra. The type of mass 

spectrometer, fragmentation method and certain peptide modifications (such as 

isobaric labels and phosphorylation) can heavily alter peptide fragmentation 

patterns. We have therefore now also trained specialized models for the TripleTOF 

5600+ mass spectrometer, for TMT-labeled peptides 106, for iTRAQ-labeled 

peptides 107, and for iTRAQ-labeled phosphopeptides (Table 1). Each of these 

models was trained and evaluated on publicly available spectral libraries or 

experimental datasets, ranging in size from 183,000 to 1.6 million peptide spectra. 

Final validation of every model was based on wholly independent datasets, 

ranging in size from 9 000 to 92 000 unique peptide spectra (Table 2). Spectral 



libraries were filtered for unique peptides and then converted to MS²PIP input 

format. For experimental datasets, original peptide identifications as provided by 

the data submitter were used where available. Where such original identifications 

were not available, we performed the identification using the MS-GF+80 search 

engine in combination with Percolator108 for post-processing. 

Table 1. All specialized MS²PIP models with MS2 acquisition information and peptide properties 

of the training datasets. 

Model 
Fragmentation 

method 

MS2 mass 

analyzer 
Peptide properties 

CID CID Linear ion trap Tryptic digest 

HCD HCD Orbitrap Tryptic digest 

TripleTOF 

5600+ 
CID 

Quadrupole 

Time-of-Flight 
Tryptic digest 

TMT HCD Orbitrap Tryptic digest, TMT-labeled 

iTRAQ HCD Orbitrap Tryptic digest, iTRAQ-labeled 

iTRAQ 

phospho 
HCD Orbitrap 

Tryptic digest, iTRAQ-labeled 

enriched for 

phosphorylation 

Table 2. Train-test and evaluation datasets used for specialized MS²PIP models. 

Model Use Dataset # Unique peptides 

CID Train-test NIST CID 109 340 356 

 Evaluation NIST CID Yeast 109 92 609 

HCD Train-test MassIVE-KB 110 1 623 712 

 Evaluation PXD008034 111 35 269 

TripleTOF 5600+ Train-test PXD000954 112 215 713 

 Evaluation PXD001587 113 15 111 

TMT Train-test Peng Lab TMT Spectral Library 114 1 185 547 

 Evaluation PXD009495 115 36 137 

iTRAQ Train-test NIST iTRAQ 109 704 041 

 Evaluation PXD001189 116 41 502 

iTRAQ phospho Train-test NIST iTRAQ phospho 109 183 383 

 Evaluation PXD001189 116 9 088 



 

Along with the heavily updated MS²PIP models, we have also rebuilt the web 

server from the ground up. Like the previous version, this web server has been 

built using the Flask framework (https://flask.pocoo.org) with a front-end based 

on Bootstrap (https://getbootstrap.com). 

In this newly built web server, we have implemented a robust queueing system 

that is able to handle concurrent tasks. This has allowed us to increase the 

maximum number of peptide sequences per request from 1,000 to 100,000. 

Besides submitting a single task through the website, users can also automate 

their requests through MS²PIP’s updated RESTful API, for which we provide an 

example Python script. A single request of 100,000 peptide sequences takes less 

than five minutes to complete, including up- and download time. Predictions for 

1 000 peptide sequences are returned in less than three seconds. 

On the user-friendly webpage, users can select one of the available models and 

upload a comma-separated values (CSV) file with peptide sequences, precursor 

charges, and modifications. After uploading this input file, a progress bar displays 

the status of the request and a URL is displayed to which the user can return at 

any time to check the status of their request (e.g., in case the browser window was 

closed). When the predictions have been finalized, the user can inspect the results 

through several interactive plots, and the predicted spectra can be downloaded 

in CSV format, in Mascot Generic File (MGF) format, in BiblioSpec or Skyline (SSL 

and MS2) formats117,118, or in NIST (National Institute of Standards and 

Technology) MSP spectral library format. 

 

We can evaluate MS²PIP model performance by predicting peak intensities for 

peptides present in the external evaluation datasets, and by comparing these 

predictions to their corresponding empirical spectra. This comparison is 

performed through the Pearson correlation coefficient (PCC) between predicted 

and experimental spectra. The resulting PCC distributions for each of the 

specialized models are shown in Figure 16A. 

https://flask.pocoo.org/
https://getbootstrap.com/


 

Figure 16. Boxplots showing the Pearson correlation coefficients (PCCs) for each of the specialized 

models applied to their respective evaluation dataset (A). Median PCCs when applying all 

specialized models to each evaluation dataset, showing the utility of specialized models. Each dot 

shows the median PCC of a specialized model applied to a specific evaluation dataset. To improve 

readability, dots representing performance of a single model are connected (B). 

The median PCCs are higher than 0.90 for all models, except for the TripleTOF 

5600+ and the iTRAQ phospho models, which have median PCCs of 0.74 and 0.84, 

respectively. These two lower median correlations might be the result of lower 

training dataset sizes (see also Table 2). 

When we apply all specialized models to each specific evaluation dataset – that is, 

including mismatched model-dataset combinations, such as applying the TMT 

model to the HCD evaluation dataset – we consistently observe median PCCs that 

are substantially higher for correctly matched models and evaluation datasets 

than for mismatched models and evaluation datasets (Figure 16B). Only the 

specialized TripleTOF 5600+ model is comparable in performance to the HCD 

model when predicting TripleTOF 5600+ spectra. Overall, this figure makes a clear 

case for the utility of specialized MS²PIP models for specific types of data. 

Figure 16B also shows which specialized cases have similar fragmentation 

patterns. The specialized models for isobaric-labeled peptides (TMT, iTRAQ, and 

iTRAQ phospho) are quite similar in performance across the different evaluation 

datasets, as are the HCD and TripleTOF 5600+ models. To further verify this, we 

have directly compared the models by calculating the PCCs for all specialized 

model predictions for the same set of peptides (Figure 19). The results confirm 

the findings we observe in Figure 16. 

  



We can also visualize the differences in fragmentation pattern by plotting the 

predictions from two different models for the same peptide sequence and 

mirroring the empirical spectrum below these predictions. This is shown in Figure 

17 for the TMT and HCD models with an empirical TMT-labeled peptide spectrum. 

While the TMT model mirrors the empirical TMT spectrum very well, the HCD 

model does not match the empirical TMT spectrum.  

 

Figure 17. Predictions for the peptide sequence EENGVLVLNDANFDNFVADK, carrying two TMT 

labels, produced by the TMT model (top left) and the HCD model (top right), compared to the 

empirical spectrum (bottom left and right). 

An additional parameter that influences fragmentation patterns is the collision 

energy (CE). Yet, as most spectral libraries do not include information on the CE 

values, CE is not part of MS²PIP’s feature set. In order to evaluate MS²PIP’s 

performance across different CEs, we have therefore applied the HCD model on 

a large public dataset of synthetic peptides measured at different CEs.119 The 

results are shown in Figure 20. For confident PSMs (Andromeda score higher than 

200) at higher CE values (30% and 35% normalized CE), median PCCs are above 

0.90, which corresponds to the general HCD model evaluation. For confident 

PSMs at a lower CE value of 25% normalized CE, the median PCC is slightly lower 

at 0.85. It therefore seems that most real-life data is recorded at higher CE values, 

as the overall HCD performance of MS²PIP most closely resembles 30% and 35% 

normalized HCD. As the overall HCD performance already indicated, MS²PIP will 

thus produce reliable peak intensity predictions in typical applications. 

Nevertheless, it is important to be mindful of the effect of altered CE values when 

interpreting MS²PIP predictions, especially in those cases where lower CEs were 

used. 



 

With the advent of novel mass spectrometry methods and new computational 

pipelines, MS2 peak intensity prediction is becoming ever more relevant. As one 

of the front runners in peak intensity prediction, MS²PIP has already been used 

for a variety of purposes, including creation of proteome-wide spectral libraries, 

optimization of targeted proteomics applications, validation of interesting peptide 

identifications, and rescoring of search engine output.  

With the current update, we present our latest efforts in further widening the 

scope of MS²PIP. The new web server enables researchers to easily obtain more 

predictions more efficiently, and the new MS²PIP models extend the applicability 

of MS²PIP to more varied, popular use cases, allowing it to be applied when 

specific fragmentation methods, instruments, or labeling techniques are 

employed.  

 

The MS²PIP web server is freely available via https://iomics.ugent.be/ms2pip. 

Documentation for contacting the RESTful API is available via 

https://iomics.ugent.be/ms2pip/api/. MS²PIP is open source, licensed under the 

Apache-2.0 License, and is hosted on https://github.com/compomics/ms2pip_c. 

All Python scripts that were used to generate the figures are available in a Jupyter 

notebook via  

https://github.com/compomics/ms2pip_c/tree/releases/manuscripts/2019. 
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Figure 18. Boxplots showing the Pearson correlation coefficients for the HCD model applied to the 

HCD evaluation dataset split by precursor charge (A) and peptide length (B). Only boxplots 

containing more than 750 datapoints are plotted. The number in each boxplot displays its number 

of datapoints. 

 
Figure 19. Correlation matrix directly comparing the different model predictions. Pearson 

correlation coefficients were calculated between the predictions of all specialized models on a 

large list of peptides. The numbers in each box correspond to the median Pearson correlation 

coefficient between the model on the x-axis and the model on the y-axis. A darker color indicates 

a higher median Pearson correlation coefficient. 



 

 

 
Figure 20. HCD model evaluation on ProteomeTools synthetic peptide spectra (Zolg et al., 2017, 

10.1038/nmeth.4153) across different collision energies (CE). Raw files and MaxQuant 

identifications were downloaded from PRIDE Archive (PXD004732) for all "3xHCD" MS runs. As no 

target-decoy strategy was included in the submitted MaxQuant results, we predicted MS²PIP 

spectra and calculated Pearson correlation coefficients for all MaxQuant identifications and took 

the Andromeda scores into account in these plots. 

Top: Two-dimensional histogram, or “Hexbin plot”, (center) and histograms (top and right) of the 

Andromeda score and Pearson correlation coefficients between MS²PIP predicted and 

experimental spectra for all included CEs. 

Middle: Boxplots of the Pearson correlation coefficients between MS²PIP predicted and 

experimental spectra across ten Andromeda score percentiles and split by CE. Every percentile bin 

contains 10% of the data. 

Bottom: Boxplots of the Pearson correlation coefficients between MS²PIP predicted and 

experimental spectra for all PSMs with an Andromeda score higher than 200, split by CE.  
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For this research project, I worked together with Bart Van Puyvelde and Sander 

Willems to demonstrate the use of in silico predicted spectral libraries for peptide 

identification in DIA-MS data. Here we build upon a previous publication that 

proposed the use of narrow-window DIA chromatogram spectral libraries for the 

identification of sample-specific wide-window DIA spectra, instead of directly 

using a DDA spectral library.120 Such a chromatogram library is a DIA spectral 

library derived from multiple gas-phase fractionated DIA-MS runs of pooled 

samples. Because of the gas-phase fractionation step, each run focusses on a 

specific mass range, which means that the DIA runs can be acquired with narrow 

windows, leading to less chimeric spectra. As briefly explained in section 1.3.7, 

less chimericity leads to better peptide identification. The end-result is that 

through this intermediary step, the DDA spectral libraries can be “calibrated” into 

DIA libraries with analytical coordinates (m/z, intensity, and retention time) that 

match the “wide-window” DIA runs that will be acquired for each sample, 

ultimately improving peptide identification. By combining this methodology with 

in silico predicted spectral libraries, we showed that we can remove the hidden 

DDA data-dependency that still limits this method from identifying peptides that 

were not already identified by DDA.  

While Bart Van Puyvelde and Sander Willems processed the MS data with the 

identification pipelines that were under comparison, I executed the machine 

learning aspect of the project. I trained and applied retention time prediction 

models with Elude, optimized the existing MS²PIP models, and validated the 

machine learning results. By integrating the Elude and MS²PIP predictions, I could 

generate fully predicted spectral libraries. I then developed a workflow to parse 

https://doi.org/10.1002/pmic.201900306


these libraries into the correct output formats for use in existing DIA identification 

pipelines. Together we analyzed the results and drafted the manuscript. The 

specific expertise of each of the first authors in this project was highly 

complementary: Bart Van Puyvelde’s expertise in wet-lab proteomics, Sander 

Willems’ expertise in DIA identification workflows, and my expertise in machine 

learning for proteomics data. By combining the use of predicted libraries with a 

recently published DIA-MS workflow, we have demonstrated how machine 

learning can improve the identification of DIA-MS peptide spectra by providing 

more information to the search engine scoring function, without limiting the 

search space to peptides previously identified by DDA-MS. 

 

Data-Independent Acquisition (DIA) generates comprehensive yet complex mass 

spectrometric data, which imposes the use of data-dependent acquisition (DDA) 

libraries for deep peptide-centric detection. We here show that DIA can be 

redeemed from this dependency by combining predicted fragment intensities and 

retention times with narrow window DIA. This eliminates variation in library 

building and omits stochastic sampling, finally making the DIA workflow fully 

deterministic. Especially for clinical proteomics, this has the potential to facilitate 

inter-laboratory comparison. 

 

Data-independent acquisition (DIA) is quickly developing into the most 

comprehensive strategy to analyze a sample on a mass spectrometer. 

Correspondingly, a wave of data analysis strategies has followed suit, improving 

the yield from DIA experiments with each iteration. As a result, a worldwide wave 

of investments in DIA is already taking place in anticipation of clinical applications. 

Yet, there is considerable confusion about the most useful and efficient way to 

handle DIA data, given the plethora of possible approaches with little regard for 

compatibility and complementarity. In our manuscript, we outline the currently 

available peptide-centric DIA data analysis strategies in a unified graphic called 

the DIAmond DIAgram. This leads us to an innovative and easily adoptable 

approach based on predicted spectral information. Most importantly, our 

contribution removes what is arguably the biggest bottleneck in the field: the 

current need for Data Dependent Acquisition (DDA) prior to DIA analysis. 

