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ABSTRACT

The paper advocates the problem of estimating population mean on the current (second) occasion using auxiliary information in
successive sampling over two-occasions. A class of estimators based on transformed auxiliary variable is derived. The bias and
mean square error of the proposed estimator have been obtained. The suggested estimator has been compared with simple mean
estimator when there is no matching and the optimum estimator, which is a combination of the means of the matched and un-
matched portion of the sample at the second occasion. Optimum replacement policy and the efficiency of the suggested
estimator have been discussed. Numerical Illustration is given in support of the present study.
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RESUMEN

Este paper trata el problema de estimar la media de la poblacién una clase de estimadores basada en la variable transformada.
Son obtenidos el sesgo y el error cuadratico medio del estimador propuesto. El estimador ha sido comparado con el comdn
estimador de la media cuando no hay sobrelapamiento con el estimador 6ptimo, el que es una combinacién de las medias de la
porcién en la actual, (segunda) ocasion, usando informacion auxiliar en el muestreo sucesivo en dos-ocasiones soprelapada y no
soprelapada de la muestra en la segunda ocasion. Se sugiere una politica de reemplazo optimal y se discute sobre la eficiencia
del estimador sugerido. Una ilustracion numérica es dada para soportar el presente estudio

PALABRAS CLAVE: variable auxiliar, variable de estudio, muestreo sucesivo, error cuadratico medio.

1. INTRODUCTION

In successive (rotation) sampling, it is not uncommon in practice to use the information collected on the
preceding occasions to improve the precision of the estimates on the current occasion. The problem of
sampling on two successive occasions with a partial replacement of sampling units was first introduced by
Jessen (1942) in the analysis of a survey that collected from data. After Jessen (1942) several authors
including Patterson (1950), Eckler (1955), Rao and Graham (1964), Singh et al. (1992) and among others
have developed the theory of successive sampling. Feng and Zou (1997) and Biradar and Singh (2001) used
the auxiliary information on both the occasions for estimating the current population mean in the successive
sampling. Singh (2005), Singh and Vishwakarma (2007a, 2007b, 2009), Singh and Pal (2014), Singh and
Pal(2015a, 2015b, 2015¢), Singh and Pal (2016a, 2016b, 2016c) Singh and Pal (2017a, 2017b, 2017c, 2017d,
2017e), Pal and Singh (20174, 2017b) have used the auxiliary information on both the occasion and envisaged
several estimators for the estimating the population mean on current occasion in two- occasion successive
(rotation) sampling.

The procedure discussed in the above studies have used information only on the population mean Z of the
auxiliary variable z, while in various survey situations information on other parameters of the auxiliary
variable z such as coefficient of variation C, , population standard deviation S, , population coefficients of

skewness S (z) and kurtosis f3,(z) ; and the correlation coefficients between study variable y and z (o, ) ;

and the auxiliary variable x and z (p,, ) are known, for instance see Sisodia and Dwivedi (1981), Upadhyaya

and Singh (1999), Singh and Tailor (2003), Kadilar and Cingi (2004), Chandra and Singh (2005), Koyuncu
and Kadilar (2009), Sousa et al.(2010) and Singh and Solanki (2013a, 2013b).
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Keeping this in view we have suggested an effective and efficient estimation procedure , which provides a
cost effective estimate of the population mean on the current (second) occasion in two-occasion successive
(rotation) sampling.

Let U= (U, U, ..., Uy) be the finite population of size N units, which has been sampled over two
occasions. Let x (y) be the variable under study on the first (second) occasion respectively. It is assumed that
information on an auxiliary variable z (stable over occasion) is readily available for the both the occasions. It
is assumed that the population under investigation is large, and the sample size is constant on each occasion.
A simple random sample of n units is drawn without replacement (WOR) on the first occasion. A random sub
sample of m (= nd) units is retained (soprelapada) from the sample drawn on the first occasion for its use on
the current (second) occasion, while a fresh sample of size u= (n-m) = n £ units is drawn on the current
(second) occasion, from the entire population by simple random sampling without replacement (SRSWOR)
procedure so that the sample size on the current (second) is also n. The fractions of the soprelapada and fresh
samples are respectively designated by A and x such that A+ g =1.

