
1. Introduction
One of the key challenges in the field of statistical seismology, or seismology in general, is the development of 
accurate earthquake forecasting models, with epidemic-type aftershock sequence (ETAS) models (see Nandan 
et al., 2017; Ogata, 1998; Veen & Schoenberg, 2008) currently being widely used for this purpose. ETAS models 
account for the spatio-temporal clustering of earthquakes, and they have been shown in retrospective, pseudo-pro-
spective, and prospective forecasting experiments to be among the best-performing earthquake forecasting mod-
els available today (Cattania et al., 2018; Mancini et al., 2019, 2020; Nandan et al., 2019b; Taroni et al., 2018, 
Woessner et  al.,  2011). Furthermore, they are used for operational earthquake forecasts by the USGS (Field 
et al., 2017), in Italy (Marzocchi et al., 2014), and New Zealand (Rhoades et al., 2016).

Abstract We propose two methods to calibrate the parameters of the epidemic-type aftershock sequence 
(ETAS) model based on expectation maximization (EM) while accounting for temporal variation of catalog 
completeness. The first method allows for model calibration on long-term earthquake catalogs with temporal 
variation of the completeness magnitude, mc. This calibration technique is beneficial for long-term probabilistic 
seismic hazard assessment (PSHA), which is often based on a mixture of instrumental and historical catalogs. 
The second method generalizes the concept of mc, considering rate- and magnitude-dependent detection 
probability, and allows for self-consistent estimation of ETAS parameters and high-frequency detection 
incompleteness. With this approach, we aim to address the potential biases in parameter calibration due to 
short-term aftershock incompleteness, embracing incompleteness instead of avoiding it. Using synthetic 
tests, we show that both methods can accurately invert the parameters of simulated catalogs. We then use 
them to estimate ETAS parameters for California using the earthquake catalog since 1932. To explore how 
model calibration, inclusion of small events, and accounting for short-term incompleteness affect earthquakes' 
predictability, we systematically compare variants of ETAS models based on the second approach in pseudo-
prospective forecasting experiments for California. Our proposed model significantly outperforms the ETAS 
null model, with decreasing information gain for increasing target magnitude threshold. We find that the ability 
to include small earthquakes for simulation of future scenarios is the primary driver of the improvement and 
that accounting for incompleteness is necessary. Our results have significant implications for our understanding 
of earthquake interaction mechanisms and the future of seismicity forecasting.

Plain Language Summary Our capability to detect earthquakes varies with time, on one hand 
because more and better instruments are being deployed over time, leading to long-term changes of detection 
capability. On the other hand, earthquakes are more difficult to be detected when seismic activity is high, which 
manifests in short-term changes of detection capability. Incomplete detection can lead to biases in epidemic-
type aftershock sequence (ETAS) models used for earthquake forecasting. We propose two methods that allow 
us to calibrate these models while accounting for long-term (first method) and short-term (second method) 
changes in detection capability, which allows us to use a larger and more representative fraction of the available 
data. We test both methods on synthetic data and then apply them to the Californian earthquake catalog. Using 
the second method, we test how small earthquakes can improve our forecasts. We find that the ability to include 
small earthquakes in simulations leads to superior forecasts, and that it is necessary to correct for short-
term incompleteness to achieve this superiority. The positive effect is strongest when forecasting relatively 
small events, and decreases when forecasting larger events. These results have important implications for our 
understanding of earthquake interactions and for the future of earthquake forecasting.
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A fundamental requirement for reliable parameter estimation of the ETAS model is the completeness of the 
training catalog above the magnitude of completeness, mc. As we can impossibly know with certainty what we 
did not observe, mc itself needs to be estimated, and numerous approaches to this problem have been proposed 
(Amorese, 2007; Cao & Gao, 2002; Rydelek & Sacks, 1989; Wiemer & Wyss, 2000; Woessner & Wiemer, 2005; 
see Mignan & Woessner, 2012 for an overview). mc is known to vary in space and time, due to gradual improve-
ment of the seismic network, software upgrades, and so on. Several methods have been proposed to estimate its 
spatial and temporal variation (Amato & Mele, 2008; Hainzl, 2016b; Hutton et al., 2010; Mignan et al., 2011; Mi-
gnan & Chouliaras, 2014; Nanjo et al., 2010; Schorlemmer & Woessner, 2008; Wiemer & Wyss, 2000; Woessner 
& Wiemer, 2005). In particular, Hainzl (2016b) addresses an additional important cause of variation in time of 
mc, short-term aftershock incompleteness (STAI). Because earthquakes strongly cluster in time, seismic networks 
can only capture a subset of events during periods of high activity (Kagan, 2004).

As mentioned earlier, a reliable estimation of ETAS parameter depends on a reliable estimate of mc. Although 
the biasing effects on ETAS parameter estimates caused by data incompleteness are known and discussed (Hain-
zl, 2016b; Seif et al., 2017; Zhuang et al., 2017), nearly all applications of the ETAS model assume for simplicity 
a global magnitude of completeness for the entirety of the training period. This assumption is problematic in 
several ways.

First, in order to be complete for the entire training period, the modeler is often forced to use very conservative 
estimates of mc, as a result completely ignoring abundant and high-quality data from more complete periods. 
Furthermore, mc is often assumed to be equal to the minimum magnitude of earthquakes that can trigger after-
shocks, m0, and this conservative assumption can introduce a bias to ETAS parameter estimates. This idea that 
earthquakes below mc are relevant for our understanding of earthquakes' clustering behavior was thoroughly 
discussed by Sornette and Werner (2005a, 2005b), who pointed out the important distinction between m0 and 
mc, also providing constraints for m0. Although small earthquakes trigger fewer aftershocks than large ones do, 
Marsan (2005), as well as Helmstetter et al., (2005), found that small earthquakes, being more numerous, are as 
important as large ones for earthquake triggering. Thus, it is natural to assume that a larger difference between mc 
and m0 will lead to a larger bias in the estimated parameters.

Alternatively, one may estimate ETAS parameters from catalogs with restricted space-time volume which can 
have low overall mc values. Parameters estimated in this way can however be dominated by one or two sequences 
and may not represent long-term behavior, thus making the use of ETAS models non-ideal for long-term proba-
bilistic seismic hazard assessment (PSHA). Instead, the modellers rely on smoothed seismicity approaches based 
on declustered catalogs (see e.g., Gerstenberger et al., 2020; Petersen et al., 2018; Wiemer et al., 2009), which is 
a problematic approach due to the biasing effects of declustering on the size distribution of mainshocks, and thus 
on the estimated seismic hazard (Mizrahi et al., 2021). In this regard, Marzocchi and Taroni (2014) discussed the 
need for spatial declustering so as not to distort future seismic hazard, and Llenos and Michael (2020) proposed 
an approach to calculate regionally optimized background earthquake rates from ETAS to be used for the U.S. 
Geological Survey National Seismic Hazard Model (NSHM), stressing the need for methods to address catalog 
heterogeneities such as time-dependent incompleteness.

Additionally, with the assumption of a constant overall mc, the crucial requirement of completeness of the train-
ing catalog is not fulfilled during large aftershock sequences, which can bias the estimated parameters. Several 
studies have highlighted the importance of considering short-term variation of mc in the context of ETAS models. 
These include Hainzl (2016b) and Hainzl (2016a), who modeled STAI based on the short-term rate of earth-
quakes, bringing into relation true and apparent triggering laws; Stallone and Falcone (2020), who proposed a 
method to stochastically replenish catalogs suffering from STAI, to be used for better operational earthquake 
forecasting and hazard assessment, albeit without addressing the effectiveness of the method in this regard; 
Zhuang et al. (2017), who showed that estimating ETAS parameters using a replenished catalog is more stable 
with respect to cutoff magnitude; Omi et al. (2014), who proposed a method to estimate parameters of the ETAS 
model from incompletely observed aftershock sequences, by statistically modeling detection deficiency.

In this article, we thoroughly address the use of small earthquakes for seismic hazard forecasting. For this, 
we develop two complementary methods with which long-term (first method) and short-term (second method) 
temporal variations of mc can be accounted for when calibrating ETAS models and when issuing ETAS-based 
forecasts. The first method extends the expectation maximization scheme for ETAS parameter inversion (Veen 
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and Schoenberg, 2008) for application to training catalogs with time-varying completeness magnitude mc(t). This 
simultaneously allows the inclusion of historical data in the parameter inversion, as well as the inclusion of small 
magnitude events, which make up a large fraction of data and can enable the ability to more clearly illuminate 
faults. ETAS models can hence be trained on a more representative and informative set of data, which in some 
areas facilitates a more appropriate approach to PSHA. With the second method proposed in this article, we want 
to utilize the knowledge about clustering derived using the ETAS model to quantitatively estimate the level of 
completeness of a catalog at any given time, and then use this knowledge to minimize the incompleteness-in-
duced bias in the ETAS model. We approach this issue by generalizing the notion of mc, moving from a binary 
completeness space (complete vs. incomplete) to a continuous-valued completeness space by means of a magni-
tude-dependent detection probability − embracing incompleteness instead of avoiding it, as has been proposed 
previously by Ogata and Katsura (2006) and Omi et al. (2014). While the first method described in this article 
allows mc(t) as an input to the ETAS parameter calibration, which makes it powerful in a long-term context, the 
second method addresses the additional challenge of estimating short-term variations of completeness. To un-
derstand their abilities and limitations, we subject both methods to rigorous synthetic tests. Then, we apply them 
to Californian earthquake data and interpret the results in light of the findings of the synthetic tests. Using the 
second approach, we systematically assess how the inclusion of small earthquakes, which may be incompletely 
detected, affects the performance of earthquake forecasts. We conduct pseudo-prospective 30-day forecasting ex-
periments for California, designed to answer several questions: Does our new model outperform the current state 
of the art? If so, what is the role of the newly estimated ETAS parameters in this improvement? Similarly, what 
is the role of newly included small earthquakes in this improvement, and the role of the estimated high-frequency 
detection incompleteness? How do the models perform for different target magnitude thresholds?

