8]

19" International Symposium on Hearing
19-24 June 2022, Lyon, France

Auditory model-based selection of the
most informative experimental
conditions

Anna Dietzel.2, Anna-Lena Reinsch!.2, Jorg Enckel.2, Mathias Dietz!.2

1 Department fiir Medizinische Physik und Akustik, Universitdt Oldenburg
2 Cluster of Excellence "Hearing4all”, Oldenburg
* Contact author: anna.dietze@uni-oldenburg.de

Abstract

Identifying the causes of a person’s hearing impairment is a challenging task. Even though a broad
range of measurement techniques exist, links between the results of one or several listening tests
and possible pathologies need to be found. Drawing conclusions from measurement results that
were influenced by pathologies in this highly non-linear auditory system remains very difficult.
In addition, measurement time is restricted, especially in clinical settings. A central but difficult
goal is to maximize the diagnostic information that is collectable within a certain time frame.
Computer models simulating auditory processing and possible impairments could be employed
to assist in such diagnostics. By using the model-based experiment-steering approach introduced
in Hermann and Dietz (2021, Acta Acustica, 5:51), the current study demonstrates its applicability
using five young, normal-hearing subjects. In the model-based selection procedure, those stimuli
providing the most information about the model parameters were identified in parallel to the
measurement, and subsequently presented to the participant. The same binaural tone-in-noise
detection task was conducted with two measurement procedures: A standard adaptive staircase
procedure and the model-based selection procedure. For this proof of concept, an existing
auditory processing model was adopted. Its four free parameters enabled the characterization of
the subjects’ 250 Hz channel. The model parameters best predicting the subject’s sensitivity to a
diotic and various dichotic conditions, were obtained using a maximum-likelihood approach. On
average, the same accuracy of model parameter estimation was reached 2.5 times faster with the
model-steered procedure compared to the standard adaptive procedure. Difficulties regarding
the choice of a reliable model and issues to be considered when deciding on reasonable
discretization steps of the model parameters are discussed. Although the physiological causes of
an individual’s results cannot be diagnosed with this procedure, a characterization in terms of
functional parameters is possible.

Introduction

The aim of audiological diagnostics is to identify the causes of a person’s hearing impairment. A
broad range of measurement techniques covering all kinds of deficits in the auditory system is
available (for a review see Hoth & Baljic, 2017). To achieve a good diagnosis, comprehensive test
batteries including subjective and objective tests are usually carried out as a first step. While
some measurements are specific to test for a particular pathology, often a combination of tests is
required to differentiate between different causes. This linking of data to the underlying cause or
pathology is the second step of the diagnostic process, and poses challenges for audiologists, ENT
doctors, and researchers alike, for two main reasons. First, a variety of pathologies and their
combinations can cause a similar outcome. Therefore, the realization that more data on a
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particular experiment or stimulus would have been required often comes subsequent to the data
collection. Obtaining this data is sometimes no longer practically possible and often inconvenient.
Even if data would exist in abundance, a second challenge remains: The auditory system consists
of several highly non-linear stages intertwined with multiple efferent regulations. An experienced
professional might be able to interpret the data and relate it to a unique pathology, but such
diagnosis remains qualitative. A quantitative description of pathology-descriptive parameters
with confidence ranges could provide information such as: The estimated loss of type I auditory
fiber synapses is 25%, and ranges between 20% and 30%.

Computer models have been suggested as possibly assistants in relating data to potential
pathologies. Panda et al. (2014) used a physiological model of the cochlea (Meddis, 2006) to
simulate data from a psychoacoustic test battery from hearing-impaired listeners. By varying one
model parameter at a time, they created individualized computer models that enabled
suggestions on underlying pathologies of their patients, although a combination of parameters
would have yielded even better results in some cases.

Comprehensive physiological models of the auditory system require a large number of
parameters to be confined (e.g. Verhulst et al., 2018). In addition, physiological redundancies and
co-dependencies in the system are useful to stabilize auditory perception against small
disturbances or minor impairments, but they also lead to ambiguities in confining model
parameters (e.g. Klug et al,, 2020). Functional models, on the other hand, require fewer, though
more abstract, parameters, such as filter bandwidth, internal noise, or attenuation. For instance,
Plomp (1978) presented a quantitative model predicting speech understanding in noise that had
only the two parameters attenuation and distortion. Confining these parameters does not lead to
a description in terms of physiological characteristics. Nevertheless, such functional models can
help with profiling hearing impaired persons and can predict the benefit to be expected from a
hearing aid or hearing prosthesis.