Fractionation, stochastic data acquisition, processing and identification all 



introduce bias in the library. By generating libraries through data independent, 

i.e., deterministic acquisition, stochastic sampling in the DIA workflow is now fully 

omitted. This is a crucial step towards increased standardization. Additionally, our 

results demonstrate that a proteome-wide predicted spectral library can 

surrogate an exhaustive DDA Pan-Human library that was built based on 331 prior 

DDA runs. 

 

With DIA, an MS instrument regularly measures precursor ions and continuously 

cycles through predefined mass over charge ratio (m/z) windows to equally 

regularly measure the intensity of their fragment ions throughout a liquid 

chromatography (LC) gradient. This is both more qualitative and quantitative than 

data-dependent acquisition (DDA), where precursor ions are measured 

intermittently while fragment ions are only measured stochastically. However, the 

complexity of DIA data has shown to be very challenging. 

To date, the most common way to address this complexity is using previously 

identified peptides from DDA as targets in the DIA data. First, DDA peptide 

identifications are translated into a spectral library with Peptide Query 

Parameters (PQPs), which typically contain the sequence as well as the analytical 

coordinates (m/z, intensity, and retention time or RT) for the observed ions for a 

given peptide. These PQPs are then used to compute an evidence score for each 

target peptide, based on its fragment traces in DIA. Ultimately, these evidence 

scores are supplemented with additional features, e.g., ppm and RT errors, 

allowing a semi-supervised machine learning algorithm to weigh and re-score the 

target peptides to obtain a maximum of true targets at an empirically determined 

False Discovery Rate (FDR) using the target-decoy approach.90,121,122 

Unfortunately, deriving PQPs from DDA data intrinsically means transferring its 

limitations. In fact, fractionation, stochastic data acquisition, processing and 

identification introduce bias in the library and require considerable effort. This 

compromises inter-laboratory comparison and can even alter the biological 

conclusions between labs.123 However, thanks to the availability of state-of-the-

art prediction algorithms, these PQPs can now be predicted directly, setting the 

stage for much easier and much more reproducible peptide-centric DIA data 

extraction.124–126 



Here, we compare the effect of using libraries from different origins on peptide-

centric approaches, by assessing their qualitative and quantitative performance 

on a public wide window (10 - 20 m/z) DIA dataset of HeLA cells (Figure 21).120 

Three basic spectral libraries were used here, with PQPs derived from (a) an 

experimental DDA dataset, (b) a protein sequence database (FASTA), and (c) a 

predicted spectral dataset. Each of these three libraries can be used directly as a 

source library, or can be converted into a DIA library by using them first on a 

narrow window (2 m/z) DIA dataset of the sample. The resulting six possible 

libraries can all be used alike by the EncyclopeDIA software to identify and 

quantify wide window DIA data.120 

In-house or public DDA source libraries are frequently built by extensive 

fractionation of samples. With adequate statistical control, such proteotypic 

libraries allow direct peptide detections in wide window DIA (Figure 21Aa).127 We 

illustrate this by using the publicly available Pan-Human library, which contains 

nearly 10.000 proteins derived from 331 DDA runs on a range of human cell lines 

and tissues (Figure 21Ba).112 To reduce the effort and variability from DDA library 

building, a library-free peptide-centric data analysis workflow was proposed 

recently.128 Herein, the PECAN (or Walnut) scoring algorithm allows direct 

detection of peptides derived from a FASTA in wide window DIA data (Figure 

21Ab). This is akin to a source library that (i) contains only peptide sequences and 

m/z coordinates, and (ii) lacks prior selection of proteotypic peptides. On wide 

window DIA data this approach thus provides a limited number of PQPs, which is 

not sufficient to differentiate between the high number of false targets, i.e. true 

negatives, and the lower number of true positives in the library.129 This manifests 

as indiscernible target and decoy score distributions, resulting in a very high False 

Negative Rate (FNR) (Figure 21Bb). 



 

Figure 21. Peptide-centric data extraction from wide window DIA data. (A) DIAmond DIAgram 

presenting peptide-centric strategies for DIA data extraction. Peptide-centric approaches rely on 

libraries (central column) that contain Peptide Query Parameters (PQPs) which are derived from 

the peptide sequence and can additionally contain the three ion coordinates, i.e. mass to charge 

ratio (m/z), Intensity (Int) and retention time (RT) (three-part pie charts). These can either be 

experimental (blue), theoretical (grey), or predicted (red). PQPs are used to score the evidence of 

peptide detections in continuous DIA data (boxes). These are supplemented with additional 

features of the match so that a support vector machine can weigh and re-score them to obtain a 

maximum of true targets at an empirically determined FDR using the target-decoy approach 

(arrow heads). DDA source libraries (both in-house and public) only comprise prior proteotypic 

peptide identifications and contain measured PQPs for all three ion coordinates. These are 

therefore directly applicable to quantify peptides in 10 – 20 m/z wide window DIA (Wide DIA) data 

(a). However, when a proteome FASTA is used as a source library, sensitivity is reduced (dashed 

arrow), i.e. too many false negatives are produced due to the high statistical burden (b). This also 

holds for libraries with predicted fragment intensities (MS²PIP) and RT (Elude), albeit to a lesser 

extent (c). Prior 2 m/z narrow window DIA (Narrow DIA) provides the specificity to remove false 

targets in the sample first (d)(e)(f). The DIA ion coordinates from these detections can additionally 

be integrated into new and calibrated PQPs (cal). These DIA libraries, called chromatogram 

libraries, can be derived from any source library (triple arrow). (B) Doubly and triply charged 

peptide detections in wide window DIA following each of the routes depicted in (A). Shading 

highlights the number of peptides that is detected in triplicate wide window DIA runs with at least 

three transitions, allowing robust quantification. (C) Comparison of the identified peptide 

sequences in Wide DIA for route (d), (e) and (f). The large overlap shows that all three approaches 

detect proteotypic peptides. Only peptides of double and triple charge that are detected in 

triplicate wide window DIA runs with at least three transitions are shown. 

  



Here we propose a promising way to improve upon the FASTA source library - 

while still omitting prior DDA - by predicting fragment ion intensity and RT in silico 

(Figure 21Ac, Figure 22, Figure 23). Using a spectral dataset with such predicted 

fragment intensities (MS²PIP) and peptide RTs (Elude) more than doubles the 

number of peptides detected in the wide window DIA (Figure 21Bc).124,130 

However, considering all tryptic peptides in a Human proteome still 

underperforms compared to the Pan-Human DDA library, which is fully contained 

in the predicted spectral dataset (Figure 21Ba and Bc). Notably, this is not due to 

poor prediction because predicting only those peptides present in the Pan-

Human library performs very similar to using the Pan-Human library directly 

(Figure 24) and the underperformance can thus only be attributed to the many 

false targets when using the complete database.127 An elegant way to filter out 

false target peptides upfront, is by measuring a pool from every condition with 

staggered narrow window DIA (Figure 21Ad, Ae and Af). This reduces MS2 

chimericity to DDA-like quality in a DIA setting, allowing detection with increased 

specificity. This accurate prior filtering makes the statistical burden of false targets 

in the wide window DIA surmountable again. Notably, due to instrument 

limitations this Precursor Acquisition Independent From Ion Count (PAcIFIC)131 

can currently only be performed by means of gas phase fractionation (GPF), i.e. 

sampling different m/z regions separately.120 Still, the added acquisition depth 

and specificity allows for 88k (DDA), 47k (FASTA) and 95k (predicted) doubly and 

triply charged peptide detections as reported by the software, corresponding to 

84k, 44k and 90k peptidoforms in six narrow window GPF DIA runs of a HeLA cell 

lysate (Figure 25). To assure that this additional filtering is accurate, we confirmed 

the estimated FDR by using an entrapment experiment wherein we included 

Pyrococcus furiosus proteins as false targets alongside the expected human 

proteins in the respective source libraries.132 Hereby, the measured FDR for 

narrow window DIA filtering is 2% for the DDA, 1% for the FASTA, and 1% for the 

predicted source library, in accordance with the theoretically estimated FDR based 

on the target-decoy strategy. In the process, we can measure the identification 

cost of adding false targets: adding 3-6% false targets results in an average 

decrease of 1-2% in detections (see section 3.2.8.7). 

Additionally, the peptide detections in narrow window DIA can be translated into 

novel and integrated PQPs, which are calibrated to the specific LCMS system and 

are specific to DIA (Figure 21A). This approach was recently made readily 



applicable as chromatogram libraries: DIA libraries of narrow window DIA peptide 

detections comprising their calibrated PQPs.120 Such chromatogram libraries 

outperform direct wide window DIA extraction for every source library. The 

modest gain for a DDA source library (~20%) derives mainly from PQP calibration, 

as only 50% of the source peptides was filtered out (Figure 21Ba and Bd). In 

contrast, in the FASTA source library, 98,5% of the peptides were filtered out, and 

RT and intensity coordinates were generated de novo. Taken together, this 

resulted in the largest gain (~170%) (Figure 21Bb and Be). Finally, the 

chromatogram library derived from a predicted spectral library increases the 

number of detections by ~100% compared to direct wide window DIA data 

extraction, making it the most efficient overall peptide detection strategy of the 

DIAmond DIAgram (Figure 21Bc and Bf). Importantly, when looking only at robust 

peptide detections, i.e. with a minimum of 3 transitions and found in triplicate, 

the gain compared to the Pan-Human library is rather modest. Additionally, the 

peptide sequences detected by all three chromatogram libraries show a large 

overlap, convincingly showing that the Pan-Human library is very exhaustive and 

that all three chromatogram libraries mainly detect proteotypic peptides (Figure 

21C). Peptides unique to the Pan-Human library include very high molecular 

masses that were not predicted, high molecular weight peptides that generate 

many doubly charged transitions that are not predicted by default, as well as very 

small peptides with inherently poor RT or fragmentation pattern predictions. 

Peptides that are unique to the predicted library are all peptides that were not 

present in the Pan-Human source library and are very low abundant in the wide 

window DIA data, implying they were missed during the DDA sampling in the Pan 

Human library (Figure 25). Note that some peptides will pass the detection 

threshold only in the narrow window DIA and not in the wide window DIA because 

of increased interference in the latter. Importantly, the PQP requirements of the 

source library for building chromatogram libraries on narrow window DIA are 

relatively liberal: the measured Pan-Human library was acquired on a TripleTOF 

instrument but allows wide window DIA data peptide detection on an Orbitrap 

instrument. The in silico equivalent is that 95% of the detected peptides overlap 

when the MS²PIP engine is trained on either Orbitrap or TripleTOF data. As a 

result, other fragment ion intensity predictors such as Prosit and Deep Mass125,126 

perform similarly when combined with narrow window DIA133 (Figure 26, Figure 

27). Overall, the peptide-centric workflow seems to have matured to a level that 



has covered much of the most obvious growing potential. Fortunately, very 

different ways of mining DIA data are continuously being presented, like the use 

of neural networks or building ion networks.134,135 

We conclude that predicted libraries are highly relevant and performant for wide 

window DIA identification, and that three elements of a spectral library affect its 

overall performance: (i) the amount of false targets included, (ii) the amount of 

informative PQPs, and (iii) the accuracy of PQPs on the specific instrument setup. 

In this study, we could show that a narrow window DIA acquisition of six GPFs 

combined with a predicted spectral library of the full human proteome was able 

to surrogate a measured DDA Pan-Human library, thus liberating the DIA 

workflow from any stochastic acquisition. Especially for clinical proteomics, this 

can facilitate inter-laboratory comparison. Importantly, the software tools MS²PIP, 

ELUDE and EncyclopeDIA are all instrument independent, publicly available, and 

mutually compatible, thus making this workflow immediately accessible to 

everybody interested. 

 

MS²PIP, Elude, Prosit and EncyclopeDIA are open source, licensed under the 

Apache-2.0 License, and are hosted on https://github.com/compomics/ms2pip_c, 

https://github.com/percolator/percolator, https://github.com/kusterlab/prosit 

and https://bitbucket.org/searleb/encyclopedia/wiki/Home. All supporting 

material is available on https://github.com/brvpuyve/MS2PIP-for-DIA/. 
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DIA data has been presented as a permanent record of everything. Thus, applying 

our novel approach can significantly broaden the biological perspective on newly 

acquired as well as existing data. Using predicted spectral libraries to replace 

measured DDA libraries not only reduces workload and increases reproducibility; 

it will also facilitate the implementation of DIA into more applied fields such as 

clinical proteomics. Since the software tools MS²PIP, Elude and EncyclopeDIA are 

instrument independent, publicly available, and mutually compatible, the 

presented workflow is accessible to everybody and directly applicable.120,124,130 

Therefore, we present this methods section in the form of a systematic tutorial. 

Briefly, both source and DIA libraries can be used in EncyclopeDIA to detect 

peptides in wide window DIA. However, converting source libraries into a DIA 

library will significantly improve the number of peptides that can be detected. This 

requires an additional narrow window DIA of several gas phase fractions (GPF) of 

a mixture of the samples. When these GPFs are acquired in the same batch as the 

wide window DIA, the benefit of PQP calibration is maximized. 

All external resources for reproducibility are available on GitHub: 

https://github.com/brvpuyve/MS2PIP-for-DIA 

 

 

For RT prediction, we employed Elude (version 3.02), which is available from the 

Percolator GitHub repository: 

(https://github.com/percolator/percolator/releases.130 

We trained an Elude model on the Pan-Human spectral library.112 The spectral 

library was downloaded from SWATHAtlas in SpectraST SPTXT file format. The 

https://github.com/brvpuyve/MS2PIP-for-DIA
https://github.com/percolator/percolator/releases


peptide sequences and their respective RTs were parsed from the SPTXT file to an 

MS²PIP PEPREC file using the speclib_to_mgf.py script, which is available in the 

conversion_tools folder of the MS²PIP GitHub repository. Out of all consensus 

peptide spectra built from five or more identified spectra, 10 000 peptides and 

their mean RTs were randomly sampled for training, 10 000 were randomly 

sampled for testing and all remaining were used for final validation of the model. 