The remainder of the paper is structured as follows. Section 2 describes the earthquake catalog that was used 
in this analysis. The modified ETAS parameter inversion methods are presented in Section 3.1 for time-varying 
mc, and in Section 3.2 for time-varying probabilistic detection incompleteness. Sections 3.3 and 3.4 describe the 
formulation of probabilistic detection incompleteness and the algorithm for joint estimation of ETAS parameters 
and detection probability. Section 4 presents synthetic tests for both methods, and Section 5 presents applications 
of both methods to the Californian data. Section 6 describes pseudo-prospective forecasting experiments used to 
assess the impact of the newly acquired information on the forecastability of earthquakes in California. Finally, 
in Section 7, we present our conclusions.

2. Data
In this article, we use the ANSS Comprehensive Earthquake Catalog (ComCat) provided by the U.S. Geological 
Survey. We adopt the preferred magnitudes as defined in ComCat, and use as study region the collection area 
around the state of California as proposed in the RELM testing center (Schorlemmer & Gerstenberger, 2007). 
We consider events of magnitude M ≥ 0.0, with magnitudes rounded into bins of size ΔM = 0.1. For the major 
part of the study, the time frame used is 1 January 1970 until 31 December 2019. For the analysis of long-term 
variations in mc, we extend the time frame to start on 1 January 1932, when instrumentation was introduced to the 
Californian seismic network (Felzer, 2007).

Whenever ETAS parameters are inverted, we use the first 15 years of data to serve as auxiliary data. Thus, the 
start of the primary catalog is either January 1985, or January 1947. Earthquakes in the auxiliary catalog may act 
as triggering earthquakes in the ETAS model, but not as aftershocks.

To estimate a constant magnitude of completeness of the catalog, we use the method described by Mizrahi 
et al. (2021) with an acceptance threshold value of p = 0.1, which yields mc = 3.1 for the time period between 
1970 and 2019. This method is adapted from Clauset et al. (2009) and jointly estimates mc and the b-value of 
the Gutenberg-Richter law (Gutenberg & Richter, 1944) describing earthquake size distribution. It compares the 
Kolmogorov-Smirnov (KS) distance between the observed cumulative distribution function (CDF) and the fitted 
GR law to KS distances obtained for magnitude samples simulated from said GR law. A value of mc is accepted 
if at least a fraction of p = 0.1 of KS distances is larger than the observed one.
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3. Model
3.1. ETAS Parameter Inversion for Time-Varying mc

Consider an earthquake catalog

𝐶𝐶 = {𝑒𝑒𝑖𝑖 = (𝑚𝑚𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), 𝑖𝑖 ∈ {1,… , 𝑛𝑛}} (1)

consisting of events ei of magnitudes mi which occur at times ti and locations (xi, yi). Furthermore, consider a 
time-varying magnitude of completeness mc(t) defined for all ti. We say that the catalog is complete if mi ≥ mc 
(ti)∀i.

The ETAS model describes earthquake rate as

𝑙𝑙(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) = 𝜇𝜇 +
∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡

𝑔𝑔(𝑚𝑚𝑖𝑖𝑡 𝑡𝑡 − 𝑡𝑡𝑖𝑖𝑡 𝑡𝑡 − 𝑡𝑡𝑖𝑖𝑡 𝑡𝑡 − 𝑡𝑡𝑖𝑖). (2)

that is, the sum of background rate μ and the rate of all aftershocks of previous events ei. The aftershock triggering 
rate g (m, Δt, Δx, Δy) describes the rate of aftershocks triggered by an event of magnitude m, at a time delay of 
Δt and a spatial distance (Δx, Δy) from the triggering event. We here use the definition

𝑔𝑔(𝑚𝑚𝑚 Δ𝑡𝑡𝑚 Δ𝑥𝑥𝑚 Δ𝑦𝑦) = 𝑘𝑘0 ⋅ 𝑒𝑒𝑎𝑎(𝑚𝑚−𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 )

(Δ𝑡𝑡+𝑐𝑐)1+𝜔𝜔

𝑒𝑒
−Δ𝑡𝑡
𝜏𝜏

⋅
(

(Δ𝑥𝑥2 + Δ𝑦𝑦2) + 𝑑𝑑 ⋅ 𝑒𝑒𝛾𝛾(𝑚𝑚−𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 )
)1+𝜌𝜌

𝑚 (3)

as in Nandan et al. (2017).

To calibrate the ETAS model, the nine parameters to be optimized are the background rate μ and the parameters 
k0, a, c, ω, τ, d, γ, ρ which parameterize the aftershock triggering rate g (m, t, x, y) given in Equation 3. Implic-
itly, the model assumes that all earthquakes with magnitude larger than or equal to mref can trigger aftershocks. 
We build on the expectation maximization (EM) algorithm to estimate the ETAS parameters (Veen & Schoen-
berg, 2008). In this algorithm, the expected number of background events 𝐴𝐴 𝐴𝐴𝐴 and the expected number of directly 
triggered aftershocks 𝐴𝐴 𝑙𝑙𝑖𝑖 of each event ei are estimated in the expectation step (E step), along with the probabilities 
pij that event ej was triggered by event ei, and the probability 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗  that event ej is independent. Following the E 
step, the nine parameters are optimized to maximize the complete data log likelihood in the maximization step (M 
step). E and M step are repeated until convergence of the parameters. The usual formulation of the EM algorithm 
defines

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑔𝑔𝑖𝑖𝑖𝑖

𝜇𝜇 +
∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑖𝑖
𝑔𝑔𝑘𝑘𝑖𝑖

, (4)

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 =
𝜇𝜇

𝜇𝜇 +
∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑗𝑗
𝑔𝑔𝑘𝑘𝑗𝑗

, (5)

with gkj = g (mk, tj − tk, xj − xk, yj − yk) being the aftershock triggering rate of ek at location and time of event ej. 
For a given target event ej, Equations 4 and 5 define pij to be proportional to the aftershock occurrence rate gij, and 

𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗  to be proportional to the background rate μ. As an event must be either independent or triggered by a previous 
event, the normalization factor 𝐴𝐴 Λ𝑗𝑗 ∶= 𝜇𝜇 +

∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑗𝑗
𝑔𝑔𝑘𝑘𝑗𝑗 in the denominator of Equations 4 and 5 stipulates that 

𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 +
∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑗𝑗
𝐴𝐴𝑘𝑘𝑗𝑗 = 1 . This relies on the assumption that all potential triggering earthquakes of ej were observed, 

that is, all events prior to tj above the reference magnitude (minimum considered magnitude), mref were observed. 
To fulfill this requirement, most applications of the method define mref to be equal to the constant value of mc.

For the case of time-varying mc(t), we define mre f := mini{mc (ti)}, the minimum mc (ti) for times ti of events in 
the complete catalog. This implies that for the times when mc(t) > mref the requirement of complete recording 
of all potential triggers may be violated. Events whose magnitudes fall between mref and mc(t) are not part of the 
complete catalog and are considered to be unobserved (even though they may have been detected by the network). 
Hence, the normalization factor Λj (the denominator of Equations 4 and 5) needs to be adapted to account for the 
possibility that ej was triggered by an unobserved event.
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Consider

𝜉𝜉(𝑡𝑡) =
∫ 𝑚𝑚𝑐𝑐 (𝑡𝑡)
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) ⋅ 𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚

∫ ∞
𝑚𝑚𝑐𝑐 (𝑡𝑡)

𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) ⋅ 𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚
, (6)

the ratio between the expected number of events triggered by an unobserved event and the expected number of 
events triggered by an observed event at time t. Here, 𝐴𝐴 𝐴𝐴𝐺𝐺𝐺𝐺 = 𝛽𝛽 ⋅ 𝑒𝑒−𝛽𝛽⋅(𝑚𝑚−𝑚𝑚𝑟𝑟𝑒𝑒𝐴𝐴 ) is the probability density function of 
magnitudes according to the GR law, and 𝐴𝐴 𝐴𝐴(𝑚𝑚) = ∫∞0 ∬𝑅𝑅 𝑔𝑔(𝑚𝑚𝑚 𝑚𝑚𝑚 𝑚𝑚𝑚 𝑚𝑚) 𝑑𝑑𝑚𝑚 𝑑𝑑𝑚𝑚 𝑑𝑑𝑚𝑚 is the total number of expected 
aftershocks larger than mref of an event of magnitude m. Note that in the calculation of G(m) we make the simpli-
fying assumption that the considered region R extends infinitely in all directions, allowing a facilitated, asymp-
totically unbiased estimation of ETAS parameters (Schoenberg, 2013). Analogously,

𝜁𝜁 (𝑡𝑡) =
∫ 𝑚𝑚𝑐𝑐 (𝑡𝑡)
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚

∫ ∞
𝑚𝑚𝑐𝑐 (𝑡𝑡)

𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚
 (7)

is the ratio between the expected fraction of unobserved events and the expected fraction of observed events at 
time t. If β > a − ργ, both ξ(t) and ζ(t) are well-defined and we have that

𝜉𝜉(𝑡𝑡) = 𝑒𝑒−(𝑎𝑎−𝛽𝛽−𝜌𝜌𝜌𝜌)⋅Δ𝑚𝑚(𝑡𝑡) − 1, (8)

𝜁𝜁 (𝑡𝑡) = 𝑒𝑒𝛽𝛽⋅Δ𝑚𝑚(𝑡𝑡) − 1, (9)

where Δm(t) = mc(t) − mref. Consider the productivity exponent α := a − ρ ⋅ γ, which describes the exponential 
relationship between aftershock productivity and magnitude of an event. The condition that β is larger than the 
productivity exponent α is generally fulfilled in naturally observed catalogs (Helmstetter, 2003). If this were 
not the case, earthquake triggering would be dominated by large events and one would need to introduce a 
maximum possible magnitude for both denominators to be finite (see available equations in Sornette & Wer-
ner 2005a, 2005b). The normalization factor Λj consists of the sum of background rate and aftershock rates of all 
events which happened prior to ej. In the case of time-varying mc, besides the possibilities of being a background 
event or being triggered by an observed event, the event ej can also be triggered by an unobserved event. We thus 
generalize Λj by adding to the rate of aftershocks gkj of each observed triggering event ek the expected rate of 
aftershocks of unobserved triggering events at that time, gkj ⋅ ξ(tk). This yields 𝐴𝐴 Λ𝑗𝑗 = 𝜇𝜇 +

∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑗𝑗
𝑔𝑔𝑘𝑘𝑗𝑗 ⋅ (1 + 𝜉𝜉(𝑡𝑡𝑘𝑘)) 

and thus the generalized definition of pij and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗  is given by