The amount of experimental data required to confine the model parameters depends critically on
two factors: Measurement accuracy and - most of all - the number of free model parameters. A
single parameter can often be estimated from data obtained within a few minutes (e.g. Brand &
Kollmeier, 2002). Appraisal of three parameters, however, can already be expected to require
several hours of data collection, at least in psychophysics (e.g., Herrmann & Dietz, 2021). In many
cases, it may be prudent to adjust the measurement, based on interim results. The approach of
Sanchez Lopez et al. (2018) for instance, can identify the most informative predictors in an
auditory test battery, based on the preceding results. Instead of conducting all tests on each
individual, only a subset of tests is sufficient for the characterization of listeners. These tests
represent the nodes of a decision tree that lead to different diagnoses. Another way to confine the
assessment of model parameters in a theoretically most time-efficient way is a maximum
likelihood-based procedure running in parallel to the measurement, and selecting those stimuli
or tests that cause the best refinement in model parameters (Herrmann & Dietz, 2021). So far,
this approach has only been tested with a simulated patient. Theoretically, it can be used with any
model and experiment. Nevertheless, the demands on the chosen model are high. It must provide
good fits to all data without too many parameters. Otherwise, systematic deviations between
model and data under any one experimental condition may cause the procedure to
overemphasize this condition or to cause some other form of undesired behavior. Also, co-
dependencies of the model parameters should be at a minimum.

The goal of the present study was to test the feasibility of model-based experiment steering for
the prediction of model parameters characterizing individual subjects. As the authors of this
study are working particularly on binaural aspects, a simple model of binaural hearing was
exemplarily used for the present proof of concept. The chosen model can be fit to accurately
simulate individual tone-in-noise detection sensitivity (Encke & Dietz, 2021).
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Methods

Model-based selection framework

The method presented in Herrmann and Dietz (2021) can be separated into two parts: An analysis
module with likelihood-based parameter estimation, and a stimulus-selection module running in
parallel to the measurement.

The analysis module can also be used on data that was not taken using model-based steering. It
only requires the model to operate as an artificial observer, meaning that it receives the same
stimuli as real subjects, and provides an output that can be analyzed in the same way as the
experimental data. All data is compared to pre-calculated model predictions, based on a selected
set of parameter combinations. The dimensionality of this table equals the sum of stimulus- and
model parameters. The comparison of data and table yields a multi-dimensional likelihood table.
The compound likelihood of each model parameter is calculated by summing the likelihood
values over all other parameters.

With the stimulus-selection module, the chosen stimulus is (based on the current model
parameter estimations) expected to provide the most information for refining the model
parameter estimates. The procedure chooses the stimulus condition that cause the largest
reduction in the confidence range of likelihood over the model parameters. If one parameter is
diagnostically more interesting than others, the measurement can be steered towards minimizing
the confidence range of this particular parameter, or to give it a higher weighting. Here, however,
the unweighted sum of all confidence intervals in units of discretization steps is minimized. To
quantify the width of the confidence intervals, a function of the form

2

il (1)
20

was fitted to the summed log-likelihood, corresponding to a Gaussian fit of the likelihood. The

parameter o controls the width of the function. It is used as a marker of confidence in the model

parameter assessment. It will be referred to here as the confidence range. More details can be

found in Herrmann and Dietz (2021).

Auditory model

As noted in the Introduction, an accurate model is a crucial prerequisite for using the model-based
selection framework. For this proof of concept, we opted for the binaural processing model of
Encke and Dietz (2021). It can predict correct rates of tone-in-noise detection for a variety of
dichotic and diotic stimuli. It consists of a monaural and a binaural branch. The monaural branch
is sensitive to differences in energy between the reference and the target signal. The sensitivity
is inversely proportional to model parameter omon. The binaural branch is based on the difference
between the Fisher’s z-transformed complex correlation coefficients of a reference signal and a
target signal As this transformation would result in infinite sensitivity to divergence of a fully
coherent signal, which is not observed in the auditory system, the parameter p (0<p<1) was
introduced before z-transformation, thus limiting maximum sensitivity. As in the monaural
branch, model parameter owin is inversely proportional to binaural sensitivity, i.e. to the Euclidian
distance between the z-transformed complex correlation coefficient of target and reference.