In what follows we shall use the following notations throughout this paper.

X ,Y , Z : The population means of the variables x, y and z respectively.

Xms X0 Yy Ym» Zy» Z, : The sample means of the respective variables based on the sample sizes indicated

in suffices.
Cyx, €y, C,: The coefficients of variation of the variables x, y and z respectively,

Pyxs Pyz+ Px - The correlation coefficients between the variables shown in suffices .

2 1 N v \2 2 1 N v \2 2 1 N 7132
Sx=(N-D720G—X)",Sy=(N-D7>(y; =Y)*,S; =(N-1)7>(z; —Z)" are the population mean
i=1 i=1 i-1
squares of x, yand z respectively,
f =n/N: Sampling fraction. fda: fist degree of approximation.

The rest part of the paper is prepared as follows: In Section 2, the estimators of population mean have been
suggested and the expressions of their bias and the mean square error are obtained. Section 3 addresses the
problem of optimal replacement policy while Section 4 has focused on efficiency comparisons and empirical
study of proposed estimators. Section 5 dealt with the optimum estimator along with its properties.
Concluding remarks are given in Section 6.

2. DEVELOPMENT OF THE ESTIMATOR

To develop the estimator of the population mean Y on the current (second) occasion in two-occasion
successive sampling, motivated by Sisodia and Dwivedi (1981), Upadhyaya and Singh (1999), Singh and
Tailor (2003), Singh and Agnihotri (2008) and Srivastava (1967) we have given two estimators using linear as
well as power transformation simultaneously over auxiliary variable z. One is based on a sample of size u =n
4 drawn, afresh on the second occasion and is defined by

_(aZ+b “
P = , 2.1
u y”(a2u+b] (21)

where ¢ being a constant which takes real values +ive (-ive) for generating ratio-type (product-type)
estimators and ‘0 (zero)’ for the usual unbiased estimator which does not utilize information on auxiliary
variable z ; and (a,b) are suitably chosen scalars . The scalars (a,b) may assume real values as well as

parametric values C, (coefficient of variation of the auxiliary variable z), p,, (correlation coefficient
between x and z), S,(z) (coefficient of skewness of z), S, (z) (coefficient of kurtosis of z), Z (population
mean of z) and S, (standard deviation of z) etc.

Motivated by Singh et al. (2004), we consider the second estimator P, based on the sample of size m
common with both the occasions, as

_ o = ap = [2%]
Pm=Vm(f—"j [a_z+bJ (a_erbj (2.2)
Xm az, +b az, +b
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where (a,b) are same as defined earlier and «;’s (i = 1, 2, 3) are unknown scalar to be suitably determined
(ore;’s (i=1,2,3)may take real values +ive (-ive) and ‘0”).
Now combining the two estimators P, and P, , we propose the final estimator of the population mean Y on
the current occasion, as

P=aP, +(1-0)PR,, (2.3)
where ® is an unknown constant to be determined under certain criterion.
It is interesting to mention that for & =1 in (2.1) and (e, , @, , @3) = (1,1, 0) in (2.2) the estimators P, and

P, respectively reduce to the Singh and Majhi (2013) estimators and hence combined estimator ‘ P * is more
general than that of the Singh and Majhi (2013) estimator.