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑔𝑔𝑖𝑖𝑖𝑖

𝜇𝜇 +
∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑖𝑖
𝑔𝑔𝑘𝑘𝑖𝑖 ⋅ (1 + 𝜉𝜉(𝑡𝑡𝑘𝑘))

, (10)

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 =
𝜇𝜇

𝜇𝜇 +
∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑗𝑗
𝑔𝑔𝑘𝑘𝑗𝑗 ⋅ (1 + 𝜉𝜉(𝑡𝑡𝑘𝑘))

. (11)

Note that the probability puj that event ej was triggered by an unobserved event is given such that 
𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 + 𝐴𝐴𝑢𝑢𝑗𝑗 +

∑

𝑘𝑘∶𝑡𝑡𝑘𝑘<𝑡𝑡𝑗𝑗
𝐴𝐴𝑘𝑘𝑗𝑗 = 1 . In the above equations, the special case of mc(t) ≡ mref is accounted for when ξ(t) 

≡ 0. In this special case, 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝑙𝑙𝑖𝑖 are obtained by summing independence probabilities (𝐴𝐴 𝐴𝐴𝐴 =
∑

𝑗𝑗 𝑝𝑝
𝑖𝑖𝐴𝐴𝑖𝑖
𝑗𝑗  ) and trigger-

ing probabilities (𝐴𝐴 𝑙𝑙𝑖𝑖 =
∑

𝑗𝑗 𝑝𝑝𝑖𝑖𝑗𝑗 ), respectively. In the generalized case however, 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝑙𝑙𝑖𝑖 are the estimated number 
of background events and aftershocks of event ei above mref, which includes unobserved events. Similarly to 
inflating the triggering power, we hence inflate the observed event numbers to account for unobserved events. 
Whenever an event is observed at time tj, we expect that ζ(tj) events occurred under similar circumstances (with 
same independence and triggering probabilities), but were not observed. This yields

�̂�𝑛 =
∑

𝑗𝑗

𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑗𝑗 ⋅ (1 + 𝜁𝜁 (𝑡𝑡𝑗𝑗)), (12)

𝑙𝑙𝑖𝑖 =
∑

𝑗𝑗

𝑝𝑝𝑖𝑖𝑗𝑗 ⋅ (1 + 𝜁𝜁 (𝑡𝑡𝑗𝑗)). (13)

With these adapted definitions of 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 , 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , �̂�𝑖 and 𝐴𝐴 𝑙𝑙𝑖𝑖 (Equations 10–13), ETAS parameters can be inverted using the 
procedure described by Veen and Schoenberg (2008).
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3.2. ETAS Parameter Inversion for Time-Varying Probabilistic Detection

To overcome the binary view of completeness which forces us to disregard earthquakes which were detected but 
happen to fall between mref and mc(t), we can take the generalization of the EM algorithm for ETAS parameter 
inversion one step further by introducing a time and magnitude-dependent probability of detection,

� ∶ ℝ≥���� ×ℝ → [0, 1]

(�, �) ↦ �.
 

To be able to account for such a probabilistic concept of catalog completeness in the ETAS inversion algorithm, 
one needs to generalize ξ(t) and ζ(t) (Equations 6 and 7). In contrast to before, the magnitude of an event does not 
determine whether or not the event has been detected. We therefore adapt the bounds of integration in numerator 
and denominator such that all events above magnitude mref are considered. To obtain the expected number of 
earthquakes triggered by observed and unobserved events, the integrands are multiplied by the probability of the 
triggering events to be observed, f(m, t), or unobserved, (1 − f (m, t)), respectively. The generalized formulations 
of ξ(t) and ζ(t) then read

𝜉𝜉(𝑡𝑡) =
∫ ∞
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟

(1 − 𝑟𝑟 (𝑚𝑚𝑚 𝑡𝑡)) ⋅ 𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) ⋅ 𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚

∫ ∞
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟 (𝑚𝑚𝑚 𝑡𝑡) ⋅ 𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) ⋅ 𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚
𝑚 (14)

and

𝜁𝜁 (𝑡𝑡) =
∫ ∞
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟

(1 − 𝑟𝑟 (𝑚𝑚𝑚 𝑡𝑡)) ⋅ 𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚

∫ ∞
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟 (𝑚𝑚𝑚 𝑡𝑡) ⋅ 𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚
. (15)

For compatible choices of f(m, t), fGR(m), G(m), we find that ξ(t) and ζ(t) are well-defined. Consider for instance 
the special case of binary detection, where f(m, t) is defined via the Heaviside step function H as fbin(m, t) = H 
(m − mc(t)), which is equal to 1 if m ≥ mc(t) and 0 otherwise. This is the case discussed in the previous section, 
for which we have well-definedness if β > a − ργ.

The reference magnitude mref is a model constant. Smaller values of mref allow the modeler to use a larger fraction 
of the observed catalog, which can be especially useful in regions with less seismic activity.

Note that both generalizations of the ETAS inversion algorithm (for time-varying completeness or for time-var-
ying probabilistic detection) can without further modification be applied when mc or detection probability vary 
with space. The formulation is based on the assumption that the behavior of observed events is locally represent-
ative (in space and/or time) of the behavior of unobserved events.

3.3. Rate-Dependent Probabilistic Detection Incompleteness

In this section we present our approach to define f(m, t), where the temporal component is purely driven by 
the current rate of events. Note that this means we only capture changes in detection due to changes in short-
term circumstances, and neglect long-term changes due to network updates. We make the following simplifying 
assumptions.
 1. Any earthquake will obstruct the entire seismic network from detecting smaller earthquakes for a duration of 

tR (recovery time of the network).
 2. Magnitudes of events that are simultaneously blocking the network are distributed according to the time-in-

variant Gutenberg-Richter law which also describes the magnitude distribution of the full catalog (Gutenberg 
& Richter, 1944).

De Arcangelis et al. (2018) found that short-term aftershock incompleteness can be well explained in terms of 
overlapping seismic records, while instrumental coverage of an area plays a subsidiary role. Nevertheless, assum-
ing tR to be independent of the magnitude of the event, and independent of the spatial distance between the event 
and the locations of interest, is certainly a major simplification which could be refined in subsequent studies.

Conveniently, the ETAS model provides a simple way of calculating the current rate of events in the region R as
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𝜆𝜆(𝑡𝑡) = ∬𝑅𝑅
𝑙𝑙(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) 𝑑𝑑𝑡𝑡 𝑑𝑑𝑡𝑡 = ∬𝑅𝑅

𝜇𝜇 +
∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡

𝑔𝑔(𝑚𝑚𝑖𝑖𝑡 𝑡𝑡 − 𝑡𝑡𝑖𝑖𝑡 𝑡𝑡 − 𝑡𝑡𝑖𝑖𝑡 𝑡𝑡 − 𝑡𝑡𝑖𝑖) 𝑑𝑑𝑡𝑡 𝑑𝑑𝑡𝑡𝑑 (16)

For the remainder of this paper, we will refer to the current rate of events in the region, λ(t), simply as the current 
rate of events. The probability f(m, t) of an earthquake to be detected is then given by the probability of it being 
the largest of all the earthquakes that are currently blocking the network. Consider

𝑓𝑓 (𝑚𝑚𝑚 𝑚𝑚) =
(

1 − 𝑒𝑒−𝛽𝛽⋅(𝑚𝑚−𝑚𝑚𝑟𝑟𝑒𝑒𝑓𝑓 )
)𝑚𝑚𝑅𝑅⋅𝜆𝜆(𝑚𝑚). (17)

Here, tR ⋅ λ(t) is an approximation of the expected number of events blocking the network at time t, and the term 
𝐴𝐴 1 − 𝑒𝑒−𝛽𝛽⋅(𝑚𝑚−𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 ) is the probability of any given earthquake's magnitude falling between mref and m, where β = b⋅  

ln 10 is the exponent in the GR law with basis e. Thus, f(m, t) is the probability that in the set of tR ⋅ λ(t) events 
currently blocking the network, all of them have a magnitude of less than m, which is the condition for an event of 
magnitude m to be detected. Because the time-dependence of f(m, t) is solely controlled by the time-dependence 
of λ, we here use the terms f(m, t) and f(m, λ) interchangeably.

Plugging this definition of f(m, t) into Equations 14 and 15, and setting 𝐴𝐴 𝐴𝐴 ∶= − 𝑎𝑎−𝜌𝜌𝜌𝜌
𝛽𝛽

 , we obtain

𝜉𝜉(𝑡𝑡) = 1
(𝜅𝜅 + 1) ⋅ B(𝜅𝜅 + 1, 𝑡𝑡𝑅𝑅 ⋅ 𝜆𝜆(𝑡𝑡) + 1)

− 1, (18)

 (19)

so long as β > a − ργ, where B is the Beta function. A positive background rate μ > 0 ensures λ(t) > 0 ∀t. Ex-
pressions analogous to Equations 18 and 19 hold when alternative exponents are chosen instead of tR ⋅ λ in the 
definition of f(m, λ) (Equation 17).

The network recovery time tR and the current event rate λ(t) at the times ti of all earthquakes ei need to be esti-
mated from the data.

3.4. Estimating Probabilistic Epidemic-Type Aftershock Incompleteness (PETAI)

3.4.1. Estimation of (tR, β) When λi Are Known

The function f(m, t) brings with it two parameters, tR and β, which need to be estimated in addition to the ETAS 
parameters. We here describe how tR and β can be jointly estimated using a maximum likelihood approach for 
the case when current event rates λi = λ(ti) are known. In reality, the λi have to be estimated themselves. This is 
described in Section 3.4.2.

In the case when the true ETAS parameters, as well as the current event rates λ(ti) for all events ei in the primary 
catalog {e1, …, en}, are known, the GR-law exponent β and the network recovery time tR can be estimated by 
optimizing the log-likelihood 𝐴𝐴  of observing the catalog at hand.