The training, test and validation datasets were converted and written to the Elude 

input file format. Through the Elude command line interface, we trained a model 

with the training and test subsets. Subsequently, we used the model to predict 

RTs for the validation subset of the dataset. The median absolute difference in 

experimental and predicted RTs (DeltaRT) of the validation dataset was 3.2 

minutes and 95% of the DeltaRTs were less than 12.1 minutes (Figure 22). The 

model predictions have a Spearman rank correlation with the validation RTs of 

0.98. 

 
Figure 22. Evaluation of the trained Elude model. Contour plot of all predicted and experimental 

retention times (RTs) in minutes (left). Boxplot of all absolute differences between experimental 

and predicted RT (DeltaRT) in minutes (right). The box displays the first (Q1), second (Q2), and third 

(Q3) quartiles, the whiskers display Q1 - 1.5 times the interquartile range (IQR) and Q3 + 1.5 times 

the IQR, respectively. Outliers are not shown. 

The spectral library contains carbamidomethylation of cysteine and oxidation of 

methionine. As a result, the currently trained Elude model is only able to predict 

RTs for unmodified peptides and peptides containing these modifications. The 

RTs included in the original Pan-Human SPTXT spectral library are normalized to 

the iRT Kit peptide sequences by SpectraST. All RT values predicted by the Elude 

model therefore take over this normalization. As is the case for experimental RTs, 

the predicted RTs are aligned to the experimental dataset by EncyclopeDIA. The 

Elude model file is available on our GitHub repository. 



 

MS²PIP, the MS² Peak Intensity Predictor, first published by Degroeve et al., 

underwent significant improvements since its initial release in 2013.94 Currently, 

a broad array of fragmentation models is available (e.g. Orbitrap-HCD, iontrap-

CID, TripleTOF 5600+, …).124 This gives the user the liberty to employ a model fit to 

the experimental setup. As both the narrow and wide window DIA datasets used 

in this project were obtained on a Q Exactive HF instrument (Thermo Fisher 

Scientific, Massachusetts, US), we employed MS²PIP’s Orbitrap-HCD model, with 

the exception of the TripleTOF 5600+ model that was used for assessing PQP 

requirements (see section 3.2.3). To further validate the application of this model, 

we calculated the correlations between MS²PIP predicted spectra and 

experimental spectra from the EncyclopeDIA DDA runs. 

The Hela DDA dataset of the EncyclopeDIA article (MassIVE MSV000082805) was 

imported into Progenesis QI for Proteomics (Nonlinear Dynamics, Newcastle upon 

Tyne, UK) with default parameters. The peakpicked spectra were exported as MGF 

and searched with Mascot 2.6.1 against the aforementioned human FASTA. 

Carbamidomethylation of cysteine and oxidation of methionine were respectively 

set as fixed and variable modifications. The precursor tolerance was set to 50 ppm 

and the fragment tolerance was set to 0.02 Da. The search included all 2+ and 3+ 

precursors, allowing up to 2 tryptic missed cleavages. Afterwards, the results were 

reimported into Progenesis QI for Proteomics and converted to an MSP spectral 

library. 

The MSP spectral library was converted back to an MGF and an MS²PIP PEPREC 

input format using the speclib_to_mgf.py script. Both files were then run through 

MS²PIP with the Orbitrap-HCD model, after which Pearson correlation coefficients 

(PCCs) were calculated for each experimental spectrum and its prediction. This 

resulted in a median PCC of 0.88 with an interquartile range of {0.795297, 

0.938911} (Figure 23) 



 

Figure 23. Pearson correlations between intensities of measured DDA and MS²PIP predicted 

fragments. Violin plot showing the distribution of Pearson correlation coefficients between the 

MS²PIP model predictions and the experimental spectra from the Encyclopedia article Hela DDA 

dataset. 

A second experiment was performed to evaluate the performance of predicted 

libraries. More specifically, as was done in Gessulat et al.125, a clone of the Pan-

Human library was produced using the HCD model and this was applied on the 

narrow-window DIA data, producing a chromatogram library containing 82.6k 

unique peptides. Afterwards, the Pan and Pan Clone chromatogram libraries were 

used in the peptide extraction of triplicate wide-window DIA runs. On average 63k 

and 62k peptides were identified at 1.0% FDR when searching the wide-window 

DIA data against the Pan-Human and the Pan Clone chromatogram library, 

respectively. The quantification reports on peptide and protein level were saved 

by EncyclopeDIA as .txt files and eventually imported in Microsoft Excel. Then, we 

manually filtered out all the peptide sequences with less than 3 fragment ions and 

those having an intensity of zero in at least one of the three replicates. The 

resulting reproducible peptide sequences were put in a Venn diagram to visualize 

the percentage overlap (Figure 24). The large overlap demonstrates i) the 

performance of the HCD fragmentation model of MS²PIP and ii) the retention time 

prediction of ELUDE to accurately mimic the fragmentation and retention time 

pattern of peptide sequences acquired on a TripleTOF instrument. 



 

Figure 24. Overlap in peptides detected by DDA vs predicted chromatogram libraries. All peptides 

in a measured Pan-Human library were cloned by predicting their fragmentation spectra using 

MS²PIP and their retention times using ELUDE. A DIA library from a predicted library can extract 

peptides equally well from wide window DIA data compared to a DDA Pan-Human source library, 

a logical consequence of good quality predictions. 

 

 

An EncyclopeDIA DLIB version of the Pan-Human spectral library is publicly 

available on the EncyclopeDIA BitBucket homepage.112 This version contains 211k 

unique precursors (159k unique peptide sequences). Alternatively, EncyclopeDIA 

accepts Skyline BLIB, Spectronaut CSV, MaxQuant msms.txt, TraML and MSP files. 

 

Using a FASTA database does not require a separate library. More specifically, 

Walnut (a GUI re-implementation of the PECAN algorithm) is part of EncyclopeDIA 

and can directly detect peptides from DIA data using a FASTA database.128 

Here, we used the human SwissProt proteome (UP000005640 downloaded on 12 

February 2019, 20426 target sequences) downloaded as FASTA. The proteome 

was concatenated with the iRT FASTA obtained from the Biognosys webpage (on 

12 February 2019).136 

 

Creating a predicted spectral library requires three steps: (i) creating an MS²PIP 

input PEPREC (peptide record) file from a FASTA, (ii) feeding that file to MS²PIP for 

predicting intensities and (iii) adding predicted retention times (RT) from Elude. 

For ease-of-use, we wrapped these three steps into a pipeline (fasta2speclib), that 

is included in the MS²PIP GitHub Repository. 



MS²PIP is accessible either through the web server 

(https://iomics.ugent.be/ms2pip) or via a local installation 

(https://github.com/compomics/MS2PIP_c). A local installation is required to use 

the fasta2speclib pipeline. Here, MS²PIP (version 20190130) was downloaded and 

installed from the MS²PIP GitHub repository, as described in the extended install 

instructions. For RT prediction, we employed Elude version 3.02, which is available 

from the Percolator GitHub repository (https://github.com/percolator/percolator/ 

releases). 

Briefly, the fasta2speclib pipeline makes use of Biopython to read the FASTA and 

uses Pyteomics for the in silico digestion of the protein sequences.137,138 Next, 

redundant peptides and peptides not meeting the peptide length and precursor 

mass restrictions are removed from the peptide list. Following this step, all 

combinations of the requested charge states and modifications are added. 

Predicted spectra and RTs are then generated for all peptide-charge-modification 

combinations using MS²PIP and Elude. Finally, the results are written to a spectral 

library file (MSP, MGF or CSV). Depending on the computational resources, a full 

human proteome can be predicted in just a few hours. 

The fasta2speclib pipeline can be called through the command line interface as 

follows: 

The results presented in this manuscript were generated by predicting a spectrum 

for every 2+ and 3+ tryptic peptide in the aforementioned FASTA, using the pre-

trained MS²PIP Orbitrap-HCD model and the Elude RT. These models are 

described in more detail under “Prediction models”. Only tryptic peptides with a 

minimum length of 7 amino acid residues and a maximum precursor mass of 

5000 Da were considered. Carbamidomethylation of cysteine and oxidation of 

methionine were set as respectively fixed and variable modification, and two 

missed cleavages were allowed. The in silico spectral library was exported to an 

MSP file containing 3.3M precursors (between 400 – 1000 m/z). In the current 

version of MS²PIP (v20190624) the RT from Elude is automatically converted into 

minutes and written on a separate line in the MSP file. These predictions were 

performed on a Linux operated machine (Intel Xeon CPU X5670, 24 processors, 

40 GB RAM) and took four hours. 

https://iomics.ugent.be/ms2pip
https://github.com/compomics/MS2PIP_c


 

DIA libraries, called chromatogram libraries, are generated by interrogating 

narrow window DIA data with any of the above source libraries. Details are 

described under “DIA data analysis: EncyclopeDIA”. 

 

We used the publicly available dataset of the EncyclopeDIA article (MassIVE 

MSV000082805) of the HeLa S3 lysates to assay the different routes in the 

DIAmond DIAgram (Figure 21A, boxes). The three wide window DIA replicate runs 

were acquired with 25 overlapping 24 m/z windows and the staggered 4 m/z 

narrow window DIA data comprises six gas phase fractions (GPF) of 100 m/z each, 

together covering a 400 - 1000 m/z mass range. Following peak picking, these runs 

were demultiplexed into 12 m/z (wide DIA) and 2 m/z (narrow DIA) windows, 

respectively, and converted into mzML output files by MSConvertGUI with 

following parameters139,140 : 

 

We downloaded EncyclopeDIA from bitbucket 

(https://bitbucket.org/searleb/EncyclopeDIA) (version 0.8.2, 2019-05-21). 

EncyclopeDIA is a Java application developed to perform narrow- and wide 

window DIA data analysis. The application can be run on all three major operating 

systems (Windows, Mac and Linux), but in this project it was used on a Windows 

7 operating system (Lenovo Thinkstation, Intel Xeon E5-2620 24 processors, 128 

GB ram). EncyclopeDIA was operated through the graphical user interface but also 

comes with a command-line interface. 

For applying EncyclopeDIA on predicted spectral libraries, the MSP file is first 

converted into a DLIB file using the conversion tool embedded in EncyclopeDIA. 

EncyclopeDIA also allows the conversion of other spectrum library formats into 

DLIB files. For each library of target spectra, decoy spectra are automatically 

generated by EncyclopeDIA. 

  

https://bitbucket.org/searleb/EncyclopeDIA/downloads/?tab=downloads


General settings in EncyclopeDIA applied to all searches in this project are as 

follows: 

To allow direct comparison of all six routes of the DIAmond DIAgram, all libraries 

were trimmed upfront to retain only peptides in the 400 - 1000 m/z mass range. 

For the Pan-Human DDA library this results in 194k precursors, all charge states 

still included. Approximately 95% of the identified peptides on the wide window 

DIA were 2+ and 3+ and the other charge states were manually removed from the 

result file for comparison. The FASTA search was performed using Walnut, 

considering 2+ and 3+ precursors only. Finally, a third library was predicted by 

MS²PIP using the same FASTA. All three source libraries were separately used to 

detect peptides directly in the triplicate wide window HeLa DIA runs (Figure 21Aa-

c). When the three source libraries were used to search the narrow window DIA 

data (Figure 21Ad, Ae, Af), this resulted in three DIA-based chromatogram libraries 

(ELIB) of size 88k (DDA), 47k (FASTA) and the 95k (Predicted) peptides, respectively. 

In Figure 25, the overlap in peptide sequence is shown between the three 

chromatogram libraries. Subsequently, all three ELIBs were used to search the 

wide window DIA data with the above parameters. 



 

Figure 25. Doubly and triply charged peptide detections in narrow window DIA. A Venn-diagram 

showing the overlap in peptide sequence detections between the three DIA-based (DDA, Database 

and Predicted) chromatogram libraries. To assess the origin of the unique peptides in the 

predicted library (MS²PIP), the chromatogram libraries were used to detect peptides in the wide 

window DIA data and plotted the relative frequencies of the intensities of the detected peptides 

(inset). From this, it is clear that significantly more very low abundant peptides were robustly 

detected in the DIA data using the MS²PIP library, suggesting that indeed these peptides were not 

selected during the DDA library generation. 

Figure 21B depicts the number of detected peptides in each replicate as reported 

by EncyclopeDIA. Additionally, the peptide quantification reports were exported 

as .txt files and peptide sequences with at least 3 transitions and non-zero 

intensities in all three wide window DIA samples were selected. These are 

represented as the shaded portion of the bar chart. Indeed, in most settings, only 

confident peptides that can be quantified with robust statistics and are detected 

in (almost) all runs, are useful. These recurring peptides equally have more robust 

FDR control. For this reason, we choose to focus only on these confident peptides 

in Figure 21C, as depicted in the figure caption. Note that the portion of unique 

peptides between robust detections in Pan-Human and predicted wide window 

DIA is considerably lower than in the chromatogram libraries that are intrinsically 

representing single detection. It would be interesting to investigate what the 

contribution of false detections is herein. All log and result files of the searches 

were exported for future reference and are available on our GitHub repository.  