3. BIAS AND MEAN SQUARED ERROR (MSE) OF THE PROPOSED ESTIMATOR

We note that the estimators P, and P,, are rectified versions of ratio and chain ratio- type estimators

respectively, they are biased estimators of the population meanY . Thus the combined estimator P in (2.3)
would be a biased estimator of the population meanY . The bias and mean squared error (MSE) of the
estimator ‘ P * are obtained up to the first order approximation. To obtain the bias and mean square error of
suggested class of estimators P * we define following quantities

Yo=Y @+eq), Im =Y L+egn) X, = X(L+ey,),
Xm=X(A+ey), 2, =2@0+ey,), I, =Z(0+ey,)and Z, =Z(1+e,,).
such that
E(egy) = E(eom) = E(€1,) = E(e1m) = E(€2,) = E(2,) =0
and
E(eq,) =ACy , E(eqn) =ACY, E(enn) =XCy  E(efy) =(Cx, E(e3,) =/C;
E(e3)=¢C7, E(e5n) =AC;  E(€oueom) =~ C> s E(eouein) =9 PC,Cy,
E(eoue1n) == 0xC,Cx. E(eu€2) =19y, C,C, , E(eg,€2) == py,C,C;
E(ou®2n) =~y CyC; , E(€omeim) =ApxCyCy, E(eon1n) =£py, C\Cy
E(ome2u) ==y, C,C;. E(€oneam) =%y, C\C, , E(en€2,) = £p,C,C,,
E(eimein) =Py CyCyx E(@1me2) == P CxCs . E(€1m€21) = (P CxCy
E(€imeom) =% CxC;  E(e1n€2,) == P, CxC;  E(€1n€20) = (P, C,C
E(€1n€am) = £PxCyC, . E(€24€50) == C2  E(€ry€om) == C? , E(€€5n) =AC? .
Where £=(n’l - N’l),h=(u’l - N’l),xz(m’l - N’l),g)z N7t

3.1 The Bias and MSE of the Estimator ¢ P,’

We now express P, at (2.1) in terms of e’s as
- (1
P =Y ( + €ou )a
(1 + @Zu )
=Y (L+eg, )L+ ¢y, ) %, (1)
where g=aZ /(aZ +h) .
We assume tha1t|¢e2u | <1, so that (L+ ¢e,, ) is expandable. Now expanding the right hand side of (3.1),
multiplying out and neglecting terms of e’s having power greater than two we have

- a(a+1
Pu EY|:1+eOu —0!¢62u _a¢eOu82u + ( )¢2e§u:|’

2
or
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a(a+1)

(Pu _Y_) EY_|:eOu _a¢92u - a¢90ue2u + ¢Ze§u :| : (3-2)

Taking expectation on both sides of (3.2), we get the bias of the proposed class of estimators P, up to first
degree of approximation as
Ya
B(P,) = [T"’Jhcf{ﬂa +1)- 2k}
where k., = p,,C, /C,.
Squaring both sides of (3.2) and neglecting terms of e’s having power greater than two, we have
(R, —Y)? =V ?[eg, —agey, ]
=Y?[e} +a’pel —20qeq,e,,]. (3.2)
Taking expectation on both sides of (2.7), we get the MSE of the proposed class of estimators P, up to first
degree of approximation as
MSE(P,) =Y ?4[C] + agCZ (ap — 2K, )]
=Y 2n Mo
where 7 =[C] +agC? (agp— 2k, )].
Thus we state the following theorem.
Theorem 3.1 To the first degree of approximation the bias and MSE of the estimator P, are respectively,
given by
B(R,) =724 Jic? 1) -2k 3.4
(u)_ T z{¢(a+ )_ yz}' ()
MSE(R,) =Y ?A[C] + afC7 (ap — 2K, )]
=Y g, (35)
where 7 =[C] +aC/ (app— 2k, )].