 =
𝑛𝑛
∑

𝑖𝑖=1
(ln (𝜈𝜈𝑖𝑖 + 1) − ln 𝑁𝑁)

+
𝑛𝑛
∑

𝑖𝑖=1

(

𝜈𝜈𝑖𝑖 ⋅ ln (1 − 𝑒𝑒−𝛽𝛽⋅(𝑚𝑚𝑖𝑖−𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 ))
)

+
𝑛𝑛
∑

𝑖𝑖=1
(ln 𝛽𝛽 − 𝛽𝛽 ⋅ (𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 )) ,

 (20)

where 𝐴𝐴 𝐴𝐴 =
∑𝑛𝑛

𝑖𝑖=1(𝜈𝜈𝑖𝑖 + 1) , and νi = tR ⋅ λ(ti) is an approximation of the expected number of events blocking the net-
work at time ti. The expression for 𝐴𝐴  given above is valid in general for alternative exponents νi in the definition 
of detection probability (Equation 17). 𝐴𝐴  is derived from the likelihood 𝐴𝐴 𝑖𝑖 of an event to have magnitude mi and 
to be observed during a current event rate of λi = λ(ti), and the current event rate being λi,

𝑖𝑖 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆𝑖𝑖) ⋅ 𝑓𝑓𝐺𝐺𝐺𝐺(𝑒𝑒𝑖𝑖) ⋅ 𝑓𝑓det (𝑒𝑒𝑖𝑖, 𝜆𝜆𝑖𝑖), (21)

where fGR(m) is the probability density function of magnitudes given by the GR law, fdet (m, λ) is the detection 
probability as defined in Equation 17, and

𝜁𝜁 (𝑡𝑡) = 𝑡𝑡𝑅𝑅 ⋅ 𝜆𝜆(𝑡𝑡),
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𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆) =

⎧

⎪

⎨

⎪

⎩

𝑡𝑡𝑅𝑅 ⋅ 𝜆𝜆 + 1
∑

𝑖𝑖(𝑡𝑡𝑅𝑅 ⋅ 𝜆𝜆𝑖𝑖 + 1)
, if 𝜆𝜆 ∈ {𝜆𝜆1,… , 𝜆𝜆𝑛𝑛}

0, otherwise
 (22)

is the empirical density function of event rates. femp(λ) is defined such that
𝑛𝑛
∑

𝑖𝑖=1

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆𝑖𝑖) = 1 (23)

and

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆𝑖𝑖) ∝
1

∫ ∞
𝑒𝑒𝑟𝑟𝑒𝑒𝑓𝑓

𝑓𝑓𝐺𝐺𝐺𝐺(𝑒𝑒) ⋅ 𝑓𝑓det (𝑒𝑒𝑚 𝜆𝜆𝑖𝑖) 𝑑𝑑𝑒𝑒
= 𝜆𝜆𝑖𝑖 ⋅ 𝑡𝑡𝐺𝐺 + 1𝑚 ∀𝑖𝑖 = 1𝑚… 𝑚 𝑛𝑛𝑛 (24)

Without the latter condition (Equation 24), we would wrongly assume that 
the values λ(ti) were uniformly drawn from the true distribution of event 

rates. However, in our sample of λi, large values of λ are underrepresented, because during times t when λ(t) is 
high, events are less likely to be detected, and those times and their corresponding rates are thus less likely to be 
part of our sample. Defining femp (λi) to be inversely proportional to the fraction of events that are observed when 
the current rate is λi corrects for this under-representation. This yields

𝑖𝑖 =
𝜈𝜈𝑖𝑖 + 1

∑

𝑗𝑗(𝜈𝜈𝑗𝑗 + 1)
⋅ 𝛽𝛽 ⋅ 𝑒𝑒−𝛽𝛽⋅(𝑚𝑚𝑖𝑖−𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 ) ⋅

(

1 − 𝑒𝑒−𝛽𝛽⋅(𝑚𝑚𝑖𝑖−𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 )
)𝜈𝜈𝑖𝑖 , (25)

which explains the term for 𝐴𝐴  (Equation 20). Figure S1 in Supporting Information S1 shows the log likelihood 
of a synthetic test catalog for different values of tR and β when λi are known. The resulting estimators match the 
data-generating parameters.

3.4.2. Estimation of λi When ETAS Parameters and (tR, β) Are Known

On one hand, the λi depend on the ETAS parameters (see Equation 16). On the other hand, the sum of aftershocks 
of previous earthquakes in the definition of λ(t) (Equation 16) does not account for aftershocks of events that were 
not detected. As in the ETAS parameter inversion, to account for aftershocks of undetected events in the calcula-
tion of λ(t), we inflate the triggering power of each event ei by a factor of 1 + ξ(ti) and define

𝜆𝜆(𝑡𝑡) = ∬𝑅𝑅
𝜇𝜇 𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇 +

∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡

(1 + 𝜉𝜉(𝑡𝑡𝑖𝑖)) ⋅∬𝑅𝑅
𝑔𝑔(𝑚𝑚𝑖𝑖, 𝑡𝑡 − 𝑡𝑡𝑖𝑖, 𝜇𝜇 − 𝜇𝜇𝑖𝑖, 𝜇𝜇 − 𝜇𝜇𝑖𝑖) 𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇𝑑 (26)

3.4.3. Estimation of λi and (tR, β) When ETAS Parameters Are Known

ξ(t) however requires knowledge of (tR, β) (see Equation 18). This implies that even when ETAS parameters are 
fixed, an additional, lower-level circular dependency dictates the relationship between 𝐴𝐴 (𝜆𝜆𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 and (tR, β).

To fully estimate the high-frequency probabilistic detection incompleteness, given fixed ETAS parameters, we re-
cursively re-estimate 𝐴𝐴 (𝜆𝜆𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 (see Section 3.4.2) and (tR, β) (see Section 3.4.1), until (tR, β) meets a convergence 
criterion, starting with an informed or random initial guess for (tR, β).

3.5. PETAI Inversion Algorithm

The overarching joint inversion of ETAS parameters (𝐴𝐴  ) and high-frequency detection incompleteness 
(𝐴𝐴  = (𝜆𝜆𝑖𝑖, 𝑡𝑡𝑅𝑅, 𝛽𝛽) ) starts with estimating ETAS parameters in the usual way, that is, using the algorithm described 
in Section 3.1, with a time-independent completeness magnitude mc (= mref) above which all events are detected. 
It then recursively re-estimates 𝐴𝐴  (see Section 3.4.3) and 𝐴𝐴  (see Section 3.2) until convergence of the ETAS pa-
rameters. A simplified illustration of the inversion algorithm is shown in Figure 1. Starting with the initial ETAS 
parameters obtained assuming constant mc, event rates can be calculated at each point in time. Given these event 
rates, the detection probability function is calibrated, which then provides insight into the temporal evolution 
of catalog (in-)completeness. ETAS parameters can then be re-estimated, now also using data below mc, by 

Figure 1. Simplified schematic illustration of PETAI inversion.
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accounting for the estimated incompleteness. With this new set of ETAS parameters, event rates can be re-cal-
culated, upon which detection probability is re-calibrated, and so on, until all convergence criteria are satisfied. 
Figure 2 shows the detailed flow diagram of the PETAI inversion algorithm.

4. Synthetic Tests
4.1. Synthetic Test for ETAS Model With Long-Term Variation of mc (ST1)

To test the ETAS parameter inversion for time-varying mc, we generate 400 complete synthetic catalogs using 
ETAS and then artificially impose a given mc(t) on the catalogs. Assuming mc(t) to be known, we use the method 
described in Section 3.1 to infer the parameters used in the simulation.

We estimate mc(t) based on the Californian catalog described in Section 2 with a time horizon from 1932 to 2019. 
Fixing the b-value we had estimated for the main catalog (1970–2019, M ≥ 3.1, b = 1.01 ± 0.006, see Mizrahi 
et al. (2021) for the method used), we estimate mc for successive 10 year periods starting in 1932. The last period 
then comprises only 8 years of data. Estimation of mc is analogous to the main catalog, using the method of Miz-
rahi et al. (2021) with an acceptance threshold of p = 0.1, but keeping b = 1.01 fixed.

This yields

𝑚𝑚𝑐𝑐(𝑡𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4.3 for 𝑡𝑡 between 1932 and 1941,

3.9 for 𝑡𝑡 between 1942 and 1951,

4.3 for 𝑡𝑡 between 1952 and 1961,

3.4 for 𝑡𝑡 between 1962 and 1971,

3.1 for 𝑡𝑡 between 1972 and 1981,

3.3 for 𝑡𝑡 between 1982 and 1991,

2.4 for 𝑡𝑡 between 1992 and 2001,

2.8 for 𝑡𝑡 between 2002 and 2011,

3.6 for 𝑡𝑡 between 2012 and 2019.

 (27)

The large increase in mc for the years 2012–2019 is due to the Ridgecrest events in 2019. Although the period 
affected by aftershock incompleteness only makes up a small fraction of the 8 year period, our method with an 
acceptance threshold of p = 0.1 yields a conservative estimate of mc. To avoid such an effect, one could use short-
er than 10 year periods, or use different methods to estimate time-varying mc.

Note that our method to invert ETAS parameters for time-varying mc (Section 3.1) accepts mc(t) as an input and 
works independently of how this mc(t) was obtained. We here want to keep the focus on the parameter inversion 
and thus choose the described approach to estimate mc(t) due to its simplicity.

To mimic a realistic scenario, we simulate the synthetic catalogs using parameters obtained after applying ETAS 
parameter inversion for time-varying mc on the California data, with two manual corrections.

The first correction is done because it has been shown that certain assumptions in the ETAS model such as a 
spatially isotropic aftershock distribution or a temporally stationary background rate, as well as data incomplete-
ness can lead to biased estimations of the productivity exponent (Hainzl et al., 2008; Hainzl et al., 2013; Seif 
et al., 2017). This bias can lead to a lack of clustering when catalogs are simulated. We thus use an artificially 
increased productivity exponent α′ for our simulations as follows.