  



 

We validated the theoretical FDR from the target-decoy approach during 

chromatogram library building by performing an entrapment experiment with 

Pyrococcus furiosus. In short, this is a way to additionally validate the target-decoy 

FDR estimation.132 Only peptides between 400 - 1000 m/z were considered and 

each source library requires a different P. furiosus input: 

▪ A public P. furiosus dataset acquired on an LTQ-Orbitrap Velos (Thermo Fisher 

Scientific, Massachusetts, US) was used to supplement the Pan-Human DDA 

library (ProteomeXchange with identifier PXD001077).132 Database searching 

was performed on the resulting MGF file with Mascot Daemon (version 2.6.1) 

using following search parameters: a maximum of one missed cleavage, 

peptide charges 2+ to 4+, peptide mass tolerance of 10 ppm, fragment ion 

tolerance of 0.5 Da, carbamidomethylation of cysteine as fixed modification 

and oxidation of methionine as variable modification. The resulting .DAT file 

was parsed into a BLIB using the Skyline built-in tool BiblioSpec. The BLIB file 

was parsed by EncyclopeDIA into a DLIB file. Finally, the resulting DLIB file (5.5k 

unique precursors) was combined with the already existing Pan-Human DLIB 

file of 194k peptides using EncyclopeDIA. 

▪ For the FASTA database, we concatenated our FASTA with all 2052 P. furiosus 

UniProt entries (downloaded on June 13, 2018). Walnut parameters for library-

free searching were set as described above, meaning that only 2+ and 3+ 

peptides without any variable modifications were considered. This translates 

into 168k P. furiosus precursors. 

▪ For the predicted library, we converted this FASTA into a predicted P. furiosus 

spectral library using the MS²PIP Orbitrap-HCD model and our Elude RT model. 

Every 2+ and 3+ tryptic peptide in the proteome was predicted, with 

carbamidomethylation of cysteine, and oxidation of methionine set as 

respectively fixed and variable modifications. The P. furiosus MSP (224k 

precursors) was concatenated to the Human predicted MSP in EncyclopeDIA. 

As decoys are generated by EncyclopeDIA, these were also appended for the P. 

furiosus proteins. All three source libraries were employed for searching the 

narrow window DIA data, i.e. to create a DIA-based chromatogram library. The P. 

furiosus fraction of the libraries was 
5.5k

194k + 5.5k
≈ 3%, 

168k

2.4M + 168k
≈ 6% and 

224k

3.3M + 224k,
≈

6% respectively. 



To account for this differential decoy fraction, the number of P. furiosus detections 

is multiplied by the inverse of their weights, using the following formula: 

𝐹𝐷𝑅 =  
#𝑃𝑦𝑟𝑜𝑐𝑜𝑐𝑐𝑢𝑠𝑃𝑒𝑝𝑡𝑖𝑑𝑒𝑠 

#𝑇𝑎𝑟𝑔𝑒𝑡𝑠
⋅ 𝐷𝑒𝑐𝑜𝑦𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

This corresponds to 
56

90k
⋅  

194k + 5.5k

5.5k
≈ 2% for the DDA source library, 

19

46k
⋅

2.4M + 168k

168k
≈

1% for the FASTA source library and 
64

94k
⋅

3.3M + 224k

224k
≈ 1% for the predicted source 

library. Note that the number of detected peptides (#targets) is slightly lower than 

the chromatogram libraries created without P. furiosus peptides (see section 

3.2.3). This corroborates the fact that increasing the number of false targets 

increases the statistical burden and thus number of false negatives, reducing the 

sensitivity of detection. 

In the manuscript we claim the applicability of other deep learning predictors (e.g., 

DeepMass, Prosit) as an alternative to MS²PIP predicted libraries. To validate this 

claim we cloned the publicly available Pan-Human library using the Prosit webtool 

which is available from https://www.proteomicsdb.org/prosit/. Peptides 

containing more than 30 amino acids or with a charge state higher than 7 were 

manually removed from the list as this is required by Prosit. Normalized collision 

energy (NCE) was assumed to be 33 for all peptides. A similar clone of the Pan-

Human library was made with the MS²PIP webtool using the pre-trained HCD 

model. After MS2 peak intensity prediction, measured iRT values were parsed into 

both predicted libraries to remove the effect of retention time. Afterwards, the 

narrow window HeLa DIA data was searched against all three source libraries 

(Pan-Human, Prosit Clone and MS²PIP clone) separately using the settings 

described earlier in paragraph DIA data analysis: EncyclopeDIA. The results of 

these three searches were exported as the DDA, MS²PIP and Prosit chromatogram 

library, respectively. Next, three wide window HeLa DIA runs were searched with 

the three chromatogram libraries separately using the same settings as earlier. 

Again, the results were exported for further processing. The source and 

chromatogram libraries were converted to an OpenSWATH tsv by EncyclopeDIA, 

as this simplified parsing of the data. In accordance with the DIAmond DIAgram 

we calculated PCCs for each narrow and wide window DIA experimental spectrum 

and its DDA, MS²PIP and Prosit source and chromatogram spectrum. Only 

peptides containing at least 5 transitions were considered and y1 ions were 

omitted. 



 

Figure 26. Boxplot showing the distribution of Pearson correlation coefficients. Peptide fragment 

intensities were compared between the experimental spectra from the Narrow and Wide-Window 

HeLa DIA data of the EncyclopeDIA article and the source libraries from DDA (a) or MS²PIP and 

Prosit (b), as well as the chromatogram libraries derived from DDA (f) or MS²PIP and Prosit (c). 

Letter annotations refer to the pathways in the DIAmond DIAgram (Figure 21). The increased 

Pearson correlations for narrow window DIA can be explained by reduced interference in this data. 

The overlapping boxplots of the three chromatogram libraries in the bottom clearly illustrate that 

calibration through narrow window DIA eliminates prior differences in (predicted) intensities. 

 

Figure 27. Comparison of the identified peptide sequences in Wide DIA for route (d), (e) and (f) in 

Figure 21A, when using Prosit instead of MS²PIP for predicting PQPs. The large overlap shows that 

all three approaches detect proteotypic peptides. Only peptides of double and triple charge that 

are detected in triplicate wide window DIA runs with at least three transitions are shown. Peptides 

with Methionine oxidation and more than one missed cleavage are not included because of the 

file size upload limit in the Prosit web app. 
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In this perspective I wrote together with Robbin Bouwmeester, we first provide an 

overview of notable applications of both traditional machine learning and deep 

learning along the various steps of a typical LC-MS experiment. We then describe 

how each of these methods can be used to remove ambiguity from the 

identification process and can ultimately enable novel proteomics workflows. 

Finally, we highlight some of the key challenges that still hinder the field from fully 

embracing machine learning for proteomics identification workflows. 
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A lot of energy in the field of proteomics is dedicated to the application of 

challenging experimental workflows, which include metaproteomics, 

proteogenomics, data independent acquisition (DIA), non-specific proteolysis, 

immunopeptidomics, and open modification searches. These workflows are all 

challenging because of ambiguity in the identification stage; they either expand 

the search space and thus increase the ambiguity of identifications, or, in the case 

of DIA, they generate data that is inherently more ambiguous. In this context, 

machine learning-based predictive models are now generating considerable 

excitement in the field of proteomics because these predictive models hold great 

potential to drastically reduce the ambiguity in the identification process of the 

above-mentioned workflows. Indeed, the field has already produced classical 

machine learning and deep learning models to predict almost every aspect of a 

liquid chromatography-mass spectrometry (LC-MS) experiment. Yet despite all 

the excitement, thorough integration of predictive models in these challenging LC-

MS workflows is still limited, and further improvements to the modeling and 

validation procedures can still be made. In this viewpoint we therefore point out 

highly promising recent machine learning developments in proteomics, alongside 

some of the remaining challenges. 

 

Liquid chromatography - mass spectrometry (LC-MS) offers a high-throughput 

platform for the identification and quantification of proteins in a sample.141 

However, LC-MS analysis generates large amounts of signal data that require 

bioinformatics analysis to match these signals with peptides and proteins in the 

proteome, and to elucidate important biological processes such as molecular 

functions, pathways, protein-protein interactions, and signal transduction 

through post-translational modifications.142 In order to study these biological 

processes, it is important to acquire a picture of the proteome that is as 

comprehensive as possible. However, more than half of the data currently 

generated by our LC-MS analyses is not matched with proteins, leaving a large 

unexplored gap in our understanding of the proteome.58,143,144 

In order to match signals with peptides and proteins, current proteomics search 

engines match sample-generated LC-MS signals with protein sequences from a 



target proteome database that is taken to contain all known proteins expected to 

be present in that sample.145,146 This target database thus delineates the search 

space that contains all peptides that can potentially match a given LC-MS signal. If 

this search space does not contain the correct peptide for a given signal, a 

correctly functioning search engine will fail to match the signal. However, the 

search engine could also be led to make a mistake, incorrectly matching the signal 

to a seemingly well-fitting peptide. These false matches are often very hard to 

distinguish from true matches, which is why the search space should always 

contain all peptides that could be present in the sample, even those which are not 

of interest to the researcher.147,148 Still, peptides could be absent from the search 

space due to unknown proteins, unknown proteoforms, unexpected protein 

modifications, and/or unconsidered enzymatic cleavages. To alleviate these 

problems, search engines need to consider larger search spaces to match more 

LC-MS signals (and thus obtain a more comprehensive picture of the proteome). 

This strategy forms the basis of proteogenomic searches149,150, data independent 

searches151–153, non-specific cleavage searches154–156, immunopeptide 

searches157, metaproteomics searches158, and open modification searches159–163. 

Yet all these approaches fall victim to the rapidly increasing issue of ambiguous 

matches due to the increased sequence diversity offered to the search engine.129 

As a result, more than one possible match is found for a given signal, and these 

are often considered equivalent, or as near equivalent as to be 

indistinguishable.164 This ambiguity leads to a higher uncertainty regarding the 

actual presence of the final (highest ranking) matched peptide in the sample. 

Correctly functioning search engines deal with such uncertainty by raising 

identification thresholds, thus lowering the identification rate.165 

Further complicating the identification issue, LC-MS signals, such as tandem MS 

spectra, are likely to contain both extraneous as well as insufficient information 

for matching with the correct biology. This further increases this possible 

ambiguity between candidate matches.  

  



 

Solving the ambiguity issue is key in obtaining a comprehensive and accurate 

biological interpretation of the proteome. In identification workflows this can be 

achieved by exploiting the information present in the raw LC-MS data to its fullest. 

This information includes observed retention times, collisional cross-section data 

for ion mobility analyses, and precursor (MS1) and fragmentation spectrum (MS2) 

peak intensities. Unfortunately, most of this information is disregarded by the 

current generation of proteomics search engines. And when used, this 

information typically takes the form of LC-MS libraries built from previous 

observations of these signals.166 This reliance on prior observation is 

fundamentally due to our limited understanding of the causes of the exact 

behavior of the analytes that produced these signals. Unfortunately, such 

experimental libraries are quite incomplete and are often very specific to a given 

experimental setup. There is thus a clear knowledge gap in our understanding of 

the signals acquired in our analytical workflows, which researchers have been 

trying to fill using models that predict peptide behavior in LC-MS instruments. 

Most notably, data-driven modeling through machine learning (ML) has been 

applied very successfully to predict peptide behavior, and thus to fill the 

knowledge gap that stops us from using all acquired information to resolve 

ambiguity in the identification process. 

A comprehensive overview of the different models and ML algorithms that have 

been applied to proteomics data up to 2014 has previously been provided by 

Kelchtermans et al.167 In this viewpoint we therefore focus specifically on recent 

advances in data-driven modeling of the LC-MS workflow since then. In general, 

data-driven LC-MS models learn to predict signals from example data obtained 

from previous experiments. This process of training models on observational data 

is a non-biased and generic way of fitting complex relations, which stands in 

contrast to using prior knowledge with defined rules to fit a model.168 

However, because of the large amounts of data required to train accurate and 

broadly applicable models168, the increasing interest in, and effort put into, 

developing such predictive ML models has kept lockstep with the increasingly 

large amounts of high-quality data that have become available in public 

repositories98,169. Indeed, the number of monthly submissions to proteomics 

repositories has seen an explosive growth over the past years, which in turn 



means that the amount of high-quality data available to scientists is growing at a 

staggering rate as well.170 

Perhaps most crucially, the availability of data has grown to the point that it has 

enabled the field to use deep learning (DL) approaches171 instead of the earlier, 

classical ML algorithms like support vector machines (SVMs)172 or random 

forests173. DL can fit very complex relations and can achieve higher performance 

compared to classical algorithms, but only if sufficiently large amounts of data are 

available to train them (Figure 28). 

Because LC-MS signals and the processes that generate these signals are 

convoluted and complex, there is a clear performance advantage to using DL to 

predict these signals as compared to classical ML algorithms. These DL methods 

use neural networks as a basis, which have undergone significant innovations in 

the past decade, and which have become highly performant in a wide variety of 

data driven applications171. In image classification, for instance, DL has shown that 

such many-layered neural networks can be used to solve complex problems.174 

While the ability of DL networks to solve complex problems is not yet fully 

understood, one of the main reasons has been ascribed to the depth of the 

network.174–176 This depth is determined by the number of layers used, where 

each layer essentially transforms the input data into a new representation (i.e. 

features). This means that the network can learn complex features in the data, 

and essentially removes the step in which the numerical representation of the 

peptide is optimized for the prediction task in traditional ML algorithms. This so-

called feature engineering step in classical ML algorithms has to be performed up 

front, is time consuming, and typically requires domain knowledge to execute 

well. Indeed, when the most optimal features are not provided to the ML 

algorithm, it can significantly hamper the final performance of such a classical 

model. It can thus be clear that DL has a considerable advantage over classical ML 

algorithms by its ability to construct its own features on-the-fly, a process called 

end-to-end learning.177 The caveat is, however, as stated above, that learning 

these more complex features requires a large amount of data (Figure 28). 

Another benefit related to input features are the specialized layers in DL that can 

handle images, audio, and texts as input. Because the numerical representation 

for these data types can be of inconsistent length, their use in some classical ML 

algorithms requires additional processing. DL does not require these additional 



processing steps as it can use convolutional178 or recurrent layers179 to analyze 

such input. These specialized layers can also be applied to many proteomics 

problems, as sequences are essentially text and can be treated as such. In DL, the 

use of such specialized input layers maintains much more of the original structure 

in the data than classical ML algorithms, which are prone to expert interpretation. 