Predicted detection thresholds for the N:So and the NoSx condition are the same with this model.
This is not the case in behavioral data (e.g. Hirsh, 1948). To account for this difference, we
introduced a fourth parameter Ap into the model. It represents the linear increase in p when
changing from anti-phasic to in-phase noise.

Model predictions are shown in Figure 1. In each panel, one model parameter was varied, while
the other three parameters were set to a fixed value in the center of their respective range. As
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described above, each model parameter introduces changes to specific stimulus conditions,
whereas others are not affected.
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Figure 1 — Model predictions (signal-to-noise ratio corresponding to 79.4% correct) for
different model instances. In each panel, one model parameter was varied (color coding),
while the other three parameters were set to a fixed value in the center of their respective
range.

Measurements

Five young (age: 20-26 years) participants (three female, two male) conducted the experiments
with informed consent (approved by the ethics committee of the University of Oldenburg). The
listeners received monetary compensation for the time spent on the experiments. Self-reported
normal hearing was verified by pure tone audiometry. None of the listeners had hearing
thresholds exceeding 20 dB HL and there was no more than 10 dB difference in hearing threshold
between the two ears at any octave frequency between 125 Hz -and 10 kHz. A training phase to
familiarize participants with the task preceded the experiments.

Tasks and stimuli

The study consisted of two parts. All subjects participated in the same tone-in-noise detection
task with (1) an adaptive staircase procedure and (2) the model-based steering procedure. A four
interval, two alternatives forced-choice experiment was conducted. Three intervals contained
only the noise with a bandwidth of 100 Hz (spectrally rectangular band-pass white noise),
centered around 250 Hz. The second or third interval additionally contained a pure tone. This
pure tone of 250 Hz was either inter-aurally in phase, or differed in phase by 180 degrees. The
noise’s interaural correlation p ranged from anti-correlated to fully correlated (-1, -0.75, -0.5, 0,
0.5, 0.75, 1). The stimuli were chosen to be comparable to the those used in Robinson and Jeffress
(1963). The duration of the intervals was 0.6 s, each with a pause of 0.2 s between intervals. A
cosine rise-and-fall window of 20 ms was applied to the noise and pure tone separately. The tone
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started when the noise was at full amplitude. The sound-pressure level of the noise was fixed at
67 dB, whereas the tone level was varied adaptively during both experiments, as described below.

The listeners sat in a sound-attenuating booth on a comfortable chair in front of a computer
screen and a computer keyboard. The signals were transmitted to an external audio interface
(ADI-2 DAC FS, RME, Heimhausen, Germany) and presented using circumaural headphones
(HD650, Sennheiser electronic GmbH, Wedemark, Germany). To visually support the temporal
sequence, four rectangles lit up on the screen in succession during the four intervals. The
participants’ task was to decide whether the second or the third interval differed from the first
and last “cueing” intervals. Responses could only be given after the fourth interval, and were
then entered by pressing the number ‘2’ or ‘3’ on the keyboard. The button press was followed
by visual feedback on the screen indicating whether the choice was correct. After a delay of 250
ms, the next trial was presented.

Adaptive staircase procedure

The first portion of the experiments was a standard adaptive staircase procedure varying the tone
level following a 1-up 3-down rule converging to 79.4% correct responses (Levitt, 1971). The
initial step size of 6 dB was halved every two reversals, until a step size of 1.5 dB was reached and
lasted for a total of 8 reversals. Runs under the 14 stimulus conditions (seven noise correlations,
each with two tone phases) were presented in random order. Each condition was presented five
times to the participants. Whenever possible, a full set of 14 conditions was measured on the same
day.

After completion of data collection, the analysis module with likelihood-based parameter
estimation was applied to assess the most likely model parameters underlying these results. For
visualization of the measured data, and for a comparison with the model predictions of the
analysis module, detection thresholds corresponding to 79.4% correct responses were computed
from the average of the last eight reversals of the adaptive tracks.