Consider the branching ratio η, defined as the expected number of direct aftershocks (larger than mref) of any 
earthquake larger than mref,
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Figure 2. Flow diagram of PETAI inversion. Main algorithm starts at top left and ends at bottom left. The middle column describes the estimation of incompleteness 
(𝐴𝐴  = 𝜆𝜆𝑖𝑖, 𝑡𝑡𝑅𝑅, 𝛽𝛽 ) when ETAS parameters (𝐴𝐴  ) are given. Note that the estimation of 𝐴𝐴 (𝜆𝜆𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 when ETAS parameters and (tR, β) are fixed requires yet another loop 
to obtain self-consistency, as updating λi (step Λ) leads to changes in the inflation factor 1 + ξ(ti), which forces one to update 𝐴𝐴 (𝜆𝜆𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 . This sub-sub-algorithm is 
visualized in the right column of the flow diagram. Process boxes are linked to corresponding methods and equations described in this article. *, **, ***: Convergence 
is reached when the estimated values of the kth iteration, 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 , lie very close to the estimated values of the previous iteration, that is, if 𝐴𝐴

∑

𝑎𝑎∈𝐴𝐴 |�̂�𝑎𝑘𝑘 − �̂�𝑎𝑘𝑘−1| ≤ 𝜃𝜃 . Here, A is the 
set of values that are tested for convergence, *𝐴𝐴 𝐴𝐴 =  , **A = {tR, β}, ***A = {λi, i = 1, …, n}. For convergence threshold θ we use *θ = 10−3, **θ = 10−12, ***θ = 1.
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𝜂𝜂 = ∫

∞

𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝐺𝐺𝐺𝐺(𝑚𝑚) ⋅ 𝐺𝐺(𝑚𝑚) 𝑑𝑑𝑚𝑚𝑑 (28)

It follows easily that

𝜂𝜂 =
𝛽𝛽 ⋅ 𝑘𝑘0 ⋅ 𝜋𝜋 ⋅ 𝑑𝑑−𝜌𝜌 ⋅ 𝜏𝜏−𝜔𝜔 ⋅ 𝑒𝑒𝑐𝑐∕𝜏𝜏 ⋅ Γ(−𝜔𝜔𝜔 𝑐𝑐

𝜏𝜏
)

𝜌𝜌 ⋅ (𝛽𝛽 − (𝑎𝑎 − 𝜌𝜌𝜌𝜌))
𝜔 (29)

if β > a − ρ ⋅ γ, where 𝐴𝐴 Γ(𝑠𝑠𝑠 𝑠𝑠) = ∫∞𝑠𝑠 𝑡𝑡𝑠𝑠−1𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡 is the upper incomplete gamma function.

We fix α′ = 2.0 (based on Helmstetter, 2003; Guo & Ogata 1997) and from this derive new values for a and k0, 
keeping the branching ratio η constant. In particular, we define

𝑎𝑎′ ∶= 𝛼𝛼′ + 𝜌𝜌 ⋅ 𝛾𝛾𝛾 (30)

𝑘𝑘0
′ ∶= 𝑘𝑘0 ⋅

𝛽𝛽 − (𝑎𝑎′ − 𝜌𝜌 ⋅ 𝛾𝛾)
𝛽𝛽 − (𝑎𝑎 − 𝜌𝜌 ⋅ 𝛾𝛾)

. (31)

It can be easily shown that in this way, the branching ratio η remains the same as long as β − (a − ρ ⋅ γ) > 0.

Secondly, we reduce the background rate μ. In this way, the size of the simulated catalogs is reduced such that 
inversion requires a reasonable amount of computational power, even for large regions and time horizons. The 
final parameters used for the simulation of the catalogs can be found in Figure 3 (black crosses).

400 catalogs of events of magnitude M ≥ 2.4 = mref are simulated as described in Text S1 for the time period of 
January 1832 to December 2019 in a square of 40° lat × 40° long. Because of missing long-term aftershocks in 
the beginning of the simulated catalogs, we allocate a burn period of 100 years in the beginning of the simulated 
period and are left with catalogs from 1932 to 2019. The starting year of our synthetic catalogs coincides with the 
introduction of instrumentation in California (Felzer, 2007). This allows us to impose the mc(t) history observed 
in California on the synthetic catalogs by discarding all events ei for which mi < mc (ti).

We apply the ETAS inversion for time-varying mc with the here-obtained mc(t) (see Equation 27) to the synthetic 
catalogs.

Figure 3. Epidemic-type aftershock-sequence (ETAS) parameters used and inferred in synthetic test 1 (ST1). Black crosses 
indicate parameters used for simulation of 400 catalogs, blue crosses indicate median inverted parameters. Violins show the 
distribution of obtained parameters for 400 catalogs, with orange lines marking the 2.5% and 97.5% percentiles. Note that the 
y-axis gives the difference to parameters used for simulation, the actual values are written next to their marks.
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4.2. Synthetic Test for PETAI (ST2)

To test the PETAI inversion algorithm, 500 synthetic catalogs are created as follows. We use the parameters 
obtained after applying the PETAI inversion algorithm to the California data (1970–2019) with mref = 2.5. The 
value of mref is chosen to achieve a balance between the amount of data available for the inversion and the com-
putational power required to process such an amount of data. For the reasons described in Section 4.1, we reduce 
the background rate μ and modify the parameters to obtain a corrected productivity exponent as described in 
Equations 30 and 31. The final parameters used for the simulation of the catalogs can be found in Figures 4d–4l.

Using these parameters, we simulate as described in Text S1 in Supporting Information S1, 500 synthetic catalogs 
that resemble the Californian catalog, for the period between 1850 and 2020 in a square of 40° lat × 40° long. 
As in the previous case, because of missing long-term aftershocks in the beginning of the simulated catalogs, we 
discard the first 100 years of data and are left with catalogs from 1950 to 2020. For each of these catalogs and 
given the ETAS parameters used for simulation, we calculate the current event rate at the time of each event in the 
catalogs (Equation 16). As the current event rate is to a large extent driven by aftershock rates of earlier events, we 
expect overestimation of detection probabilities, as well as overestimation of independence probabilities, during 
the beginning of the time period (Schoenberg et al., 2010; Nandan et al., 2019; Wang et al., 2010). For this reason, 
we allocate another 20 years of burn period, leaving us with catalogs starting in 1970.

Each of the 500 catalogs are then artificially made incomplete as follows. Using the detection probability function 
given by Equation 17, and the b-value of 1.03 estimated from the Californian catalog using PETAI inversion, we 
calculate for each event its probability of being detected. According to this probability we randomly decide for 
each event whether it has been detected or not. The subset of all events that were detected is then used as a test 
catalog. This is done assuming different values for tR of 1.97 (as estimated from the Californian catalog), 5, 10, 
30, 60, and 180 min, yielding six variations of the test catalog per originally simulated catalog, which makes a 
total of 3,000 test catalogs. The value of tR greatly influences the fraction of undetected events in the resulting 
catalog, and we chose to investigate different values of tR to ensure there are sufficiently many test catalogs with 
a fraction of undetected events similar to the fraction of estimated undetected events inferred for California. This 
estimated number of undetected events is obtained by summing ζ(ti), the expected number of unobserved events 
per observed event, which is estimated as a component of the PETAI inversion, over all occurrence times ti of 
events in the primary catalog.

4.3. Results for ST1

Figure 3 shows the ETAS parameters used in the simulation of the synthetic catalogs, and the median, distribu-
tion, and 95% confidence intervals of the parameters inverted from the synthetic catalogs. The parameters esti-
mated from the synthetic catalogs lie reasonably close to the data-generating parameters. In particular, a, c, ω, τ 
and γ are accurately inverted, while μ, k0, d and ρ tend to be overestimated. The reason for the overestimation of 
ρ stems from a computational simplification made during inversion. In order to avoid extremely large triggering 
probability matrices, we only consider pairs of source and target events with a spatial distance of less than 50 
source lengths, where one source length is defined using the magnitude to length scaling relations defined in 
Wells and Coppersmith (1994). This upper limit for distances between event pairs translates to an exaggeration of 
the estimated values of ρ. We confirmed that as we gradually relax the cutoff criterion, the estimated value of ρ 
moves closer to the true values used for generating the synthetic catalog. The regularizer of the spatial kernel, d, 
is positively correlated with ρ, hence an overestimation of the latter translates to an overestimation of the former. 
The overestimation of μ can also be explained, considering that distant aftershocks have a higher tendency to 
appear independent due to the artificially imposed cutoff criterion.

4.4. Results for ST2

4.4.1. Inverted Number of Undetected Events

Figure 4a shows the series of events of one example synthetic test catalog over the primary time period in blue, 
with the undetected synthetic events marked in black. The number of undetected events is 1,282, which makes up 
6.25% of the original synthetic catalog. Figure 4b shows cumulative number of undetected synthetic events over 
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Figure 4. Results of synthetic test 2 (ST2). (a) Earthquake magnitudes over time for one example test catalog (blue). Events 
marked in black were simulated, but declared undetected. (b) Cumulative number of unobserved events over time for the 
catalog shown in (a). Black line marks the truth, blue line is inferred from the test catalog using PETAI. (c) Estimated fraction 
of undetected events versus actually removed fraction of events, for 3,000 test catalogs. Different colors indicate different 
assumed detection efficiencies. Stars mark the median actual and estimated fraction of undetected events per tR. Dashed line 
indicates where actual and estimated fraction coincide, dotted horizontal line indicates the estimated fraction for California. 
(d–n) ETAS and PETAI parameters inferred in synthetic test. Panel title indicates the parameter name and in square brackets 
the value used for simulation. Violins show the distribution of the parameter inferred from test catalogs per value of tR 
used, with the value of tR given on the x-axis in minutes. Crosses indicate median obtained value, blue lines indicate 95% 
confidence interval, dashed line indicates the value used for simulation.
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time in black, compared to the cumulative inferred number of undetected events in blue for the same example 
catalog. Overall, it is estimated as a result of applying the PETAI inversion that 1068.88 events were undetected 
in the example catalog. While this underestimates the true number of 1,282 undetected events, the major part of 
events can be reconstructed, with accurate timing.

Figure 4c shows inferred versus actual number of undetected events for 3,000 test catalogs assuming different 
detection efficiencies. The estimated fraction of undetected events is distributed around the actual fraction of un-
detected events, and the median estimated fraction matches well the median actual fraction, with a slight tendency 
toward underestimation.

4.4.2. Accuracy of Inverted Parameters

Figures 4d–4n show the ETAS parameters and (tR, β) that were used in the simulation of the synthetic catalogs, 
and the parameters inverted from these synthetic catalogs. In general, the inverted parameters correspond well to 
the parameters used in the simulation, although some of the estimates are slightly biased. The parameters c and 
ω, both describing the temporal decay of aftershock rate, show a trend of increasing bias with increasing tR, that 
is, with increasing incompleteness. For the other parameters, no clear dependency of the bias on tR is recogniz-
able. The estimate of c matches the true value almost perfectly for tR = 1.97 min, but starts being overestimated 
for larger values of tR above 30 min. On the other hand, ω shows an increasing tendency of being underestimated 
with increasing values of tR. Earlier aftershocks have a larger tendency to be missing due to STAI, which leads 
to a seemingly slower decay of aftershock rate in time. As the PETAI algorithm has a tendency to underestimate 
STAI (Figure 4c), and this tendency increases with increasing tR, this translates into an increasing negative bias 
in the inferred values of ω.