3.2 The Bias and MSE of the Estimator ¢ P’

To obtain the bias and MSE of the estimator P,, at (2.2), we express P,, in terms of e’s:
Py =Y (L+ g )L+ 1) (L+ 1) ™™ (L+ gy ) ™2 (L+ gy ) ™2, (3.6)
We suppose that|ey, | <1, [ey,| <1, |#ea,| <1and |ge,y| <1, so that (L+ey,)®, (L+e5,) ™ (L+de,,) “2 and

L+ ¢eyy,)  are expandable. Expanding the right hand side of (2.9), multiplying out and neglecting terms of
e’s having power greater than two, we have

Pn =Y [1+ €om + 1 (B —€1m) — P22 + A3€5m) + 1 (BomE1n — EomEim) — P(X2€0mE2n

2
+ A3€omE2m) + A1 P(E1mEon — €1n€on) + A 3P (E1Eom —E1n€om) + P A 3€mE2n

(o -1) (o +1) #?
+al{ 12 elzn + 12 efm — 0481 +7{a2 (o +1)e§n +as(as +1)e§m}

or
(Pn-Y)=Y [eOm +ay(B1y —€1m) — A28, + A3€5m) + 1 (Bom€1n — EomE1m) — P(@2€0mE2n
2
+ 3€omEam) + O P(€1m€n —€1n€2n) + A X3 P(E1mEom —E1n€om) + P A2 3€omEn

(. -1 (g +1) 2
+0!l{ 12 Efn + 12 efm — 018181 +¢7{a2 (0{2 +1)e§n +a3(a3 +1)e§m} (3.7)
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Taking expectation on both sides of (3.7), we get the bias of the proposed class of estimators P, up to first
degree of approximation as
B(Py) = (Y /27 e, C2 (e — 2Ky +1) + (C2{at (B, +1) — 2K yy)
+ agp(app— 2Ky, a0 )} + RaggCr{p(as +1) + 201k, — 2K, 1]
Squaring both sides of (3.7) and neglecting terms of e’s having power greater than two, we have
(P =Y)? =Y ?[egp + a1 (€1 — 1) — Bc2€5p + 380 )]
= Y_2 [e(Z)m + alZ (eln ~CIm )2 + ¢2 (a2e2n + a3e2m)2
+204 (Bom€1n —€omeim) — 26(22€0m€2n + *3€0mE2m)
205 {01, (810820 —€1m€2n) + A3 (E1n€2om —€1n€om)}H - (3.8)
Taking expectation on both sides of (3.8), we get the MSE of the proposed class of estimators P, up to first
degree of approximation as
MSE(P,,) =\72(m’1771 +nty, — N*lng),
where 7 =[C] +a,Cl(oq — 2K, ) + g fC 2 (g — 2K, + 201K, )],
Urks [ale (2ky, —oq) + ¢C22{a2 (a2 — 2Ky, )+ 203(ap — Ky, )},
and
13 =(m+m,) = [C)% +4C (o + as {(ay +a3) - 2k, 1.

Thus we state the following theorem.
Theorem 3.2 To the first degree of approximation the bias and MSE of the estimator P,, are respectively,

given by

B(Py) {Q[ralcf (o = 2Ky +1) +(C{ap(Blary +1) = 2Ky ) + s(orp ~ 2 )}

+ RetagC2plats +1) + 2a1k,q — 2k, (3.9)
MSE(Py) =¥ 2(m 7, +n 7', — N7y, ) (3.10)

where 77, ’s (=1, 2, 3) are same as defined earlier.
3.3 The Covariance between P and P,

The covariance between P, and P,, to the first degree of approximation is obtained as follows:
CoV(P,, P) =EL(R, =Y )(Py —Y)]

=Y? El(eou —ager, Heom — o (en —€10) — dlarz85, + a3€)}]

=Y ? E [eoueOm -0 (eouelm - eoueil.n) - ¢(a2eou62n + aseouEZm)

- a¢eou60m + mal(elmem - e1nen2u) + ¢2a(a262u62n + a3e2ue2m)]

Y_2

:—(W][Ci +¢ClHap(a, +az) =Ky (a+a, +a3)}] (3.11)
Thus we state the following theorem.
Theorem 3.2 To the first degree of approximation the covariance between of the estimators P, and P, is
given by