Model-steered procedure

In the second portion of the experiment, the measurement procedure was steered by the model-
based selection approach introduced above. The range and discretization steps of the model
parameters needed to be confined prior to the measurement phase. The model was run for all
combinations of possible model parameters (model instances), and all combinations of possible
stimulus parameters (stimulus condition). To reduce the amount of data, a logistic function was
fitted to the model outcome (signal-to-noise ratio) over level for each combination of model
instance and stimulus condition. These thresholds and slopes were saved in what is referred to
as the model table. During the model-steering procedure, only the model outcome stored in this
model table was available for the likelihood-fitting.

Depending on how the parameters influenced the model outcome, the relation between the
possible values was chosen differently. For omen and ouin, factorial steps of 3/2 (one third octave)
ranging from 0.15 to 0.96 were chosen. Parameters p and Ap were chosen with steps of 2/3.
Weighted by the noise correlation, they were added and are used as the exponent in

(1 _ 2(ﬁ+Aﬁ))p (2)

as multiplier <1 to reduce the nominal signal correlation p prior to Fisher’s z-transformation.
Ranges from -26/3 to - 14/3 for p and 2/3 to 14/3 for Ap were chosen. To ensure that the
expected model parameters of each subject were covered by the range of each model parameter
provided, several piloting trials were necessary. The effects of changes in each of the model
parameters are shown in Figure 1.

With human subjects, unlike artificial subjects switching between perceptually differing stimulus
conditions between single trials leads to less reliable responses and poorer immediate
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performance (e.g. Taylor & Rohrer, 2010). To circumvent this, two additions were made to the
original procedure. First, the measurement phase was split into several measurement blocks,
each with a fixed number of repetitions of the same stimulus instance. For this study, 28 blocks
of 30 repetitions of the same condition (but varying level corresponding to the point of maximal
expected information) were completed by the subjects. After each block, the framework
computed the next stimulus to be presented. Second, the first two repetitions of each block were
carried out merely to permit familiarity with the new stimulus condition, but were neither saved
nor used for the steering procedure. With this, a total of 840 trials were presented, of which 784
(28 blocks x 28 repetitions) were stored. The first four blocks were measured under pre-defined
conditions before the likelihood-based measurement steering algorithm started. This was to
initialize the model with a good database for the selection of the subsequent stimulus conditions.
The conditions chosen for these initial blocks were: one purely monaural condition (NoSo), the
two extreme binaural conditions (NoSr and NxSo), plus one intermediate condition (Np- 0.755x).

The choice of suitable initialization blocks also required knowledge acquired during the piloting
of the study. With the model-based selection procedure, the accuracy of the model parameter
estimation can be tracked and used to terminate the experiments. For the present ‘proof-of-
concept type’ study, no termination criterion was set. With such a termination criterion, the
measurement ends when the desired confidence range is reached in all of the model parameters.
Weighting some parameters more strongly than others for the stimulus selection is also possible.
To allow for comparisons between the two procedures, the 784 trials in the model-steered
procedure were oriented on the number of trials in one full set of conditions in the adaptive
procedure (on average ~750 trials, depending on measurement set and subject).
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Figure 2 — Tone-in-noise detection thresholds of the five subjects. The orange triangles
represent thresholds for stimuli with anti-phasic tones, the blue circles for tones that were
inter-aurally in phase. The standard deviations across the five trials of each condition are
represented as error bars. The solid lines represent the model predictions for the fit with the
model parameters presented in Table I.

Results

Adaptive staircase procedure

The tone-in-noise detection thresholds are shown in Figure 2. Using the likelihood-based
analysis, model parameters corresponding best to the subjects’ data were obtained. The resulting
model predictions are displayed as solid lines in the same figure, and show the estimated signal-
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to-noise ratio for 79.4% correct. Model parameters obtained by the analysis module can be found
in Table I.

As expected, the thresholds for the conditions without binaural cues (NoSo, the right-most blue
data point and NSy, the left-most orange data point) are the highest. Thresholds improved with
increasing average IPD difference between masker and target, until the lowest thresholds were
obtained for N.So (leftmost blue data point) and NoSr (rightmost orange data point). Within the
latter condition, all subjects reached the lowest of their thresholds.

The model fit captures the behavior of all subjects, with only small deviations for single stimulus
conditions. The coefficient of determination R? ranged between 79.9 % for S4 and 96.5 % for S2
and was averaged 89.8 %. Lower values of omon correspond to lower thresholds in the monaural
conditions. Lower values of ovin correspond to lower thresholds in those conditions with binaural
cues. As described in the Methods section, mainly the thresholds for N-So and NSy are affected
by parameter p, whereas Ap enables fitting the difference between NSy and NoSx.