Qualitatively, the tendencies to over- or underestimate the remaining parameters are identical with the tendencies 
observed in ST1 (Section 4.3). It is therefore plausible that these tendencies are consequences of a finite time 
horizon and finite spatial window used in the simulation of the synthetics, rather than being artifacts of the PETAI 
inversion algorithm.

Finally, we observe a tendency to underestimate tR, which means that detection probabilities tend to be overes-
timated. This is in line with our previous observation that the fraction of undetected events tends to be slightly 
underestimated, suggesting the PETAI inversion to be slightly conservative.

5. Application to California
We calculate ETAS parameters, β and tR (if applicable) using different inversion algorithms to Californian data. 
Additionally, we provide the resulting values for productivity exponent α = a − ργ and branching ratio η (see 
Equation 29).

First, we apply usual inversion method as described in Section 3.1 with a constant completeness magnitude of 
mc ≡ 3.1 to the main catalog (1970–2019). Then, we invert the parameters by accounting for long-term time-var-
iation of completeness (Equation 27). In this case, the extended catalog from 1932 to 2019 can be used with a 
reference magnitude of mref = 2.4. Finally, we apply PETAI inversion to the main catalog (1970–2019) with a 
reference magnitude of mref = 2.5. Note that the estimation of β is independent of the ETAS parameter estimates 
for the first two applications, but not in the case of PETAI inversion (see Section 3.4).

To allow a better comparison between parameters inverted using different methods when mref varies, we translate 
the parameters to a reference magnitude of mref = 3.1 as follows. With the exception of μ, k0 and d, all parameters 
are mref-agnostic, and the three exceptions can easily be adjusted. Denote by Δm the difference between new and 
original reference magnitude, 𝐴𝐴 Δ𝑚𝑚 = 𝑚𝑚′

𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 . Then,

𝑑𝑑′ ∶= 𝑑𝑑 ⋅ 𝑒𝑒Δ𝑚𝑚⋅𝛾𝛾 (32)

ensures that

𝑑𝑑 ⋅ 𝑒𝑒𝛾𝛾⋅(𝑚𝑚−𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 ) = 𝑑𝑑′ ⋅ 𝑒𝑒𝛾𝛾⋅(𝑚𝑚−𝑚𝑚
′
𝑟𝑟𝑒𝑒𝑟𝑟 ). (33)

Stipulating that the branching ratio η (Equation 29) remains unchanged, it follows that
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𝑘𝑘′
0 ∶= 𝑘𝑘0 ⋅ 𝑒𝑒Δ𝑚𝑚⋅𝛾𝛾⋅𝜌𝜌. (34)

The adaptation of the background rate μ follows trivially from the GR law,

𝜇𝜇′ = 𝜇𝜇 ⋅ 𝑒𝑒−𝛽𝛽⋅Δ𝑚𝑚. (35)

5.1. Interpretation of Inverted Parameters

Table 1 shows the estimated values of ETAS parameters, β, and tR (if ap-
plicable) obtained using different inversion algorithms to Californian data. 
Additionally, the resulting values for the productivity exponent α = a − ργ 
and branching ratio η (see Equation 29) are provided. The first, second, and 
fourth column show the parameters obtained from applying the method with 
mc ≡ 3.1, when using long-term-variations of mc, and when using PETAI, 
respectively. Columns three and five contain the parameters of columns two 
and four after having been transformed to a reference magnitude of mref = 3.1.

Overall, the inverted parameters are roughly consistent among the three algo-
rithms. Although there are slight differences between the estimated param-
eters, they can plausibly be attributed to different input datasets, which vary 
for the three algorithms in either time-span or magnitude range. In the follow-
ing, we present some speculative explanations of the observed differences.

We find that the estimate of τ obtained from the ETAS model calibrated 
on the extended catalog (1932–2019) with the long-term time variation of 
mc is smaller than in the other two cases, to an extent that the uncertainties 
obtained in the synthetic tests cannot explain this decrease. This decrease 
despite the use of a catalog spanning a longer duration compared to the other 
two cases, shows that τ may actually better reflect the long-term behavior of 
earthquake interaction, rather than being determined by the finite duration 
of the catalog. Note that if the temporal finiteness of the catalog was the 

dominant factor in the determination of τ, one would expect an increase of τ with increasing time spanned by 
the catalog. Furthermore, the less pronounced decrease of τ in case of the PETAI inversion speaks against the 
possibility that the decrease is caused by inclusion of lower magnitude earthquakes revealing previously unseen 
earthquake interactions.

A somewhat counter-intuitive observation is the increase of c for both new inversion techniques. For the case of 
long-term variation of mc, in particular, c shows a significant increase considering the expected uncertainties. 
The parameter c has been interpreted to reflect aftershock incompleteness (Hainzl, 2016a; Kagan, 2004; Lolli 
and Gasperini, 2006) and would thus be expected to decrease when this effect is accounted for by the model (Seif 
et al., 2017). The observed higher value of c even after accounting for STAI thus requires a different interpretation 
of c. Narteau et al., (2009) found a dependency of c on faulting style, and brought the parameter in relation with 
differential stress and the intensity of stress re-distribution. Another possible interpretation provided by Lippiello 
et al., (2007) is based on the dynamical scaling hypothesis in which time differences relate to magnitude differ-
ences. Shcherbakov et al. (2004) proposed a generalized Omori law which incorporates three empirical scaling 
laws (Gutenberg & Richter, 1944; Båth, 1965; Utsu, 1961) with a dependence of c on the cutoff magnitude which 
can qualitatively explain our observations: The value inverted for c is highest in the case of mref = 2.4, and lowest 
for mref = 3.1. Overall, one should be careful to not over-interpret this estimate of c. After all, c is overestimated 
for large values of tR in the PETAI synthetic test and hence an observed increase in c might be a consequence of 
complex interdependencies of all parameters involved.

While the branching ratio η does not substantially vary with the different inversion methods, we observe a slightly 
increased productivity exponent for the PETAI inversion. Although the increase lies within expected uncertainty, 
such an increase is expected given the results of Seif et al. (2017), with the extent of the observed increase being 
in line with their estimated extent of underestimation for the productivity exponent.

Parameter mc ≡ const. mc(t) f(m, t)

mref 3.1 2.4 3.1 2.5 3.1

log 10(μ) −6.86 −5.97 −6.68 −6.35 −6.97

log 10(k0) −2.53 −2.63 −2.36 −2.70 −2.49

ɑ 1.74 1.86 1.86 1.92 1.92

log 10(ʗ) −2.97 −2.52 −2.52 −2.85 −2.85

ω −0.05 −0.02 −0.02 −0.06 −0.06

log 10(τ) 4.03 3.57 3.57 3.92 3.92

log 10(d) −0.51 −0.86 −0.45 −0.76 −0.45

γ 1.19 1.35 1.35 1.22 1.22

ρ 0.60 0.67 0.67 0.67 0.67

log 10 (tR) n/a n/a n/a −2.86 −2.86

β 2.33 2.32 2.32 2.37 2.37

a − ργ 1.03 0.95 0.95 1.09 1.09

η 0.94 0.95 0.95 0.93 0.93

Note. First column shows parameters when constant mc of 3.1 is assumed. 
Second and third column show parameters when time-varying mc is 
accounted for, and fourth and fifth column show parameters when PETAI 
inversion is applied. Note that the originally derived parameters are given in 
Columns 1, 2, and 4. Columns 3 and 5 show the parameters of Columns 2 and 
4, transformed (as described in Equations 32–35 to a reference magnitude of 
3.1 to allow comparison with Column 1. Productivity exponent α = a − ργ 
and branching ratio η are not directly inverted but inferred from the inverted 
parameters.

Table 1 
ETAS and PETAI Parameters Inferred for California
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The background rate μ shows a significant increase when a longer time horizon is considered, and decreases sig-
nificantly when STAI is accounted for. As μ is clearly overestimated in the synthetic test with long-term variation 
of mc, and only slightly overestimated in the case of PETAI, we may suspect that the increased value for μ in the 
first case is an artifact of the inversion method, while the decrease in background rate with PETAI could suggest 
that including smaller magnitude events in our model by accounting for incompleteness reveals previously hidden 
earthquake interactions, resulting in a lower μ.

The parameter γ, which describes the exponential relationship between earthquake magnitude and the distance to 
the event at which the aftershock rate starts to decrease faster, is significantly increased in the case of long-term 
variation of mc. Slight overestimation is expected based on the synthetic tests, but not to this extent.

At the same time, ρ increases for both new inversion techniques. Again, overestimation of ρ is expected given 
the results of the synthetic tests and the observed values might thus be artifacts of the algorithms applied. As the 
problem of the finite spatial region applies in the same way to standard ETAS as well as the other two methods, 
this is unlikely to be the cause of the difference in parameter estimates.

The value of β shows an increase from 2.33 to 2.37, which translates to a b-value increase from 1.01 to 1.03, 
when STAI is accounted for in the PETAI inversion. This is expected due to the underestimated number of small 
events caused by STAI.

5.2. Incompleteness Insights Through PETAI

In addition to a new set of estimated ETAS parameters, applying the PETAI inversion to the Californian catalog 
produces further interesting outputs. Similarly to the case of the synthetic catalog, Figure 5a shows the estimated 
cumulative number of undetected events over time. As expected, the increase is predominantly step-wise, caused 
by short, incomplete periods during aftershock sequences, and long, complete periods in-between. While the total 
expected number of undetected events is at 5041.74, the extrapolated number obtained from a GR law fitted on 
M ≥ 3.1 events is only 88.91. This estimate of the number of unobserved events differs from the PETAI estimate 
in that it assumes perfect detection above M3.1. Although the true number of undetected events can never be 
known, the synthetic test suggests that the PETAI result is reliable and even slightly conservative, and thus the 
GR law extrapolation would be a severe underestimation of the true number of undetected events.

The magnitude-dependent detection probability evolution is illustrated in Figure 5b. In around 84% of event 
times ti, events of magnitude M ≥ 4 are expected to be detected with a probability of 99.9% or more. Similarly, 
in 82% of event times ti, M ≥ 3 events are expected to be detected with a probability of 99% or more. Spikes of 
incompleteness during large sequences lead to detection probabilities of less than 50% for smaller events, in the 
most extreme case for events of magnitude M ≤ 3.47.