Y_2
COV(Pu , Pm) = —[WJUA‘ (312)
where 17, =[C] +¢Ci{ap(a, +a3) — Ky, (a+ay +a3)}] .
The MSE of the combined estimator < P > given by
MSE (P) = MSE(P,,) + a)Z[MSE(Pu )+ MSE(PR,,) —2Cov(R,, P,)]
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—20[MSE(R,,) —Cov(P,, P,)] (3.13)
Substituting the values of MSE(R,) , MSE(P,,) and Cov(P,, P,,) from (3.5), (3.10) and (3.12), we get the MSE
of P to the first degree of approximation, as

MSE (P _Y—z[( 1 -1 NG ) 2,1 1 1 ¢°C?
(P)= m - m +n"n; — N3 )+ U g +M "1y +N "1, — N (a; +az—a)

2

_ Za){mlnl +ny, - (%}(az +oq — a)(¢(a2 +ag) -k, )H (3.14)

Now we make the following assumption:
Assumption 3.1

() Population size N is large enough (i.e. N — o) so that the finite population correction (fpc) terms
are ignored.
(i) Since x and y denoted the same study variable over two occasions and z is the stable auxiliary

variable correlated to x and y , therefore we assume that the coefficients of variation of x, y, z are
approximately equal (i.e.C, =C, =C,) for instance see Murthy (1967), Reddy (1978),

Cochran(1977) and Fen and Zou (1977).
(iii) “ Py =Py, ” - This is an intuitive assumption, which has been considered by Cochran (1977), Fen

and Zou (1977) and Singh and Priyanka (2008).
Under the assumption 3.1, the MSE of P at (3.14) reduce to:

MSE(P) = [m_lnI + n_177’2r +w?(u _1775 + m_1771r + n_lnz )— ZaJ(m_lryI + n_ln; 1.
where 773 =[1+ap(ap - 2,Dyz )l 77; =[1+ al(al - 2pyx) + 0(3¢(0!3¢ - 2:Dyz + 2Ollpyz )]

and 77; =l 2oy —a) + Hay(ad—2py,) + 203(arp — o py, )} -
We express the MSE(P) at (3.15) interms g(=u/n)as
2

MSE(P) = L@y +m3) — u°ny + @™ {ng + 1l +15 —110) — 12m2}

y
(- )

— 2014 (n, +12) ~ 1112}] (3.16)

This is minimized when
- M +15 = 1)
@, pt — * * * * 2 *
{170 + u(m +115 —1m0) — 1115}
Thus the resulting minimum MSE of d is given by
im0 (m +n5 — uny)

Mg + 1(m +15 —19) — 1212}
Thus we state the following theorem.
Theorem 3.4 The optimum value of @ [which minimizes the MSE(P) in (3.16)] and minimum MSE of P

are respectively given by
4(y +712 = 175)
pt = * s} *2 * 2 2 *a ! (317)
{0 + p(m + 1z —110) — "2}

min.MSE(P) =

and
Sino (i +n; — uny)

min.MSE(P) =—— — R (3.18)
Moo + (i +12 —10) — 17112}
where 7;’s (i = 1, 2, 3) are same as defined earlier.
Corollary 3.1 If there is complete matching i.e. £z = 0, then
SZ1,
min.MSE (P) = ~*7%._ (3.19)
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Corollary 3.2 If there is no matching i.e. 2z =1, then

S21,
min.MSE(P) = ~70. (3.20)

In both the cases, min.MSE(P) has the same value. This provides an implication that there must be an
optimum choice of £ , other than extreme values so that min.MSE(P) will be fewer than the quantity given

in (3.19) or (3.20). Thus, for obtaining current estimate (neither the case of “complete matching” nor the case
of “no matching”) more precise, it is always advisable to replace the sample partially.