This in turn usually results in better performance of DL models when compared 

to classical ML. 

 

Figure 28. Conceptual rendering of the impact of growing data set sizes on the performance of 

classical machine learning (red line) compared to deep learning (blue line). For smaller data sets, 

classical machine learning is often still able to outperform deep neural networks, but with 

increasing training examples the performance converges for classical machine learning while a 

deep neural network keeps improving. Shallower neural networks (green line) generally show 

performance that is in between classical machine learning and deep neural networks. 



 

 

Figure 29. Overview of a generalized LC-MS workflow with listed examples of classical machine 

learning (red box) and deep learning applications (blue box) at each step. 

A multitude of steps in proteomics LC-MS workflows have been modeled with 

machine learning, both classical and deep (Figure 29). One of the first of these 

steps is proteolytic digestion of proteins to peptides. Multiple models are available 

that predict whether a site in the protein sequence will be enzymatically cleaved. 

It should be noted that most of these models also inherently predict the peptide’s 

detectability by mass spectrometry. While older digestibility/detectability 

predictors used decision tree ensembles (CP-DT & AP3)76,77, current state-of-the-

art predictors employ DL (D::pPop & DeepMSpeptide)78,180. 

After enzymatic digestion, LC is often used as a first step to separate peptides 

based on their physicochemical properties. The time it takes for a peptide to elute 

from an LC-column is called the retention time. Some of the first retention time 

predictors used SVM algorithms with physicochemical properties of amino acids 

as input features (ELUDE) 130,181. The current state-of-the-art methods use DL with 

either convolutional or recurrent layers and one-hot-encoding for the sequence 

(DeepRT+, Guan et al. & Prosit).125,182,183 Integration of retention time prediction 

mainly concerns the validation of peptide-to-spectrum matches (PSMs) and 



detection of chimeric spectra (CharmeRT).84 In addition to modeling the LC, a 

smaller effort has been put into training models to predict the collisional cross 

section (CCS) of peptides (imPredict & Wang et al.).184,185 In contrast, the small 

molecule field has seen a multitude of models to predict the CCS already.186–191 

The next step in a bottom-up proteomics experiment is the fragmentation of 

peptides into fragment ions. While the mass-to-charge ratios (m/z) of the putative 

fragment for a given peptide can be easily calculated, their intensities follow more 

complex patterns. Early predictors of peptide fragmentation patterns were based 

on traditional, bottom-up kinetic models192, but soon data-driven methods using 

decision trees, Bayesian networks, and SVMs took over (e.g. MS²PIP) 94,124,193,194. As 

is the case with the previously mentioned types of predictors, the field has 

recently made a switch to DL implementations, with a plethora of DL peak 

intensity predictors having been published in the last two years (pDeep, Prosit, 

DeepMass & Guan et al.).125,195–198 

As classical proteomics search engines currently do not fully take MS² peak 

intensities into account, these predictors hold great potential to remove 

ambiguity between correct and incorrect PSMs. Indeed, adding such predictions 

into the identification pipeline can combine the increased sensitivity of spectral 

library searching with the much more comprehensive search space offered by 

database search engines. This, however, requires a complete integration of peak 

intensity prediction into the search engine. Another challenge for current state-

of-the art peak intensity predictors is the encoding of peptide modifications, as 

modifications can heavily influence peptide fragmentation patterns.124,199 

Further applications of machine learning in proteomics mainly pertain to the 

identification of spectra. DeepNovo, for instance, is a deep learning application 

for de novo spectrum identification.200 Another example is the routinely used post-

processing application Percolator92, in which classical search engine-derived PSM 

scores and metrics are passed on to a semi-supervised SVM implementation 

which improves the separation between true and false matches. When adding 

information from the above-mentioned predictors, such as MS² peak intensities, 

this separation can be improved even further (MS²Rescore)96,125, and even allows 

the development of a completely machine learning-driven search engine.201 



 

As discussed so far, modeling LC-MS through data-driven machine learning allows 

the exploitation of more of the information that is embedded in LC-MS data. This 

should help to solve the identification ambiguity issue that arises when the search 

space is expanded, or when the LC-MS data is inherently more ambiguous. Many 

such models have therefore been proposed, and the recent introduction of deep 

learning algorithms has provided the means to compute end-to-end models with 

significant performance gains. Despite these advances, implementations of 

predictive models in proteomics search engines for the identification of peptides 

(and proteins) in a sample is still very limited. Here, we point out a few of the key 

challenges that make this integration non-trivial. 

First, finding the optimally performant architecture for a complex DL model is a 

decidedly non-trivial task. The choice for an architecture is often based on 

experience with previously well-performing architectures on other problems, or 

on a trial-and-error strategy. Even though methods for optimizing this 

architecture have been proposed202,203, most of the current models in proteomics 

do not use such a strategy. 

Once a model is trained, it is important that the model is properly validated, 

otherwise it could lead to wrong and missing peptide identifications downstream, 

in turn resulting in potentially incorrect biological interpretations. However, due 

to the complex nature of many state-of-the-art models, validation and evaluation 

is a non-trivial task. For now, the validation is often performed on a random small 

subset of the initial data set on which the model is trained. Ideally, model 

evaluation is rigorously designed, for example by testing for a wide applicability 

instead of peptides that closely resemble the training set. Even with a properly 

designed validation, many current studies do not go beyond testing the direct 

predictive performance. 

The validation of a model would be less of a problem if the inner workings could 

be easily understood. Again, the complexity of current DL models can mean that 

these are essentially a black box where a peptide goes in one end, and a prediction 

comes out the other. Even though there is an ongoing effort to bring insight into 

the inner workings of such models204, what the algorithm learns can be 

incomprehensible to humans. This incomprehensibility means that researchers 



remain cautious to integrate predictive models into their workflows, because this 

would transfer most of the control in identifying a peptide to the model. 

Even when the model is validated with testing data (e.g., a random, preselected 

subset of the data), there are no dedicated benchmark data sets in proteomics 

that are consistently used for evaluating and comparing models. Such a 

benchmarking set together with specific evaluation methodologies should make 

comparisons between different models transparent and fair.  

Furthermore, it is customary to train, validate and test ML models on ground truth 

data sets. All data points within such a ground truth data set are known with 

complete certainty to be correct. Unfortunately, in most applications of ML in 

proteomics, there is no ground truth available. For now, data sets with synthetic 

peptides can be considered to be the closest available alternative.119,199 Still, 

acquisition and analysis of synthetic peptides is performed with the same 

methods as the data it should validate. Ideally there would be an evaluation 

technique that is more accurate and does not suffer from the problems present 

in LC-MS workflows, such as peak broadening, competitive ionization, and poor 

fragmentation leading to ambiguity and/or missed identifications. Moreover, 

peptide synthesis is not a perfect process, resulting in the presence of aberrant 

sequences, and the absence of intended sequences. It can also be argued that 

synthetic peptide samples do not accurately represent the complexity of 

biological samples. The validation capabilities of synthetic peptide data therefore 

remain somewhat limited, and the quest for ground truth data to validate 

proteomics predictions should continue.  

The general applicability of a data set for evaluation purposes is not the only 

problem, however, as models themselves are sometimes only optimized for 

specific samples, or for specific instruments and their specific parameters. For LC 

retention time prediction this has partly been solved by normalizing the objective 

of the model through calibration with iRT peptides.136 Without calibration, transfer 

learning has proven to improve performance of models trained on smaller data 

sets.182 In transfer learning, some of the learned parameters from – usually - a 

larger data set are reused on different data sets to transfer the gained experience. 

For peptide fragmentation spectra, the experimental parameters (e.g., collisional 

energy) have been included as features125,196, or tailor-made models have been 

trained for specific instruments and workflows, such as isobaric labeling.124 



Another clear example of models being limited in their applicability is the issue of 

protein modifications. Most LC-MS prediction models only encode unmodified 

amino acids and are thus unable to generalize for any modification, unless this 

can be encoded (with sufficient examples) as its own entity in the form of a new 

amino acid. It would therefore make sense to switch from encoding amino acids 

to encoding the chemical properties of amino acids and their modified forms 

instead, as has been done for metabolite retention time prediction.205 These new 

representations have the potential to become very important in the future, 

because of the increasing popularity of open modification searching where such 

modification-aware predictions are essential.  

Once a model is trained and validated, it still needs to be integrated in complete 

workflows. Up until now, only a few tools integrate predictions from these 

models.96,151–153,206 Indeed, while the field has been focusing on obtaining highly 

performant models, the integration of such models into usable workflows has not 

yet received the same attention. It should be noted, however, that the exact 

requirements for, and gains of, the introduction of better performing models have 

not been extensively researched. As a result, while it makes sense to further 

develop more performant models, it would be highly useful to investigate the 

relation between the discovery of novel or improved biological insights and 

improved model performance. In other words, it will be important to see the 

improvements in identification matched to downstream improvements in the 

biological interpretation of the corresponding results. In addition to setting 

performance targets for future models, such an analysis has the important 

potential to convince researchers of the worth of integrating these models into 

data processing workflows. 

 

As the scientific community continues to acquire and analyze ever more LC-MS 

data, progress in extracting knowledge from these acquired data is not increasing 

at the same rate. This is partly due to the inability of search engines to make use 

of all the acquired data, leading to ambiguity in their identifications, especially in 

the most interesting, but also the most challenging, proteomics workflows. We 

have posited here that a large proportion of this ambiguity can likely be solved 

through integration of performant machine learning based models in the 

identification pipeline. Recently, such highly performant predictive models have 



become possible, largely due to state-of-the-art machine learning techniques that 

capitalize on the vast amounts of available public data through deep neural 

networks known as deep learning approaches. 

Researchers therefore now have access to a large library of different models that 

can predict the behavior of peptide analytes across almost all steps in their LC-MS 

workflow. However, integration of these models into routinely used identification 

tools remains limited. This is partly due to an inability to interpret the model and 

limited model applicability outside of its original context. Furthermore, model 

evaluation is performed on a variety of data sets instead of a single gold standard, 

which makes a fair comparison between models and justifying the choice for a 

model difficult. Next to the evaluation of the model itself, the impact of different 

models on downstream analysis should get more priority. Ultimately these 

models are developed to improve downstream analysis; the models and their 

predictions are a means to an end. 

In conclusion, the substantial promise that machine learning models hold to 

remove ambiguity in peptide identification will certainly trigger a more 

pronounced uptake, and we can therefore expect to see a widespread uptake of 

such models in end-user tools in the near future. 
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As was detailed in the introduction, combining spectrum predictions with data-

driven PSM rescoring results in a more sensitive scoring function that is tailored 

to each data set at hand. In this chapter, I outline the various efforts through which 

I have applied these methods to enable challenging proteomics workflows.  

First, the existing proof-of-concept rescoring implementation96 was adapted to a 

fully functioning software pipeline in the form of MS²Rescore. Existing scripts were 

integrated into a single Python package and conversion scripts for various search 

engine output files were added. The calculation of MS²PIP similarity metrics was 

optimized to run significantly faster compared to the initial implementation. 

Existing converters from search engine output to a Percolator input file were used 

when available, as these already extract many meaningful search engine-related 

features for rescoring. For other search platforms, such as MaxQuant, the same 

feature extraction was replicated to ensure optimal rescoring. A notable example 

of these features, next to the search engine score itself, is the aggregated mass 

error for the most intense matched fragment ions.83 An option to predict 

retention time values with our novel DeepLC predictor207 was also added. In this 

case, an additional feature set with the differences between observed and 

predicted retention time values is attached to the Percolator input. As retention 

time is orthogonal to the acquired mass spectra, it provides an additional 

dimension to the data-driven scoring function.84 This brings the total number of 

feature sets to three: search engine-, MS²PIP- and DeepLC-derived features. 

MS²Rescore also implements Percolator rescoring itself, which means that its final 

output is a list with rescored PSMs. The MS²Rescore Python package has an easy-

to-use command line interface as well as a graphical user interface to facilitate 

uptake by any interested researcher. MS²Rescore is fully open source under the 

permissive Apache-2.0 license and is available on 

https://github.com/compomics/ms2rescore. 

A first application of MS²Rescore on a challenging proteomics workflow was the 

identification of non-canonical proteins in proteogenomics experiments.208 In this 

collaboration with colleagues from the Faculty of Bioscience Engineering, I 

coupled MS²Rescore to the existing PROTEOFORMER identification pipeline.209 In 

this workflow, ribosome profiling data can be integrated with the proteomics 

https://github.com/compomics/ms2rescore


identification process. In ribosome profiling, only mRNA fragments protected by 

ribosomes – which are mostly expected to be in the process of translation – are 

sequenced. This provides a protein search space that approximates the actual 

translated proteome much more closely than normal transcriptomics data would, 

as the exact reading frame of the protein in the transcript is uncovered. 

Additionally, the PROTEOFORMER-MS²Rescore workflow was tested with a search 

space generated from long-read RNA sequencing data, which was over twenty 

times larger than a canonical proteome (Figure 30, left). 