As expected, periods of elevated incompleteness coincide with the periods of rapid increase in undetected events 
shown in (a). The last step in (a), which corresponds to the 2019 Ridgecrest sequence, is extraordinarily large 
compared to all previous steps. This is most likely explained by the fact that the sequence was better recorded 
than comparable sequences in previous years. When the detection capability of the seismic network improves, the 
recovery time tR becomes shorter. Because we have assumed tR to be stationary for simplicity, a larger number of 
recorded events will lead to a smaller estimated detection probability, which in turn leads to larger numbers of 
expected undetected events. In future versions of the model, to avoid such artifacts, it would be advisable to com-
bine the possibility of including long-term changes in completeness (as in the model described in Section 3.1) 
with rate-dependent aftershock incompleteness by means of a non-stationary tR.

Figures 5c–5g shows excerpts of Figure 5b for the 1989 M6.9 Loma Prieta, the 1992 M6.1 Joshua Tree and 7.3 
Landers, the 1994 M6.7 Northridge, the 1999 M7.1 Hector Mine, and the 2019 M6.4 and 7.1 Ridgecrest events, 
in comparison to the mc(t) estimate given by the formulation of Helmstetter et al. (2006) which was provided for 
Southern California. While their definition is not probabilistic, we observe that their mc 5 min after the mainshock 
lies between 90% and 99% detection according to PETAI. The shape of the recovery from incompleteness does 
not fully coincide for the two methods, with generally slower recovery in the case of PETAI for the shown ex-
cerpts. Helmstetter et al. (2006) use a simpler formulation, and do not provide arguments for their specific choice 
of parameterization of mc(t). On the other hand, the parametric description of the magnitude of 50% detection 
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Figure 5. Aftershock Incompleteness in California. (a) Estimated cumulative number of undetected events over time. (b) Evolution of magnitude-dependent detection 
probability. Yellow indicates a detection probability of 50% or less. Black, dark blue, and light blue indicate detection probabilities of up to 90%, 99%, and 99.9%, 
respectively. White area represents detection probabilities higher than 99.9%. (c–g) Excerpts of (b) for selected large events. x-axes are logarithmic and show time 
since (first) mainshock, and range from 5 min to 30 days after that mainshock. Red lines indicate mc(t) as described by Helmstetter et al. (2006), including the effect of 
all M ≥ 5 events. Colored circles in (g) represent selected times ti and corresponding magnitude of 99.9% detection. (h) Detection probability function f(m, λ = λ(ti)) 
snapshots for the times that are highlighted in (g), plus a time prior to both mainshocks (in red). Time deltas are given with respect to the M7.1 mainshock. λ(ti) are as 
estimated during PETAI inversion.
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by Ogata and Katsura (2006), presented for the example of the 2003 Miyagi-Ken-Oki earthquake, takes a shape 
similar to the one obtained through PETAI, although it is not quantitatively comparable to the case of California.

The range of observed states of detection efficiency during the 2019 Ridgecrest sequence is visualized in Fig-
ure 5h. Prior to the large events, detection is almost perfect for all magnitudes. After the M6.4 event, detection is 
weakened and recovers with time, until the M7.1 mainshock, when it is again weakened. Around 15 min after the 
earthquake, events of magnitude below 3.0 still have almost no chance to be detected, with M3.5 events having 
roughly a 50% chance to be detected. After three hours, detection has already clearly improved, although M2.5 
events are still almost surely not detected. After six days, the detection probability function almost corresponds 
to the prefect detection state, which was in place prior to the main events.

5.3. Comments on Computational Time

There are two aspects to consider when discussing the computational time of the parameter inversion techniques 
presented here. On one hand, the increased complexity of the algorithms plays an important role. In particular, 
the PETAI inversion comprises multiple loops of ETAS and incompleteness estimation. Although convergence 
was usually reached after 4 iterations, this still implies a minimum factor of 4 in terms of computation time which 
is only required for ETAS inversion, on top of which comes the time needed for the estimation of detection pa-
rameters and event rates. The second factor, which contributes even more to an increase of computation time, is 
the increased size of the catalog which is available to be used. For our application to Californian data, the number 
of events used in the PETAI inversion increases by a factor of 3.78 because the minimum considered magnitude 
is reduced from 3.1 to 2.5. The leads the number of pairs of potentially related events to increase from 7.3 mil-
lion to 47.1 million. Note that these numbers are obtained after imposing the 50 source length cutoff criterion 
described in 4.3. While this increase in the number of potentially related event pairs causes a substantial increase 
in run time, educated initial guesses for ETAS parameter inversions can substantially reduce run time without 
affecting the results. Our Python 3.8 implementation of the PETAI inversion, run with a single core (Intel Xeon 
E5-2697v2) of the Euler high-performance computing (HPC) cluster at ETH Zurich, took 23 hr. Roughly 20% 
of this time was spent on the optimization of event rates and detection parameters, and 80% on the optimization 
of ETAS parameters.

In contrast to the PETAI inversion, the run time of the ETAS parameter inversion with time-varying mc is barely 
affected by model complexity. During synthetic experiments, we found the run time to be comparable to the run 
time of the usual ETAS inversion when the number of pairs of potentially related events was similar.

6. Pseudo-Prospective Forecasting Experiments
To better understand if and how the PETAI model can improve earthquake forecasts, we conduct pseudo-prospec-
tive forecasting experiments. Note that as these experiments are computationally expensive, we conduct them 
for the PETAI method only. As most aftershocks occur soon after their triggering event, accounting for STAI in 
ETAS simulations seems promising for forecasting. The parameter inversion for long-term variations of mc is 
mainly intended as a tool to obtain ETAS parameters in regions where data is sparse and a model inversion would 
not be possible otherwise.

6.1. Competing Models

We compare five models.

1.  The base ETAS model assumes perfect detection above a constant mc = 3.1 and is used as the null model.
2.  PETAI, the alternative model, has two modifications to the null model. First, it uses improved ETAS parame-

ter estimates that were obtained in the PETAI inversion with a reference magnitude mref of 2.5. Second, mag-
nitude M ≥ 2.5 earthquakes are allowed to trigger and be triggered. For this, the events in the training catalog, 
which act as triggering earthquakes in the simulation, have their triggering capability inflated by 1 + ξ(t), as 
estimated in the PETAI inversion.

Two intermediate models are assessed to dissect the effect of the two modifications.
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 3.  par_only uses ETAS parameter estimates obtained from PETAI, but only M ≥ 3.1 events are allowed to trigger 
and be triggered, assuming perfect detection there (i.e. ξ(t) ≡ 0). In this case, the parameters obtained for the 
PETAI model have to be transformed to be compatible with a reference magnitude of mref = 3.1 as described 
in Equations 32–35.

 4.  Vice-versa, trig_only allows M ≥ 2.5 events to trigger and be triggered, using the inverted ξ(t) for inflated 
triggering, but does not use the improved ETAS parameter estimates. In this case, the parameters obtained for 
the null model have to be transformed to be compatible with a reference magnitude of mref = 2.5 as described 
in Equations 32–35.

Lastly, we assess an additional benchmark model to test whether deliberately underestimating mc is an appropriate 
alternative to the rather complex PETAI model.

 5.  low_mc assumes perfect detection above a constant mc = 2.5. This model uses neither the parameter estimates 
obtained from PETAI, nor the inverted ξ(t) for inflated triggering, but it allows M ≥ 2.5 events to trigger and 
be triggered and thus is based on the same data as the PETAI-based models.

6.2. Experiment Setup

For a testing period length of 30 days, we define a family of training and testing periods such that the testing pe-
riods are consecutive and non-overlapping. Each training period ends with the starting date of its corresponding 
testing period. The starting date of the first testing period is 1 January 2000. The end date of the last of the 244 
testing periods is 16 January 2020.

For each testing period, all competing models are trained based on the corresponding training data. Then, fore-
casts are issued with each model through simulation of 100,000 possible continuations of the training cata-
log. Because the testing data is ignored when the models are calibrated, these forecasts are pseudo-prospective. 
This is done by simulating Type I earthquakes (the cascade of aftershocks of earthquakes in the training cata-
log) and Type II earthquakes (simulated background earthquakes and their cascade of aftershocks) similarly to 
how it is described by Nandan et al. (2019a). The algorithm for simulation is described in detail in Text S1 in 
Supporting Information S1.

The performance of each model is evaluated by calculating the log-likelihood of the testing data given the fore-
cast. See Text S2 in Supporting Information S1 for details on the calculation of the log-likelihood using the full 
distribution approach as described by Nandan et al. (2019a) for a fair evaluation of ETAS-based models. Two 
competing models can be compared by calculating the information gain (IG) of the alternative model Malt over the 
null model M0, which is simply the difference in log-likelihood of observing the testing data. The mean informa-
tion gain (MIG) is calculated as the mean over all testing periods. This evaluation metric is similar to other met-
rics that have been used for model comparison, such as the total information gain or information gain per earth-
quake (IGPE) used in the CSEP T-test (Harte and Vere-Jones, 2005; Rhoades et al., 2011; Zechar et al., 2013; 
Strader et al., 2017, see Savran et al., 2020 for recent complementary CSEP testing metrics) or the residual-based 
log-likelihood ratio score (Bray et al., 2014; Clements et al., 2011; Gordon et al., 2015; Gordon et al., 2021).

As an additional benchmark, we calculate the total IGPE of the ETAS null model versus a spatially and temporal-
ly homogeneous Poisson process (STHPP) model. Note that the STHPP model is not considered a participant of 
the forecasting experiment and superiority is always discussed relative to the ETAS null model.

For details on the STHPP model and on the conditions under which one model is considered superior over anoth-
er, see Text S2 in Supporting Information S1 and Nandan et al. (2019a).

6.3. Time Evolution of the Parameters of the Competing Models

Figure 6 shows the parameter evolution with increasing training period obtained with standard ETAS (mc = 2.5 
and mc = 3.1) and PETAI inversion. Two parameters, namely μ and τ, show a systematic decrease and increase, 
respectively, with growing time horizon of the training catalog. When compared to the uncertainties in the syn-
thetic tests, the extents of the changes of μ are larger than the 95% confidence intervals, while the changes of τ lie 
within the expected uncertainties. A possible explanation for this observation is that an increased time horizon of 
the training catalog reveals more long-term earthquake interactions, leading to a higher value of τ, that is a later 
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onset of the exponential taper in the temporal aftershock density, and simultaneously to a lower background rate 
μ, as more events can be interpreted as aftershocks of previous earthquakes.