Table I — Model parameters estimated by the analysis module for data of the adaptive
staircase procedure and the model-steered procedure. The deviation between the two
procedures is color-coded with light grey for one bin, middle grey: two bins, and dark grey
corresponding to three bins.

subject procedure model parameter

Omon Obin ,6 Aﬁ

s1 adaptive 0.38 0.24 -6.00 2.00
model-steered 0.38 0.30 -6.00 2.00

2 adaptive 0.48 -6.00 2.67
model-steered 0.48 -7.33 2.67

3 adaptive 0.48 0.60 -6.67 2.67
model-steered 0.48 0.48 -6.67 2.67

s4 adaptive 0.38 0.48 -6.67 2.67
model-steered 0.60 0.48 -6.67 1.33

S5 adaptive 0.48 0.30 -6.00 2.00
model-steered 0.48 0.48 -6.67 2.00

Model-steered procedure

The model table was pre-calculated overnight on a regular i5 laptop. The table contains the
thresholds and slopes of the logistic functions representing the model output for the combination
of the 2x7 stimulus conditions and the 9x9x7x7 model instances, leading to a total of 55566 model
calls for each stimulus level.

When using the stimulus-selection module, model parameters were estimated for every trial. The
development of the normalized likelihood of the four parameters over trials and the stimuli
chosen by the procedure are shown in examples for subject S4 in Figure 3. In each of the upper
four panels, the likelihood values are summed over the other three parameters and
independently normalized by the mean of the summed likelihood for each model parameter and
each trial. Over the course of the trials, the likelihood distribution reduced in width around the
maximal value.

The first stimulus condition in the experiment (NoSx) did not deliver information on the monaural
threshold. For this reason, the estimation of omon Only starts refining with the second block (NoSo).
Similarly, parameter Ap (the difference between NSy and NxSo) can only be estimated starting
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with the first trials of NS in block number three. To ensure a good start to the measurement
procedure without too much emphasis on one single stimulus condition, the first four blocks were
set as initialization blocks. Starting with trial number 113 (at the dashed black line), the stimulus-
selection module selected different stimulus instances, with an emphasis on N¢Sr and Ny-0.755x,
and, to a lesser degree, on N:Sp and N-Sr. Noise correlation values between those were almost not
chosen at all. Comparable patterns were also found for the other subjects. The final estimates of
the model parameters with the data acquired using the model-steered procedure are shown in
Table 1. The respective model parameter estimates for the data of the two measurement
procedures are very similar. One bin deviation (light grey) is not significant, as it can result from
discretization following an arbitrarily tiny difference in the data. Also, confidence intervals are of
the order of one bin (0.69 bins, see next subsection). Darker grey shadings indicate stronger
differences between the estimates of the two procedures. In those cells without shading, the
parameter estimations did not differ. Only for subject S2 did the parameter estimations differ by
more than two steps on the grid (bins) of possible values. Across subjects, estimates differed by
up to three bins for owin, but only by up to two bins for the other three parameters. Differences
across subjects are only marginally larger than within-subject differences obtained with the two
methods.
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Figure 3 — Mean-normalized likelihood (sum over the other three parameters) of the four
parameters across trials in the upper four panels, and the stimuli chosen by the procedure
across trials in the bottom panel for subject S4. The dashed black line indicates the start of the
model steering with trial number 113.
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The confidence ranges can be estimated from Figure 3. Even though the confidence ranges did
not become smaller with every single trial, overall, the accuracy of the estimations increased. For
instance, the mean confidence range over the four parameters for subject S4 decreased from 4.28
bins at the start of the model-steering to 0.72 bins after the last trial. Comparable decreases were
also found for the other subjects. After the final trial, the procedure reached a mean accuracy
between 0.64 bins and 0.72 bins for the different subjects (mean: 0.69 bins).