 

Figure 30. Applying MS²Rescore to ribosome profiling and long-read RNA-seq proteogenomics 

workflows. Top-left: Venn diagram showing the search space increase from a ribosome profiling 

pipeline (red) versus the canonical UniProt human proteome (green). Bottom-left: Venn diagram 

showing the search space increase from a long-read RNA sequencing pipeline (red) versus the 

canonical UniProt human proteome (green). Top-right and bottom-right: Number of identified 

spectra in function of the estimated FDR threshold. MS²Rescore can identify more spectra at the 

1% FDR threshold or retain a similar number at the 0.1% FDR threshold compared to traditional 

PSM rescoring with Percolator for both ribosome profiling (top-right) and long-read RNA 

sequencing (bottom-right) pipelines. Adapted from Verbruggen et al. 2021.208 

Both database-generation workflows were tested on four replicates of HCT116 

human colorectal cancer cell proteomics samples. The addition of MS²PIP features 

resulted in an increase in peptide spectrum identification rate at the controlled 

FDR of 1%, or in a similar amount of accepted PSMs at a tenfold more conservative 



FDR threshold of 0.1%, compared to rescoring without spectrum prediction 

features (Figure 30, right). Downstream, 82 novel proteoforms spanning various 

categories (splice variants, non-coding regions, N-terminal truncation…) could be 

identified, although further validation of these specific identifications is still 

required.208 

A similar use case of MS²Rescore is metaproteomics, where multi-species samples 

of microbial colonies are analyzed by MS. The resulting spectra are searched 

against a massive multi-species protein database, which leads to dramatic 

identification ambiguity.210 In collaboration with my colleague Tim Van Den 

Bossche, I applied MS²Rescore to a dataset of four unknown microbial mixes from 

the 2020 Proteome Informatics Research Group Study on Metaproteomics. The 

MS2 spectra were acquired with an ion trap mass analyzer, introducing even more 

identification ambiguity due to low MS/MS mass accuracy,53 and were searched 

with X!Tandem, which implements a traditional scoring function. In this context, 

where none of the initial triangle vertices are optimal, MS²Rescore had a massive 

impact. At a 1% FDR threshold, where X!Tandem could not confidently identify any 

spectra at all, MS²Rescore recovered over 20 000 spectrum identifications for all 

four samples (Figure 31). In another experiment, where the spectra were acquired 

with a high resolution orbitrap mass spectrometer and the search space was 

significantly smaller, the gains in identifications were less spectacular, albeit still 

significant. This example shows how the magnitude of the increase in sensitivity 

MS²Rescore brings depends on the quality of the spectra, the size and complexity 

of the search space, and the initial scoring function. The manuscript describing 

the results of this project is currently in preparation.  

  



 

 

Figure 31. Preliminary results on rescoring metaproteomics identifications from the 2020 

Proteome Informatics Research Group Study on Metaproteomics. Bars show the number of 

identified spectra for four different microbial mixes at three estimated FDR thresholds (0.1%, 1% 

and 5%). A comparison is made between no rescoring, standard Percolator rescoring and 

MS²rescore rescoring with MS²PIP prediction information. Numbers in each bar denote the 

absolute number of identified spectra, percentages between parenthesis denote the spectrum 

identification rate.  

Also in collaboration with colleagues from the Faculty of Bioscience Engineering, 

MS²Rescore was applied to the identification of bioactive peptides.211 These are 

endogenous peptides that are much shorter than most proteins, yet still perform 

vital functions in the body. The most notable example of bioactive peptides are 

neuropeptides, which are key signaling molecules in the nervous system. The 

identification of bioactive peptides by LC-MS/MS is hindered by a large search 

space expansion. Similar to the proteogenomics setup described above, ribosome 

profiling data provides additional sequences that can be searched for. 

Additionally, as no cleavage pattern is known for these peptides – contrary to a 

proteome tryptic digest – the search space is expanded even further with all 

possible cleavages of longer proteins into putative bioactive peptides. Moreover, 

the non-tryptic nature of most bioactive peptides means that the basic amino 

acids lysine or arginine are not consistently present on the C-terminus, generally 

leading to poor ionization and fragmentation efficiency, which in turn generates 

low quality MS2 spectra and further hinders identification. Therefore, in these 

peptidomics studies, both the search space and spectra vertices of the triangle are 

suboptimal. Rescoring biopeptide PSMs almost doubled the number of identified 

spectra compared to the raw search engine results. Unfortunately, the addition of 

MS²PIP- and DeepLC-predicted features only marginally improved the number of 

identified spectra. Nevertheless, an analysis of PSM posterior error probabilities 



showed that the prediction features provided a higher confidence in the 

identifications. The minimal improvements in identification rate can be explained 

by two factors: the spectra were acquired on a fairly new time-of-flight instrument 

(Bruker timsTOF Pro), and biopeptides are mainly of non-tryptic nature (in this 

study around 80% of the identified peptides). The MS²PIP models that were used 

in this project were not optimized for either. We therefore expect that training 

specialized prediction models for timsTOF spectra and non-tryptic peptides would 

significantly improve upon these results.  

In supervision of a master thesis student, I set out to solve one of these issues and 

trained specialized MS²PIP models for non-tryptic peptides. This proved to be 

especially useful for the identification of immunopeptides.212 These peptides are 

presented on major histocompatibility complex (MHC) proteins on the cell surface 

to provide intracellular epitopes for pathogen- and malignancy-recognition by the 

immune system. Immunopeptides could therefore originate from both host and 

pathogen proteomes and are seemingly randomly cleaved in the proteasome. 

Immunopeptidomics search spaces therefore not only include multiple 

proteomes (depending on the experiment), but proteins are also cleaved into all 

possible peptides with no enzyme specificity. Similar to biopeptidomics, 

immunopeptidomics also suffers from low ionization and fragmentation 

efficiency, leading to many low-quality spectra.68 By first retraining MS²PIP 

specifically for the prediction of immunopeptide spectra, and then implementing 

these new models together with DeepLC in the MS²Rescore post-processing 

workflow, we were able to identify 46% more spectra and 36% more unique 

peptides at 1% FDR compared to traditional Percolator rescoring. Moreover, we 

could lower the FDR threshold to 0.1% and retain a similar number of 

identifications compared to traditional rescoring at 1% FDR (Figure 32). By 

visualizing the MS²PIP correlation and DeepLC retention time error with the 

immunopeptide PSMs, we can show how these features alone can already 

separate true target from false target and decoy PSMs and how they provide 

information orthogonal to the search engine scoring function, ultimately 

removing identification ambiguity (Figure 33).  



 

Figure 32. Identification results of rescoring PSMs from a large scale immunopeptidomics 

dataset.213 Bar charts show the spectrum identification rate at 1% FDR (A) and 0.1% FDR (B), and 

relative bar charts show the shared (blue), gained (green) and lost (red) number of unique (by 

sequence) identified immunopeptides in relation to rescoring with only search engine features for 

the 1% FDR threshold (C) and the 0.1% FDR threshold (D). 

 

 

Figure 33. Distributions and correlations of MS²PIP and DeepLC prediction scores and the search 

engine PSM score for immunopeptide accepted target PSMs (green), rejected target PSMs (red) 

and decoy PSMs (blue). Left: Kernel density estimation of the distribution of Pearson correlation 

coefficients between observed and MS²PIP-predicted fragmentation spectra. Middle: Scatter plot 

showing the correlation between absolute retention time error between observations and 

DeepLC-predictions (y-axis) and the MS²PIP Pearson correlation coefficient (x-axis). Right: Scatter 

plot showing the correlation between the Andromeda search engine PSM score (y-axis) and the 

MS²PIP Pearson correlation coefficient (x-axis). Note that on the kernel density estimation plot 

(left), the red line from the rejected target PSMs almost perfectly covers the blue line of the decoy 

PSMs, showing that the decoy distribution perfectly models the distribution of the presumably 

incorrect target PSMS. 

  



 

 

Accurate MS2 spectrum predictions enable drastic improvements in peptide 

identification workflows. As shown in the previous chapter, this is particularly 

useful for challenging proteomics experiments, such as proteogenomics, 

metaproteomics, biopeptidomics, and immunopeptidomics, where conventional 

identification software often reaches its limits. Very recently, our group has also 

demonstrated that predicted features can significantly improve open 

modification searches.201 A more optimal implementation, however, would 

require models that can account for residue modifications, but most state-of-the-

art MS2 spectrum predictors do not take modifications into consideration. 

Instead, the corresponding mass shift is introduced, and peak intensities are 

simply presumed to remain the same for modified and unmodified forms. 

Currently, only the spectrum predictor pDeep considers peptide modifications. 

However, the implementation is not optimal, as modifications are encoded 

independently of the one-hot encoding that is used for the amino acids.198 I am 

therefore working on a novel peptide spectrum predictor, called MS²DIP, which 

generalizes its encoding across modified and unmodified residues. Consequently, 

it should be able to provide more accurate predictions for peptides carrying any 

residue modifications, including for modifications not seen during training. 

 

Similar to the recently published DeepLC207, MS²DIP leverages a state-of-the-art 

CNN architecture that enables it to predict spectra for unmodified and modified 

peptides by learning the resulting MS2 peak intensities from the atomic 

composition of each (modified) residue. This, combined with suitable training 

data, allows MS²DIP to generalize its model across all amino acids, as well as any 

residue modification, even previously unseen ones. The training data consists of 

more than 11 million unique combinations of sequence, modifications, precursor 

charge, and collision energy, originating from ionbot open modification searches 

of a large amount of public proteomics data from the PRIDE Archive.201,214 This 

diverse dataset provides an accurate representation of modifications commonly 

found in open searches. For the initial version, only spectra from tryptic, unlabeled 

peptides acquired by HCD orbitrap acquisition are considered. However, the 

MS²DIP code is designed to support multiple models for specialized use-cases, 



such as isobaric labelled peptides. MS²DIP is built using the flexible pyTorch and 

pyTorch Lightning frameworks and various CNN architectures are being 

considered.215 The results below were obtained with a multi-branch network, 

where each branch can use different hyperparameters, such as kernel size and 

stride. An overview of the MS²DIP workflow is shown in Figure 34. 

 

Figure 34. Schematic overview of the MS²DIP development workflow. A large amount of raw mass 

spectrometry data was downloaded from PRIDE Archive and processed with the novel open 

modification search engine ionbot, which resulted in a spectral library containing 11 million unique 

PSMs (by sequence, modifications, and charge). This dataset of modified and unmodified peptide 

spectra forms the basis for training a convolutional neural network spectrum predictor. 

 

Current prototype models of MS²DIP already drastically outperform MS²PIP, on 

both modified as well as unmodified peptides, with median Pearson correlations 

of 0.907 for modified, and 0.943 for unmodified peptides. MS²DIP also 

outperforms the out-of-the-box version of pDeep3, which shows median Pearson 

correlations of 0.856 for modified, and 0.924 for unmodified peptides (Figure 35). 

 

While this work is still very preliminary, the results are promising. I expect 

optimizations to the model architecture and hyperparameters to further improve 

accuracies, allowing MS²DIP to approximate observed technical variance. The final 

model will be evaluated on various external datasets, such as synthetic modified 

peptide data and a biological dataset processed with a different open-

modification search engine. The prediction accuracy will also be compared with 

calibrated pDeep models and other spectrum predictors such as Prosit.125 



Ultimately, I aim to make MS²DIP easy to integrate into existing as well as novel 

peptide identification pipelines, such as ionbot, using the Python package or with 

custom C++ bindings. 

 

Figure 35. Box plots showing Pearson correlation distributions for MS²PIP 2019 predictions (blue), 

pDeep3 predictions (orange), and MS²DIP predictions (green). Top: Pearson correlations split by 

unmodified peptides (left) and modified peptides (right) and by precursor charge. Bottom: 

Prediction correlations for the 20 most common modifications in the test dataset, which contains 

spectra from 81,695 modified and 226,306 unmodified peptides. 

 



  



 

Through MS-based proteomics, the complex interplay between a cell’s proteins in 

both function and dysfunction can be analyzed. The validity of the conclusions of 

proteomics experiments, however, stands or falls with the accuracy of peptide 

spectrum identifications. To this end, many peptide identification search engines 

have been developed. While these software tools work very well in the context of 

routine experiments, many novel proteomics workflows require a more sensitive 

approach to peptide identification. ML tools that accurately predict the behavior 

of peptides in LC-MS/MS can provide additional information to assess the quality 

of a candidate PSM. Throughout this PhD project I have shown that the integration 

of these predictors into identification pipelines reduces ambiguity between 

candidate PSMs, which in turn increases the identification sensitivity.  

Accurate peptide fragmentation spectrum prediction has proven to be the most 

effective ML-based information source to improve scoring functions. MS²PIP, 

initially developed in 2013, first used random forests to predict peptide fragment 

ion peak intensities.94 However, because of the variable length of peptides, a 

separate random forest regressor had to be trained for each combination of 

peptide length and charge state, which drastically reduced the amount of training 

data for each model. Early in my PhD project, my co-promotor Sven Degroeve, 

devised an intricate feature engineering method to accept a single training 

dataset for any peptide length. This is possible by capturing a fixed number of 

statistics on the distribution of features across the peptide sequence, instead of 

capturing these features directly for each amino acid. Additionally, the random 

forests were replaced with the more performant XGBoost algorithm.88 As a result, 

the required amount of training data was significantly reduced, and the predictive 

performance drastically increased. This allowed me to train and evaluate a 

plethora of new MS²PIP models for various instruments, fragmentation methods, 

and labeling techniques. Training separate models was key, as I demonstrated 

that in each of these cases, the peptide fragmentation patterns were significantly 

altered. The availability of these specialized models, the user-friendly webserver, 

and locally installable Python package resulted in a widespread adoption of 

MS²PIP, with applications ranging from the validation of key paleoproteomics 

identifications to data-driven phosphorylation site localization.216,217 



Across the many challenging proteomics identification workflows, the triangle of 

successful peptide identification – with its three vertices high quality spectra, ideal 

search space, and performant scoring function – has been a useful metaphor for 

clarifying why certain approaches work well, while others do not. For instance, in 

DIA spectrum identification, where the spectra are highly chimeric, many 

researchers forget that the successful application of DDA-based spectral libraries 

mostly stems from their very effective search space reduction (typically at least 

two orders of magnitude smaller than that obtained for a normal 

UniProtKB/SwissProt search against human proteins) and not as much from the 

accurate peak intensity and retention time measurements provided by the library. 

A sequence database search of highly chimeric wide-window DIA data128 would be 

feasible, if the search space would be limited as well. However, such a search 

space reduction is suboptimal, as an ideal search space should contain all proteins 

that can be expected in the sample, and should not be restricted to peptides that 

have been previously found by DDA workflows. Doing so cannot only lead to false 

negatives, it can also lead to high scoring false positives, when a better-scoring 

true positive PSM was never considered. A more efficient identification workflow 

is therefore required. 