Nearly all parameter estimates show a jump in 2010, caused by the 2010 El-Mayor Cucapah earthquake sequence, 
and a second jump in 2019, caused by the 2019 Ridgecrest sequence. There are several reasons why such jumps in 
parameter estimates could occur. In the case of the 2010 events, the main earthquake occurred outside of Califor-
nia and thus network coverage can play a role, as well as the absence of a large fraction of aftershocks due to the 
boundaries of the considered region. Furthermore, triggering parameters can differ between regions, sequences 
and can also depend on the magnitude of the mainshocks (Nandan et al., 2019; Nandan, Kamer, et al., 2021; Nan-
dan, Ouillon, et al., 2021; Ouillon & Sornette, 2005; Sornette & Ouillon, 2005). These dependencies can increase 
the representation of the active region and particular sequences in the catalog and lead to sudden changes in the 
overall parameters.

Figure 6. Evolution of ETAS and PETAI parameter estimates with increasing training catalog, when using standard inversion with mc = 3.1 (black lines) or mc = 2.5 
(orange lines) and when using PETAI inversion (blue lines). The evolution for tR is only given for PETAI inversion because it does not exist in standard ETAS. 
Parameters are with respect to mref = 2.5, transformed using Equations 32–35 if necessary.
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6.4. Forecasting Performance of the Competing Models

Figure 7 shows the results of the pseudo-prospective forecasting experiments. For a target magnitude threshold of 
mt = 3.1, PETAI as well as trig_only significantly outperform the ETAS null model with p-values of virtually 0 
and a mean information gain of 0.97 and 0.94, respectively. Note that this improvement is over a very strong null 
model, which has a total information gain of 49’246 (i.e. a MIG of 202.66 or an IGPE of 5.62) over the STHPP 
model. PETAI has a slightly positive but not statistically significant information gain compared to trig_only. On 
the other hand, par_only and low_mc do not significantly outperform the ETAS null model. This suggests that 
the main driver of the improvement of the forecast is the inclusion of small events between M2.5 and M3.1 in the 
simulations, rather than the newly obtained parameter estimates. It also indicates that accounting for incomplete-
ness, which is possible due to the estimated ξ(ti) obtained in the PETAI inversion, is necessary for this improved 
forecast. The sole inclusion of events between M2.5 and M3.1 in the simulations assuming completeness above 
M2.5 is not sufficient to obtain significant improvements. For all considered values of mt, PETAI and trig_only 
rank higher than low_mc in terms of MIG, which further supports the idea that accounting for STAI is relevant 
for improved ETAS-based earthquake forecasting.

The temporal evolution of the cumulative information gain of the two superior models shows a decrease during 
the 2010 El Mayor-Cucapah and the 2019 Ridgecrest sequences. Those sequences were most active in Southern 
California, where the seismic network is much denser than in the rest of the considered region (Hutton et al., 2010; 
Schorlemmer & Woessner, 2008). The assumption of spatially homogeneous detection incompleteness is thus 
inaccurate and may be the reason for over-inflation of the aftershock productivity during these sequences, ex-
plaining the decrease in information gain. One can therefore expect that accounting for spatial variation of STAI 
in subsequent models may lead to even better forecasts.

With increasing values of mt to 3.5, 4.0, 4.5, and 5.0, the IGPE of the ETAS null model vs. the STHPP model 
increases to 5.92, 5.92, 6.62, and 7.44, respectively. At the same time, the mean information gain values between 
the competing ETAS-based models generally decrease, and almost no model significantly outperforms any oth-
er competing model. Occasionally, par_only is outperformed by the ETAS null model or by trig_only. These 
observations suggest that taking into account information about smaller earthquakes mainly helps improving 
ETAS-based forecasts of smaller earthquakes. More precisely, simulating aftershocks of small earthquakes is 
the key ingredient for improved forecasting of similarly-sized events. Although within the framework of the 
standard ETAS model, small earthquakes can trigger large ones, and their relative abundance implies significant 
contribution to the overall triggering (Marsan, 2005; Helmstetter et al., 2005; Sornette & Werner, 2005a, 2005b), 
we find that the beneficial effect vanishes when forecasting large events. Additional ways exist in which small 
earthquakes can contribute to improving forecasting models. Besides their potential to cumulatively contribute to 
aftershock triggering, the large number of earthquakes below mc can help to highlight the underlying fault struc-
ture, which, when accounted for, can significantly improve forecasting performance (Gordon et al., 2021; Bach & 
Hainzl, 2012; Cattania et al., 2018; Guo, Zhuang, and Zhou, 2015). In fact, small earthquakes have been shown to 
improve forecasts in the context of other models (Mancini et al., 2019; Mancini et al., 2020), and somewhat mixed 
overall results but a clear signal that small earthquakes do contribute to triggering through the redistribution of 
static stresses have been reported (Meier et al., 2014; Nandan et al., 2016; Segou et al., 2013).

Helmstetter et  al.  (2006) compared the probability gain of their time-dependent model vs. their similar but 
time-independent model and found that probability gain decreases with an increasing target magnitude threshold. 
They speculated that this observation may be due to a smaller sample size when the target magnitude threshold 
increases. Helmstetter and Werner (2014) found the same decrease in the context of a different, non-parametric 
kernel space-time smoothing model. Although the study was based on a larger amount of data than Helmstetter 
et al. (2006), they likewise speculated that this decrease is due to a small sample size. In our case, the same ef-
fect is observed at considerably large sample sizes of 3,601, 1111, 307, and 85 events for mt = 3.5, 4.0, 4.5, and 
5.0. Another possible explanation for this effect is provided by the findings of multiple previous studies using 
both non-parametric (Nichols and Schoenberg,  2014; Spassiani & Sebastiani,  2016) and parametric (Nandan 
et al., 2019; Nandan, Ouillon, et al., 2021) approaches, that earthquakes tend to preferentially trigger aftershocks 
of similar size. Their results can explain the improved forecast of small events when small events are used for 
simulation, as well as the vanishing of this improvement when the magnitude difference between newly included 
events and target events becomes large. This could furthermore serve as an alternative explanation of the results 
of Helmstetter et al. (2006) and Helmstetter and Werner (2014).
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Figure 7. From left to right: Cumulative information gain for the alternative models versus the ETAS null model, mean 
information gain matrix, and corresponding p-value matrix comparing all competing models. Matrix entries represent the 
test of superiority of Malt (y-axis) vs. M0 (x-axis). From top to bottom: target magnitude thresholds mt of 3.1, 3.5, 4.0, 4.5, and 
5.0. Indicated as text in the left panels is the cumulative information gain of the ETAS null model versus the STHPP model, 
and the number of events in all testing periods combined. Note the different y-axes for the left panels. Also note that the color 
scheme for the middle panels is different between threshold magnitudes mt and normalized with respect to the maximum 
absolute mean information gain for that mt. Color coding for the panels on the right is such that p-values of 0.05 and below 
are green, and transition from gray to white between 0.05 and 1.
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Note that the IGPE of the ETAS null model against the STHPP model increases with increasing mt, while Helm-
stetter et al. (2006) observe a decrease in probability gain against a temporally homogeneous and spatially var-
iable Poisson model. This suggests that spatial inhomogeneity becomes more important with increasing target 
magnitude, while temporal inhomogeneity based on small earthquakes becomes less important with increasing 
target magnitude. It is important to highlight that the 30-day testing periods of the present study, in contrast to 
1-day periods as in Helmstetter et al. (2006), prevent ETAS models from being updated after large events. This 
likely understates the extent of superiority that could be achieved by models which include M2.5 to M3.1 events, 
and thus the role of small earthquakes, in daily forecasts.

7. Conclusion
We propose a modified algorithm for the inversion of ETAS parameters when mc varies with time, and an algo-
rithm for the joint inversion of ETAS parameters and probabilistic, epidemic-type aftershock incompleteness. 
We test both methods on synthetic catalogs, concluding that they can accurately invert the parameters used for 
simulation of the synthetics. The given formulations are rather general and can equally be applied to spatial or 
spatio-temporal variations of mc, as well as to any suitable definition of a detection probability function.

Two potential use cases are the estimation of ETAS parameters based on the Californian catalog since 1932 with 
long-term fluctuations of mc between 4.3 and 2.4, and the estimation of ETAS parameters and short-term after-
shock incompleteness based on the incomplete Californian catalog of events above M2.5. The latter is further 
used to test the forecasting power of small earthquakes. Results of numerous pseudo-prospective forecasting 
experiments suggest that

1.  Information about small earthquakes significantly and substantially improves forecasts of similar-sized events.
2.  Main driver of this improvement is the simulation of aftershocks of small events.
3.  Accounting for incompleteness when simulating aftershocks of small events is necessary to achieve this 

improvement.
4.  Information about small earthquakes does not significantly affect the performance of large event forecasts.

A possible explanation for these results is provided by previous findings (Nichols & Schoenberg, 2014; Spassiani 
& Sebastiani, 2016; Nandan et al., 2019; Nandan, Ouillon, et al., 2021), that earthquakes preferentially trigger 
aftershocks of similar size.

Our results have potentially significant implications for the future of earthquake forecasting. Thanks to the 
here-presented algorithms, ETAS models may be calibrated for regions with low seismicity where the usual 
inversion algorithms would fail due to missing data. To facilitate the embracing of data incompleteness in such 
cases, our inversion codes will be made openly available after publication of the article through github.com/
lmizrahi/etas and github.com/lmizrahi/petai.

The newly gained insights from forecasting experiments guide us in the search of the next generation earthquake 
forecasting models. Besides other discussed topics such as anisotropy, temporally or spatially non-stationary 
background rate (Hainzl et al., 2008; Hainzl et al., 2013; Nandan et al., 2020), the importance of accounting for 
short-term incompleteness when simulating, as well as a magnitude-dependent distribution of aftershock magni-
tudes are emphasized.

Data Availability Statement
The data used for this analysis is available through the website https://earthquake.usgs.gov/earthquakes/search/ 
(U.S. Geological Survey, Earthquake Hazards Program, 2017).
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