4. OPTIMUM REPLACEMENT POLICY

To determine the value of x so that the population mean Y on current (second) occasion may be estimated
with maximum efficiency, we minimize min.MSE(P) in equation (3.18) with respect to £ and hence we
get
(n, +m,) %17,
< =ty (say) . (4.1)
T,

The real values of £ exists iff the quantity under square root is greater than are equal to zero i.e. 77577; >0.

/’:l:

For any combination of (a , @, , @,, @3, ¢, py and p,, ) which satisfies the condition 77317: >0, two

real values of &z are possible , hence to select a value of 4, it should be noted that0 < &z <1 , all other

values of /£ are inadmissible. Putting the admissible value of 4 say g, from equation (4.1) into equation

(3.18), we get the optimum value of min.MSE(P) , which is shown in equation (4.2):
im0 (m + 12 — to72)

Mo + o (1 +715 —106) — 1515}

min.MSE (P) ¢ = (4.2)

5.  EFFICIENCY COMPARISON

The percent relative efficiencies of the proposed estimator < P * with respect to (i) yn ,when there is no
matching, and (ii) = w, +L—y)y4, when no auxiliary information is used at any occasion, where

Ya = Ym + By (X, —Xy) , have been obtained for different values of (o, a; , a,, A3, Py + Py, ) and By,
being the population regression coefficients of y on x . Since ¥, and Y are unbiased estimators of the
populationY , the variance of ¥, and optimum variance of \7 for large N (i.e. N > ) are, respectively

given

2
V(y,)=—", (5.1)

- 52
V(Y)=[1+\/(l—p§x)]Ty, 5.2)

The percent relative efficiencies E; and E,of P (under optimal condition) with respect to ¥, and\? are
respectively given by

y [, + 10 (7, + 11, =10) — 1671, ]
_ VOW  ggg o 0T 0720100 (.3)
min.MSE (d) ot Mo (1, +1, — 1on,)

and

1

and
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2

(Da=a;=050,a, =3 =0.25, (i) =0.75,0¢y =, =0.50, 23 =0.25,
(i) a =y =0.75,a, =0.50, 13 =0.25, and (iv) @ =1.00,¢1; =0.75, 2, = 0.50,23 =0.25
and different values of p,, and p,, ; and findings are shown in Tables 5.1 and 5.2.

Table 5.1: Optimum values £/, and percent relative efficiencies of the estimator P

V(Yi)opt

~ min.MSE(d) op;

. [+ @ P21 + a0 Oy + 1, =10) = w3y ]

=100

2770 (771 + 772 _/u0772 )
To illustrate our results we have computed the percent relative efficiencies of E, and E, for