With the use of MS²PIP and Elude to predict spectral libraries in silico, we were 

able to bring the advantages of DIA searching with DDA spectral libraries to a 

proteome-wide level. Together with colleagues who independently came to the 

same conclusions around the same time, we were the first to demonstrate a 

highly performant DDA libarary-free identification workflow for DIA based on the 

prediction of peptide LC-MS/MS behavior.133,218 Due to the large search space, and 

highly chimeric spectra, it was crucial to first generate a sample-specific library on 

narrow window DIA runs. Nevertheless, the prediction of peak intensities and 

retention time provided a significant boost compared to a sequence database 

search that uses the same intermediate narrow window step. Various other 

implementations of in silico library prediction for DIA have been published since 

and this has now become a routinely used method in DIA data analysis.219 

Moreover, some approaches have now overcome the need for an intermediate 

narrow window step, for instance by using proteotypicity predictors to limit the 

search space.220   



The perspective I wrote with my colleague Robbin Bouwmeester highlights that 

while many prediction tools are available, their integration into identification 

workflows was lacking. My work on MS²Rescore improves this situation, as it 

integrates spectrum prediction and retention time prediction with Percolator to 

improve the sensitivity in various proteomics pipelines. 

By generating an optimized data-driven scoring function, MS²Rescore can improve 

or even rescue proteomics identification workflows where either the search 

space, the query spectra, or both, are problematic. Through several 

collaborations, I have applied MS²Rescore to challenging proteomics workflows 

such as proteogenomics, metaproteomics, biopeptidomics, and 

immunopeptidomics. The most noteworthy improvements were seen in 

metaproteomics and immunopeptidomics experiments, both of which suffer 

from a drastically large search space. Additionally, in the case of the 

metaproteomics experiment, ion trap spectra and an initial simple scoring 

function made for a spectacular increase in identified peptides from 0 to over 20 

000 at 1% FDR by using MS²Rescore. Due to the search space problem in 

metaproteomics, a more liberal FDR threshold of 5% is often used to allow more 

spectra to be identified. This obviously does allow for many more false positives 

in the results. More sensitive data-driven search engines are therefore welcome 

tools to generate more confident metaproteomics peptide identifications. In 

many cases, using a data-driven scoring function allows for an even more 

stringent FDR threshold of 0.1%. I strongly advocate in favor of using this tenfold 

more stringent FDR when possible, to further improve the specificity and 

therefore our confidence in proteomics identifications. One problem that can 

arise at FDR thresholds this stringent, is the absence of any decoy PSMs which 

renders an accurate FDR estimation more difficult. More research towards this 

effect will therefore be required, possibly by creating better (i.e., higher scoring) 

decoys that mimic the ambiguity problem even better.129 

By training new MS²PIP models for both tryptic and non-tryptic peptides, 

MS²Rescore could successfully be applied to immunopeptidomics searches as 

well. Due to their non-specific cleavage, a large search space needs to be dealt 

with when identifying immunopeptide spectra. In our experiments, the added 

sensitivity of MS²Rescore resulted in 36% more uniquely identified 

immunopeptides. This holds great promise for the detection of novel neo- or 

xeno-epitopes for the development of vaccinations and cancer therapies. 



The traditional ML algorithms used in MS²PIP achieve a relatively high prediction 

accuracy and require only a moderate amount of training data, which lowers the 

threshold to develop specialized models for specific cases. Nevertheless, new 

deep learning methods provide an exceedingly more flexible platform for various 

ML tasks. The many architectures and specialized networks, such as CNNs and 

RNNs facilitate complex prediction tasks, such as a peptide spectrum with a 

variable number of peak intensities to predict, resulting in a single objective 

function to measure the model performance. The preliminary MS²DIP results 

show that CNNs are capable of capturing the relevant information to predict 

fragment peak intensities from a matrix of atom compositions along the peptide 

sequence. By limiting the use of one-hot amino acid encoding, the model should 

therefore be able to generalize across unmodified and modified residues. More 

work is still required to further improve MS²DIPs prediction accuracy, and more 

evaluations are required to assess its generalization capability. If successful, 

MS²DIP will be the first spectrum predictor that generalizes its predictions for any 

modified peptide. This opens the door to a fully data-driven, modification-aware, 

open modification search engine. It has already been shown that spectrum 

predictions can reduce ambiguity in open modification searches201 and that they 

can improve PTM localization as a post-processing step.217 Such a data-driven 

open modification scoring function should therefore, thanks to MS²DIP, be better 

at distinguishing differently modified versions of one peptide and should improve 

PTM localization accuracy.  



 

The behavior of peptides in LC-MS/MS lends itself perfectly to ML. Many of these 

characteristics follow reproducible but complex patterns. Moreover, thanks to 

data sharing guidelines and requirements, a substantial amount of generated 

proteomics data is stored in public archives and repositories, with monthly 

submissions of new data consistently increasing.170,214 While most proteomics 

datasets are available in accessible formats, the accompanying metadata is often 

missing or even false, which hinders its reuse. Fortunately, the community is 

aware of this issue, and a new standard metadata format for proteomics has been 

developed.221 Further efforts will be required to ensure the consistent and correct 

use of this format.  

Virtually every step in the LC-MS/MS workflow has been modeled by ML. However, 

many models remain at the prediction phase and are ultimately not implemented 

in data analysis. Nonetheless, with the increasing popularity of ML, and DL in 

specific, many bioinformatics groups are now developing peptide LC-MS/MS 

behavior predictors and immediately integrate these into their existing data 

analysis pipelines.222,223 Deep learning thus opens many new avenues in 

proteomics data analysis. The modular aspect of trained models allows for the 

integration of multiple prediction tasks. This can increase the overall performance 

and should also enable a more efficient development of predictors for new 

peptide measurements, such as ion mobility. Additionally, MS data can be 

integrated or interpreted in different ways, for instance through neural network 

embeddings.224  

To optimally enable the development and use of ML models in the wide 

proteomics community, a number of crucial aspects should be taken into 

consideration. First and foremost, data sharing is essential. During this PhD 

project, significant time and effort was often needed to compile high quality 

training data sets. While almost all ML publications in proteomics provide open-

source code, the parsed and prepared data sets are often not shared in an open 

and accessible format. This not only hinders reproducibility, but also deters other 

researchers from improving upon the existing work. Secondly, a common use of 

standardized data formats is key. For instance, the newly developed ProForma 2.0 

notation for modified peptides is a simple addition to the repertoire of 

standardized proteomics formats.225 Nonetheless, its use should avoid a lot of 



time-consuming writing of custom conversion scripts that parse one notation into 

the other. Thirdly, modularity of code in the form of reusable units can 

significantly speed up development of ML applications. For instance, the Python 

packages Pyteomics, spectrum_utils, and ppx make prototyping code for 

proteomics data a much more efficient process.138,226,227 Similar efforts should be 

made specifically for common tasks in proteomics ML development. Fourthly, the 

wide availability of ML tools to the community is essential. This means that 

software should be accessible to developers through application programming 

interfaces or command line interfaces, and to end-users through web servers or 

graphical user interfaces. Moreover, DL models often require graphical 

processing units (GPUs) for efficient training and prediction which hinders 

adoption by the wider public. Modern DL frameworks should be used that allow 

the use of pretrained models on devices without GPUs. Throughout my PhD 

research, I have always strived to make the resulting software packages available 

according to these principles. This did require an additional effort to learn the 

basics of software packaging, web server development, and graphical user 

interface building. Documentation is also an important aspect of code sharing. In 

the predicted libraries for the DIA project, for instance, we provided the 

supplementary methods in a tutorial format to promote the replication of our 

results and to invite other researchers to improve upon them. 

The most direct and straight-forward implementation of ML prediction tools is in 

the identification process, especially for challenging proteomics workflows. 

Currently, peptide spectrum prediction is the most powerful ML application to 

improve identification sensitivity. Various new spectrum predictors have been 

developed in the last three years, all using deep learning, with various 

performances.125,126,195 MS²PIP has consistently been used as benchmark with 

these new tools. Nevertheless, the downstream effect of improved peptide 

spectrum predictions has not been properly investigated. Our results indicate that 

an increased predictive performance does not immediately translate to an 

increase in identification sensitivity.208,212 More research is therefore required to 

find the most efficient methods to extract meaningful information from highly 

accurate spectrum predictions to improve the resulting scoring functions and 

push peptide identification to perfection.  

In an ideal situation, a perfect peptide identification would mean a complete 

separation of true targets and decoys. This is most likely unattainable, but should 



still be the goal. Next to improvements in data analysis using ML, improvements 

in instrumentation are expected to increase the identification sensitivity as well. 

Currently the main issue in most proteomics workflows is high sample complexity. 

In both DIA and DDA, this leads to chimeric spectra, and in DDA this additionally 

results in the missed acquisition of many low intensity peptides due to the 

stochastic selection of the most intense precursor ions. I therefore expect most 

significant instrument improvements to be those that address chimericity. More 

performant separation techniques, such as more robust LC or the addition of ion 

mobility as an additional dimension should reduce sample complexity. I also 

expect lower MS cycle times to increase the acquisition rate of future mass 

spectrometers. Ultimately, I hope to see a unification of the DIA and DDA 

methods, where the mass spectrometer can simply acquire all precursors with 

narrow isolation windows, resulting in nearly chimeric-less spectra. 

With the development of chip-, sequencing- and antibody-based proteomics 

technologies, the future of LC-MS/MS-based proteomics lies in the discovery of 

unknown protein and (bio)peptide sequences, and most importantly, in open 

modification searching. As each of these challenging methods require a more 

sensitive identification workflow, I foresee ML to take up a central role in 

proteomics bioinformatics to remove identification ambiguity. In other words: the 

future of LC-MS/MS-based proteomics is predicted.  
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Proteins are the molecular work horse of the cell and carry out many functional 

and structural tasks. In depth knowledge of the complement of all proteins in a 

cell or tissue, called the proteome, can provide valuable insights into cellular 

biology in health and disease. To study the proteome in high throughput, liquid-

chromatography – tandem mass spectrometry (LC-MS/MS) is most-often the 

platform of choice. The result of an LC-MS/MS experiment is a large set of peptide 

spectra that require specific bioinformatics software to be identified. However, 

the confident identification of peptide spectra is not always straightforward, 

especially when novel challenging proteomics workflows are used. Examples of 

such workflows are data independent acquisition (DIA), proteogenomics, 

metaproteomics, biopeptidomics, and immunopeptidomics. Fortunately, 

machine learning (ML) can provide accurate predictions of peptide behavior in LC-

MS/MS, allowing more LC-MS/MS data to be used in the identification process, 

resulting in a higher sensitivity. In this PhD research, the use of ML to enable novel 

proteomics workflows is investigated in-depth. First, the peptide spectrum 

predictor MS²PIP is significantly improved and extended to more use-cases. 

Second, a novel paradigm for the proteome-wide identification of DIA data is 

proposed and developed. Third, a perspective of the current state of peptide LC-

MS/MS behavior predictors is given. Fourth, the MS²PIP spectrum predictor is 

integrated in a fully data-driven post-processing pipeline, which is subsequently 

applied on the various challenging proteomics workflows mentioned above. Fifth, 

preliminary results are shown on a novel modification-aware spectrum predictor. 

Each of the detailed applications of spectrum prediction for improved 

identification performance resulted in a more sensitive scoring function leading 

to more confident peptide identifications. In conclusion, ML proved to be a 

valuable tool for the identification of peptide mass spectra in challenging 

proteomics workflows. In the future, where proteomics experiments will become 

increasingly demanding, ML is expected to take up a central role in proteomics 

data analysis workflows.  



 

Eiwitten zijn de moleculaire werkpaarden van de cel en voeren verscheidene 

functionele en structurele taken uit. Diepgaande kennis van het proteoom, het 

totaal aan eiwitten in een cel of weefsel, kan waardevolle inzichten brengen in 

mechanismen van gezondheid en ziekte. Om het proteoom in high-throughput te 

kunnen analyseren is liquid chromatography – tandem mass spectrometry (LC-

MS/MS) vaak het platform naar keuze. De resultaten van een LC-MS/MS 

experiment bestaat uit een grote hoeveelheid peptide spectra die geïdentificeerd 

moeten worden met specifieke bioinformatica software. Het gevoelig 

identificeren van peptide spectra is helaas niet altijd even makkelijk, zeker 

wanneer veeleisende proteomics workflows gebruikt werden. Voorbeelden van 

zulke workflows zijn data-independent acquisition (DIA), proteogenomics, 

metaproteomics, biopeptidomics, en immunopeptidomics. Gelukkig kan machine 

learning (ML) het gedrag van peptiden in LC-MS/MS accuraat voorspellen, 

waardoor meer informatie gebruikt kan worden in het identificatieproces, wat 

uiteindelijk leidt tot een hogere identificatiegevoeligheid. In dit 

doctoraatsonderzoek wordt het gebruik van ML voor het mogelijk maken van 

nieuw-uitgevonden, veeleisende proteomics workflows diepgaand bestudeerd. 

Eerst wordt de peptide spectrum predictor MS²PIP significant verbeterd en 

uitgebreid. Ten tweede wordt een nieuw paradigma voor het proteoom-breed 

identificeren van DIA-data voorgesteld en ontwikkeld. Ten derde wordt de huidige 

staat van voorspellingstools voor het gedrag van peptiden in LC-MS/MS 

beschreven. Ten vierde wordt MS²PIP geïntegreerd in een volledig data-gedreven 

proteomics post-processing workflow, wat vervolgens wordt toegepast op de 

verscheidene veeleisende proteomics workflows die hierboven vermeld werden. 