Comparison of the two procedures

Figure 4 shows the mean confidence ranges across the four model parameters over trials for the
two data sets, the adaptive and the model-steered procedures. With the latter, only 874 trials
were recorded. The confidence ranges are only shown after each full set of 14 conditions for the
adaptive procedure. These sets differed slightly in the number of trials for the five subjects. In
general, a decrease of confidence ranges over trials was observed, with a steeper decrease in the
model-steered data. For instance, for subject S1, the mean confidence range was 1.63 bins after
the first set of the adaptive procedure (693 trials). The value of 1.63 bins or smaller was initially
reached after 302 trials with the model-steered procedure. The ratio of 2.29 indicates that the
same confidence range was achieved more than twice as fast with the model-based steering
method. To reach the same confidence range using the adaptive procedure, 1.9 to 3.7 times more
trials were necessary than with the model-steering procedure.

6 -
"y \ /\N"n, \ O S1 adaptive — 83 model-steered
c5F- W '\I\. ) S1 model-steered S4 adpative
=) Y\ 4 S2 adaptive S4 model-steered
O 4+ \ — 82 model-steered S5 adpative
;0:7 S3 adpative S5 model-steered
e 3r ")
(] N
8] N
G2t g
g S °
S S =
o) =S o
o = &
8 ® ®
0 1 1 1 1 1
113 (start of steering) 750 1500 2250 3000

trial no.

Figure 4 — Mean of confidence ranges (in bins) averaged across the four model parameters
over trials for subjects S1 to S5. The estimates for the model-steered procedure are depicted
with lines, for the adaptive procedure with symbols. Color and marker shape vary for the
individual subjects.

Discussion

This study sought to affirm the feasibility of model-based experiment steering after a preceding
study by Herrmann and Dietz (2021) had concluded that there would be a theoretical advantage
of the proposed procedure over sequential measure-and-fit approaches. In the current study, the
model-steered procedure was tested on real, but non-impaired subjects, instead of an artificial
patient simulated on a computer. This attempt was successful for two reasons. First, the
estimated model parameters were sufficiently close to those obtained from the results of the
standard adaptive procedure (on average deviating by 0.70 bins, corresponding to an average
threshold differences of 0.98 dB). Second, the same accuracy in model parameter estimates was
obtained 1.7 to 3.7 times faster than with the standard method.

The proposed measurement procedure can assist in linking data to the underlying pathology, or
to a parametric description of the individuals' hearing abilities. The procedure will steer towards
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those measurements that can disentangle different causes of the observed behavior, even in the
complex auditory processing chain. As a prerequisite for this becoming reality in clinical settings,
models with high diagnostic resolution need to be developed. In the current study, an existing
simple model of binaural processing was used, but slightly adapted as a first attempt to
characterize a subject in the most time-efficient way. Even though the diagnostic value of the
model parameters is not clear, it served as proof of concept.

The duration of measurements is limited in clinical settings. Keeping measurement times as short
as possible is, however, also of importance for another reason: With longer measurement times,
unaccounted factors influence the data. Fatigue, attention, motivation or effects specific to single
measurement days may potentially confound the parameter evaluations. Using the model-
steering procedure, confidence ranges of less than 0.69 bins, corresponding on average to
threshold uncertainties of approximately 1 dB, were reached for the four model parameters after
less than 1.5 hours.

Choosing meaningful ranges and discretization for the model parameters remains a critical point.
Extensive piloting with adjustments to the ranges and step sizes of the four parameters preceded
data collection. Each step must influence the model outcome for at least one stimulus instance. In
the best case, each step leads to similarly large changes in model predictions. In Figure 1, it can
be seen that changing omon by one step always leads to changes in the estimated signal-to-noise
ratio of about 1 dB. Similar changes are observed for opn but in other stimulus conditions.
Increasing or decreasing parameters p and Ap by one step always leads to a change of about 2 dB,
but influences fewer stimulus conditions. When comparing the selected stimulus conditions (see
the bottom panel in Figure 3) to the changes in the model prediction in Figure 1, it becomes
obvious which stimulus conditions provide the most information about each of the model
parameters. NxSr is chosen, as it only depends on omon. The frequently chosen condition Np- 0.755x,
for example, mainly informs about owin. However, the more complex the models are, the more
difficult it is to comprehend these relationships.