Pu | ; o= =050,y =0ty =0.25 | 4= 0.75,0q =, =0.50,3 =0.25
yz
Ho E, E, Ho E, E,
02 | 053 116.03 108.26 052 119.82 111.79
03 | 052 120.19 112.14 052 125.34 116.95
04 | 052 124.05 115.74 051 129.96 121.25
0% 05 [0s2 12752 118.98 051 133.39 124.46
06 | 052 130.52 121.78 051 135.41 126.34
07 | 051 132.96 124.05 051 135.88 126.77
02 | 053 118.21 110.29 052 123.25 115.00
03 | 052 123.74 115.45 051 131.11 122.33
05 | og |04]0%2 129.17 12052 051 138.42 129.15
05 | 051 134.39 125.39 * - -
06 | 051 139.29 129.96 050 149.82 139.78
07 | 050 143.74 134.11 0.49 153.13 142.87
02 | 052 120.48 112.41 052 126.90 118.40
03 | 052 12752 118.98 051 137.47 128.27
04 | 051 134.76 12573 050 148.16 138.23
%7 o5 [0t 142.09 13257 0.49 158.51 147.89
06 | 050 149.39 139.39 0.48 167.97 156.72
07 | 050 156.53 146.05 0.48 175.88 164.10
02 | 055 120.07 108.07 0.54 124.04 111.63
03| 054 124.46 112.02 054 129.87 116.88
04 | 054 128.55 115.69 053 134.75 121.28
05 |05 | 054 132.23 119.01 053 138.39 124.55
06 | 053 135.41 121.87 053 140.54 126.49
07 | 053 137.99 124.19 053 141.06 126.95
02 | 0.54 122.37 110.14 0.54 127.66 114.89
06 03 | 0.54 128.23 115.40 053 135.96 122.36
04 | 054 133.97 12058 052 143.70 129.33
06 05 | 053 139.51 12556 052 150.46 135.41
06 | 053 144.71 130.24 052 155.80 140.22
07 | 052 149.43 134.49 051 159.33 143.40
02 | 054 124.77 112.29 053 13151 118.36
07 |03 |o054 132.23 119.01 052 142.68 128.41
04 | 053 139.90 125.91 052 154.00 138.60
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05 | 053 | 147.68 132,91 051 164.99 148.49
06 | 052 | 15545 139.90 0.50 175.06 157.55
07 | 052 | 163.05 146.74 0.50 183.50 165.15
02| 057 | 124.78 106.94 0.56 128.96 110.52
03] 056 | 129.46 110.96 0.56 135.17 115.85
o5 | 04]056 | 13382 114.70 0.55 140.38 120.31
05| 056 | 137.75 118.06 055 144.27 123.65
06 | 056 | 14115 120.98 055 146.59 125.64
07| 056 | 14392 123.35 055 147.16 126.13
02 ] 057 | 127.23 100.05 0.56 132.80 113.82
03] 056 | 13348 114.40 0.55 141.65 121.40
04 | 056 | 139.62 119.66 055 149.91 128.48
07 | %% e oss 145,55 124.74 0.54 157.14 134.68
06| 055 | 151.12 129.52 0.54 162.88 139.60
07| 055 | 156.18 133.86 0.54 166.70 142,87
02| 056 | 129.79 111.24 0.56 136.90 117.33
03| 056 | 137.75 118.06 055 148.81 127.54
04 | 055 | 14596 125.10 0.54 160.90 137.91
% o5 [0s5 | 15420 132.25 053 172.69 148.01
06 | 054 | 162.65 139.40 053 183,51 157.28
07 | 054 | 170.82 146.41 0.52 192.62 165.00

Note: ‘* indicates £, does not exist.

Table 5.2: Optimum values £/, and percent relative efficiencies of the estimator P

a=a =0750,=030,a5=0.25 |, _100,0; =0.75,@, =050,z = 0.25
pyx pyz ¢
Ho E E; Ho E E,
02 | 051 117.01 109.17 0.74 119.78 111.75
0.3 | 050 122.10 113.92 * - -
0.4 | 050 126.28 117.82 * - -
0% 05 | 0.49 129.31 120.64 0.24 130.30 121.57
0.6 | 0.49 130.96 122.19 0.58 130.26 12153
0.7 | 0.49 131.13 122.34 0.90 126.51 118.04
0.2 | 051 120.23 112.18 1.00 125.00 116.63
0.3 | 050 127.49 118.95 * - -
05 06 0.4 | 0.49 134.17 125.19 0.07 136.93 127.76
05 | 0.48 139.90 130.53 0.26 143.26 133.66
0.6 | 048 144.31 134.64 0.38 146.58 136.76
0.7 | 047 147.05 137.20 0.49 146.55 136.73
0.2 | 050 123.65 115.37 * - -
0.3 | 0.49 133.44 12450 * . .
0.7 0.4 | 048 143.23 133.63 0.15 148.61 138.66
0.5 | 0.47 152.61 142.39 0.24 159.47 148.78
0.6 | 0.46 161.05 150.27 0.31 167.83 156.59