Ten vijfde worden preliminaire resultaten gedeeld over een nieuw uitgevonden 

peptide spectrum predictor voor gemodificeerde peptiden. Elk van de beschreven 

toepassingen van spectrumvoorspelling voor een verbeterde 

identificatieperformantie resulteerde in een meer gevoelige scoringfunctie, wat 

op zich dan weer resulteerde in meer peptide identificaties. In conclusie, ML heeft 

zich bewezen als waardevolle tool in de identificatie van peptide massa spectra in 

veeleisende proteomics workflows. In de toekomst, waar proteomics meer en 

meer uitdagend zal worden, wordt ML verwacht een centrale rol op te nemen in 

de bioinformatica analyse van proteomics data.  
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2019 – … Organizational member of the European Bioinformatics 

Community for Mass Spectrometry (EuBIC-MS) 

2018 – … Member of the HUPO-PSI Proteomics Informatics workgroup 

2017 – … Board member of the Biomedical Alumni Ghent  

2016 – 2017 President of the Faculty Student Council (StuGG) 

2016 – 2017 Elected student representative in the Faculty Council and several 

other faculty and university-level committees 

2014 – 2016 Vice president and President of the Biomedical Student Council 

(BSR) 

2013 – 2017 Student representative in the Biomedical Curriculum Committee 

2012 – 2017 Youth leader at Chiro Vagadam Oostende 

2011 – 2013  Youth leader at Kazou Oostende 

2021 – 2023 Robbe Devreese, Dissertation, MSc in Biomedical Sciences 

Machine learning-based elucidation of the protein modification 

landscape under oxidative stress 

2019 – 2021 Arthur Declercq, Dissertation, MSc in Biomedical Sciences 

Data-driven methods for improved immunopeptide identification in 

mass spectrometry 

2019 – 2021 Jasper Vermeire, Dissertation, MSc in Biomedical Sciences 

Accurate localization of post-translational modifications in 

proteomics data 

2019 Triana Forment, Erasmus+ traineeship 

Analysis of high-throughput proteomics data on perturbations of a 

plant model system 

2022 – … Invited peer review for the journal Analytical Chemistry 

2020 – … Recurring abstract submission reviews for the yearly conferences 

of the International Society for Computational Biology 

2018 – … Recurring peer review in support of my promotors for the 

journals Molecular and Cellular Proteomics and Analytical Chemistry 

https://eubic-ms.org/
https://eubic-ms.org/
https://psidev.info/
https://infinitum.ugent.be/topics/17715
https://www.stugg.be/


2018 – 2021 FWO PhD fellowship strategic basic research 

07/04/2021 EuPA Bioinformatics for Mass Spectrometry Award, European 

Proteomics Association 

06/2019 Student stipend to attend the 67th ASMS Conference on Mass 

Spectrometry and Allied Topics, Atlanta, GA, United States 

13/03/2019 Best presentation award, Conference of the MASSTRPLAN 

International Training Network (Marie Sklodowska-Curie EU 

Framework for Research and Innovation Horizon 2020) 

16/01/2019 Best flash talk award, European Bioinformatics Community for 

Mass Spectrometry, Winter School 2019 

26/09/2018 Best presentation award, Flanders Training Network Life Sciences - 

Big Data in Life Sciences and Biomedicine symposium 

03/11/2021 69th ASMS Conference on Mass Spectrometry and Allied Topics, 

Philadelphia, PA, United States 

MS²DIP: Highly accurate MS2 spectrum prediction for modified 

peptides & MS²Rescore: Data-driven rescoring dramatically boosts 

immunopeptide identification rates 

14/01/2020 EuBIC Developers Meeting 2020, Nyborg, Denmark 

The HUPO-PSI standardized spectral library format 

06/06/2019 67th ASMS Conference on Mass Spectrometry and Allied Topics, 

Atlanta, GA, United States 

MS²PIP: Fast and accurate MS² peak intensity prediction for multiple 

fragmentation methods, instruments, and labeling techniques 

14/09/2021 PROTrEIN European Innovative Training Network – 1st summer 

school, online 

Lecture: Algorithms for automatic spectrum interpretation 

18/07/2019 ISCB2019 Statistics in proteomics mini-symposium, Leuven, 

Belgium 

MS²PIP: Predicting peptide spectrum peak intensities to improve 

proteomics identification  



13/03/2019 MASSTRPLAN European Innovative Training Network – final 

conference, Ghent, Belgium 

Fast and accurate MS² peak intensity predictions for multiple 

fragmentation methods, instruments, and labeling techniques 

16/01/2019 EuBIC Winter School 2019, Zakopane, Poland 

Fast and accurate MS² peak intensity predictions for multiple 

fragmentation methods, instruments, and labeling techniques 

26/09/2018 f-TALES Big Data in Life Sciences, Ghent Belgium 

MS² peak intensity prediction for specific PTMs, fragmentation 

techniques and instruments 

 

Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS²PIP web server 

delivers fast and accurate MS2 peak intensity prediction for multiple 

fragmentation methods, instruments and labeling techniques. Nucleic Acids 

Research, 47(W1). https://doi.org/10.1093/nar/gkz299 

Contribution: conception and design, data analysis, discussion, manuscript 

drafting. 

Van Puyvelde, B.*, Willems, S.*, Gabriels, R.*, Daled, S., de Clerck, L., Vande 

Casteele, S., Staes, A., Impens, F., Deforce, D., Martens, L., Degroeve, S., & 

Dhaenens, M. (2020). Removing the Hidden Data Dependency of DIA with 

Predicted Spectral Libraries. Proteomics, 20(3–4). 

https://doi.org/10.1002/pmic.201900306  

Contribution: data analysis, discussion, manuscript drafting. 

Bouwmeester, R.*, Gabriels, R.*, Van Den Bossche, T., Martens, L., & Degroeve, 

S. (2020). The Age of Data-Driven Proteomics: How Machine Learning Enables 

Novel Workflows. Proteomics, 20(21–22). https://doi.org/10.1002/pmic.201900351  

Contribution: discussion, manuscript drafting and proofreading. 

Shiferaw, G. A., Vandermarliere, E., Hulstaert, N., Gabriels, R., Martens, L., & 

Volders, P.-J. (2020). COSS: A Fast and User-Friendly Tool for Spectral Library 

Searching. Journal of Proteome Research, 19(7). 

https://doi.org/10.1021/acs.jproteome.9b00743  

Contribution: discussion, manuscript proofreading. 

https://doi.org/10.1093/nar/gkz299
https://doi.org/10.1002/pmic.201900306
https://doi.org/10.1002/pmic.201900351
https://doi.org/10.1021/acs.jproteome.9b00743


Ashwood, C., Bittremieux, W., Deutsch, E. W., Doncheva, N. T., Dorfer, V., 

Gabriels, R., Gorshkov, V., Gupta, S., Jones, A. R., Käll, L., Kopczynski, D., Lane, L., 

Lautenbacher, L., Legeay, M., Locard-Paulet, M., Mesuere, B., Perez-Riverol, Y., 

Netz, E., Pfeuffer, J., … Willems, S. (2020). Proceedings of the EuBIC-MS 2020 

Developers’ Meeting. EuPA Open Proteomics, 24. 

https://doi.org/10.1016/j.euprot.2020.11.001  

Contribution: organization, discussion, manuscript drafting and proofreading. 

Verbruggen, S., Gessulat, S., Gabriels, R., Matsaroki, A., Van De Voorde, H., 

Kuster, B., Degroeve, S., Martens, L., van Criekinge, W., Wilhelm, M., & 

Menschaert, G. (2021). Spectral prediction features as a solution for the search 

space size problem in proteogenomics. Molecular and Cellular Proteomics, 20. 

https://doi.org/10.1016/J.MCPRO.2021.100076  

Contribution: data analysis, discussion, manuscript proofreading. 

Van Puyvelde, B., Van Uytfanghe, K., Tytgat, O., Van Oudenhove, L., Gabriels, R., 

Bouwmeester, R., Daled, S., Van Den Bossche, T., Ramasamy, P., Verhelst, S., De 

Clerck, L., Corveleyn, L., Willems, S., Debunne, N., Wynendaele, E., De Spiegeleer, 

B., Judak, P., Roels, K., … Dhaenens, M. (2021). Cov-MS: A Community-Based 

Template Assay for Mass-Spectrometry-Based Protein Detection in SARS-CoV-2 

Patients. JACS Au, 1(6), 750–765. https://doi.org/10.1021/JACSAU.1C00048  

Contribution: data analysis, discussion, manuscript proofreading. 

Salz, R., Bouwmeester, R., Gabriels, R., Degroeve, S., Martens, L., Volders, P.-J., & 

Hoen, P. A. C. (2021). Personalized Proteome: Comparing Proteogenomics and 

Open Variant Search Approaches for Single Amino Acid Variant Detection. 

Journal of Proteome Research, 20(6). 

https://doi.org/10.1021/acs.jproteome.1c00264  

Contribution: discussion, manuscript proofreading. 

Deutsch, E. W., Perez-Riverol, Y., Carver, J., Kawano, S., Mendoza, L., Van Den 

Bossche, T., Gabriels, R., Binz, P.-A., Pullman, B., Sun, Z., Shofstahl, J., 

Bittremieux, W., Mak, T. D., Klein, J., Zhu, Y., Lam, H., Vizcaíno, J. A., & Bandeira, N. 

(2021). Universal Spectrum Identifier for mass spectra. Nature Methods, 18(7). 

https://doi.org/10.1038/s41592-021-01184-6  

Contribution: discussion, manuscript proofreading. 

https://doi.org/10.1016/j.euprot.2020.11.001
https://doi.org/10.1016/J.MCPRO.2021.100076
https://doi.org/10.1021/JACSAU.1C00048
https://doi.org/10.1021/acs.jproteome.1c00264
https://doi.org/10.1038/s41592-021-01184-6


Degroeve, S., Gabriels, R., Velghe, K., Bouwmeester, R., Tichshenko, N., & 

Martens, L. (2021). ionbot: A novel, innovative and sensitive machine learning 

approach to LC-MS/MS peptide identification. In bioRxiv. 

https://doi.org/10.1101/2021.07.02.450686  

Contribution: data analysis, discussion, manuscript proofreading. 

Peeters, M. K. R., Baggerman, G., Gabriels, R., Pepermans, E., Menschaert, G., & 

Boonen, K. (2021). Ion Mobility coupled to a Time-of-Flight Mass Analyzer 

Combined With Fragment Intensity Predictions Improves Identification of 

Classical Bioactive Peptides and Small Open Reading Frame-Encoded Peptides. 

Frontiers in Cell and Developmental Biology, 9. 

https://doi.org/10.3389/fcell.2021.720570  

Contribution: discussion, manuscript proofreading.  

Shiferaw, G. A., Gabriels, R., Bouwmeester, R., Van Den Bossche, T., 

Vandermarliere, E., Martens, L., & Volders, P.-J. (2021). Sensitive and specific 

spectral library searching with COSS and Percolator. In bioRxiv. 

https://doi.org/10.1101/2021.04.09.438700  

Contribution: conception and design, discussion, manuscript proofreading. 

Bouwmeester, R., Gabriels, R., Hulstaert, N., Martens, L., & Degroeve, S. (2021). 

DeepLC can predict retention times for peptides that carry as-yet unseen 

modifications. Nature Methods, 18(11). https://doi.org/10.1038/s41592-021-

01301-5  

Contribution: data analysis, discussion, manuscript proofreading. 

Declercq, A., Bouwmeester, R., Degroeve, S., Martens, L., & Gabriels, R. (2021). 

MS²Rescore: Data-driven rescoring dramatically boosts immunopeptide 

identification rates. In bioRxiv. https://doi.org/10.1101/2021.11.02.466886  

Contribution: conception and design, discussion, manuscript proofreading. 

van Puyvelde, B., Daled, S., Willems, S., Gabriels, R., Gonzalez de Peredo, A., 

Chaoui, K., Mouton-Barbosa, E., Bouyssié, D., Boonen, K., Hughes, C. J., Gethings, 

L. A., Perez-Riverol, Y., Bloomfield, N., Tate, S., Schiltz, O., Martens, L., Deforce, D., 

& Dhaenens, M. (2022). A comprehensive LFQ benchmark dataset on modern 

day acquisition strategies in proteomics. Scientific Data 2022 9:1, 9(1). 

https://doi.org/10.1038/s41597-022-01216-6 

Contribution: data analysis, discussion, manuscript proofreading. 

https://doi.org/10.1101/2021.07.02.450686
https://doi.org/10.3389/fcell.2021.720570
https://doi.org/10.1101/2021.04.09.438700
https://doi.org/10.1038/s41592-021-01301-5
https://doi.org/10.1038/s41592-021-01301-5
https://doi.org/10.1101/2021.11.02.466886
https://doi.org/10.1038/s41597-022-01216-6


LeDuc, R. D., Deutsch, E. W., Binz, P.-A., Fellers, R. T., Cesnik, A. J., Klein, J. A., Van 

Den Bossche, T., Gabriels, R., Yalavarthi, A., Perez-Riverol, Y., Carver, J., 

Bittremieux, W., Kawano, S., Pullman, B., Bandeira, N., Kelleher, N. L., Thomas, P. 

M., & Vizcaíno, J. A. (2021). Proteomics Standards Initiatives ProForma 2.0 

Unifying the encoding of Proteoforms and Peptidoforms. Journal of Proteome 

Research, 21, 1189–1195. https://doi.org/10.1021/acs.jproteome.1c00771 

Contribution: discussion, manuscript proofreading. 

Luo, X., Bittremieux, W., Griss, J., Deutsch, E. W., Sachsenberg, T., Levitsky, L. I., 

Ivanov, M. v, Bubis, J. A., Gabriels, R., Webel, H., Sanchez, A., Bai, M., Käll, L., & 

Perez-Riverol, Y. (2022). A comprehensive evaluation of consensus spectrum 

generation methods in proteomics. Journal of Proteome Research 2022. 

https://doi.org/10.1021/acs.jproteome.2c00069  

Contribution: conception and design, data analysis, discussion, manuscript 

proofreading. 

 

* Contributed equally 

 

https://doi.org/10.1021/acs.jproteome.1c00771
https://doi.org/10.1021/ACS.JPROTEOME.2C00069