Matching the effect size of parameter steps is also important in the light of co-dependencies
between model parameters. Preferably, changes by one discrete step in one parameter should
not force another co-dependent parameter to change by more than one step, otherwise the
undesirable effect may occur producing several maxima in the likelihood over the values of the
co-dependent model parameter. For example, if parameter X changes by one step and causes a
counter-reaction of parameter Y by two steps, the likelihood function of parameter Y may not
follow a Gaussian bell shape. High likelihood values that each correspond to a particular value of
X might alternate with low likelihood values that have no direct correspondence to a particular
value of X. Arguably, fitting a Gaussian to Y or even trying to reduce its confidence interval is
problematic in such a case. It has also proven to be important that estimated parameters do not
reach the boundary of the parameter range of the previously stored model table. In this case, the
fit with an inverted parabola cannot represent the log-likelihood values over the parameters very
well. To fit the data best, the apex of the parabola would possibly be outside the boundaries. The
steepness (given by parameter a) would be very small, resulting in confidence ranges spanning
the entire possible range of parameters. Such corrupted confidence ranges lead to the choice of
non-optimal next stimulus conditions. An additional advantage of matching the effect size of
parameter steps is that it allows the steering procedure to minimize the unweighted sum of
confidence ranges, as measured in numbers of steps or bins. The procedure is then expected to
provide similar accuracy for all parameters. With ill-matched parameters, the model steering
might be biased towards minimizing the confidence ranges of some model parameters more than
others.

The computational demand of the procedure can be a limiting factor. Model tables cannot be
chosen with arbitrarily high resolution, as between the measurement blocks, the model-steering
module needs to load the whole table and to choose the next stimulus by computing the estimated
confidence ranges for each stimulus instance. With too-extensive model tables, the computational
demands become too high. Two improvements helped to reduce this. First, substituting the
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numerical model with an analytical model reduced the computation time of each model call.
Second, while the model used by Herrmann and Dietz (2021) provided the expected target
interval number, just like for a real subject, the output of the new model is directly the d’ value
that can be converted to the correct rate. While this is not the response of a human subject, it is
more helpful because it does not require hundreds of repetitions for the same condition just to
obtain a reliable correct rate estimate.

One of the main concerns remains the choice of an accurate model with diagnostic value. The
approach with an auditory processing model requires the faithful simulation of the whole chain
from stimulus presentation, through internal processing to the subject’s response, or to other
measurement data. We were able to perform a proof-of-concept, but could only characterize
those aspects that are relevant for tone-in-noise detection sensitivity at one frequency and only
for normal-hearing subjects. Some of the four free parameters are expected to characterize the
consequences of hearing impairment (e.g. Bernstein & Trahiotis, 2018). Other model parameters
such as filter bandwidth are fixed, however, and this cannot serve as a realistic model for patients
with outer-hair-cell impairments. Of course, filter bandwidth can be an additional parameter to
fit, as already demonstrated (Herrmann & Dietz, 2021), and most other specific extensions are
also expected to be compatible with the approach. The problem is the number of parameters that
quickly arise (e.g. Verhulst et al., 2018), especially as many of the parameters may differ from
frequency to frequency. Even some frequency-independent parameters, e.g., the endocochlear
potential, will influence performance differently across frequency, making it non-trivial to fit one
parameter based on prerecorded individual data (Panda et al., 2014). Abstract models that even
avoid a simulation of auditory processing may be more realistic candidates for model-steered
profiling if, instead of a detailed diagnosis, the focus of interest is rather on the consequences.
Ideally, each model parameter should directly relate to a practical consequence, e.g., it can be a
hearing-aid fitting parameter (similar to Plomp, 1978).

To summarize, the distant goal of diagnosing the causes of a person’s hearing impairment in a
more objective and more time-efficient way has not yet been reached. First steps in this direction
were, however, made with the model-based approach presented in this study. Characterization
of individuals in terms of abstract parameters that influence hearing-aid fitting or the choice of
hearing implants is possible. Scientifically, both the likelihood-based fitting and the model-based
steering foster a deeper understanding of the inner mechanics of the models used. The procedure
also offers insights into its interaction with fitting tools, measurement procedures, and subject
peculiarities that are not captured by the model. Specifically, as argued by Herrmann and Dietz
(2021), tracing why the model chooses certain stimuli and in which order, is very informative,
even for an improvement of conventional manual measurement selection. It also makes it
possible to fully understand the impact of each model parameter in general, and of each
parameter’s discretization steps. The procedure thus provides new perspectives for the design
of diagnostic models and experiments.
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