695




07 | 045 167.96 156.71 0.38 172.56 161.00
02 | 0.54 122.92 110.63 0.60 125.45 112.90
03 | 053 128.38 115,54 0.62 13153 118.37
04 | 052 132.87 11958 0.62 135.74 122.16
05 05 | 0.52 136.11 122,50 058 13761 123.85
06 | 0.52 137.88 124.09 0.49 137.22 12350
07 | 0.52 138.05 124.24 0.34 135.19 121.67
02 | 053 126.38 113.74 0.63 130.05 117.05
03 | 052 134.18 120.76 0.70 139.61 125.65
04 | 052 141.36 127.22 0.79 147.95 133.16
06 1% s Toat 14752 132.76 091 153.95 138.56
06 | 050 152.25 137.02 1.00 156.25 140.63
0.7 | 050 155.19 139.67 0.07 154.89 139.40
02 | 053 130.05 117.05 0.67 135.17 121.65
03 | 052 14057 12651 0.85 149.73 134.76
04 | 051 151.11 136.00 * - -
o7 05 | 050 161.22 145.10 * - -
06 | 0.49 170.32 153.29 0.02 174.67 157.20
07 | 0.48 177.76 159.99 0.30 182.06 163.86
02 | 057 130.32 111.70 0.60 132.92 113.92
03 | 056 136.27 116.79 061 139.46 119.52
o5 | 04086 141.15 120.98 0.60 144.04 123.45
05 | 055 144.68 124.00 058 146.21 125.32
06 | 055 146.59 125.64 054 145.87 125.02
07 | 055 146.75 125.77 0.49 143.30 122.82
02 | 056 134.09 114.92 061 137.81 118.11
03 | 056 142,59 122.21 0.63 147.86 126.72
04 | 055 150.42 128.92 0.64 156.40 134.05
07 |06 T e 157.14 134.68 0.63 162.45 139.23
06 | 0.54 162.30 139.11 059 165.31 141.68
07 | 053 165.50 141.85 052 164.95 141.38
02 | 056 138.09 118.36 0.63 143.15 122.69
03 | 055 149,57 128.19 0.66 157.66 135.13
04 | 054 161.09 138.07 071 172.00 147.41
o7 05 | 053 172.16 147.56 0.76 184.70 158.31
06 | 0.52 182.14 156.10 0.80 193.81 166.11
07 | 051 190.29 163.09 0.76 197.41 169.19

Note: “*’ indicates 4, does not exist.
It is observed from Tables 5.1 and 5.2 that the values of percent relative efficiencies E;and E, are larger than
100 for the parametric values considered here. Thus the proposed estimator P * is more efficient than the

usual unbiased estimator Y, andY . It is interesting to observe from Table 5.2 that the minimum value Hy 1S
0.02, which shows that the fraction of fresh sample to be replaced at the current occasion is as low as about 2
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percent of the total sample size, which highly price is saving. Also for this value of #, (i.e. 1,=0.02) the

proposed estimator ¢ P * is more efficient than ¥, andY with substantial gain in efficiency.
On the whole we conclude that there is enough scope of selecting the values of scalars
(a, a,a, a;,a, b ) with different choices of correlations pycand p,, ; for obtaining better estimators

than y,and \? with considerable gain in efficiency.

6. CONCLUSIONS

In the present paper we have made the use of linear and power transformations simultaneously over the
auxiliary variable .We have suggested a class of estimators ¢ P * for estimating the population mean on
current (second) occasion in two-occasion successive sampling. We have studied the properties of suggested
the class of estimator * P * under the large sample approximation. Optimum replacement policy relevant to
the suggested estimation procedures has been discussed. The proposed estimator is compared with usual
estimators numerically.

It is evident from Tables 5.1 and 5.2 the use of information on a transformed auxiliary variable is highly
rewarding in improving the precision of the suggested estimator. The principal interesting thing in this study
is that the proposed linear and power transformations are quite effective in reducing the cost of the survey [for

instance see Table 5.2, the values of £ are like 0.02, 0.07, 0.15, 0.24 etc]. Thus the suggested estimators may

be recommended to the survey statisticians / practitioners for their practical applications.
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