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Abstract 8 

Identifying	the	causes	of	a	person’s	hearing	impairment	is	a	challenging	task.	Even	though	a	broad	9 

range	of	measurement	techniques	exist,	links	between	the	results	of	one	or	several	listening	tests	10 

and	possible	pathologies	need	to	be	found.	Drawing	conclusions	from	measurement	results	that	11 

were	influenced	by	pathologies	in	this	highly	non-linear	auditory	system	remains	very	difficult.	12 

In	addition,	measurement	time	is	restricted,	especially	in	clinical	settings.	A	central	but	difficult	13 

goal	 is	 to	maximize	 the	diagnostic	 information	 that	 is	 collectable	within	a	 certain	 time	 frame.	14 

Computer	models	simulating	auditory	processing	and	possible	impairments	could	be	employed	15 

to	assist	in	such	diagnostics.	By	using	the	model-based	experiment-steering	approach	introduced	16 

in	Hermann	and	Dietz	(2021,	Acta	Acustica,	5:51),	the	current	study	demonstrates	its	applicability	17 

using	five	young,	normal-hearing	subjects.	In	the	model-based	selection	procedure,	those	stimuli	18 

providing	the	most	 information	about	 the	model	parameters	were	 identified	 in	parallel	 to	 the	19 

measurement,	and	subsequently	presented	to	the	participant.	The	same	binaural	tone-in-noise	20 

detection	task	was	conducted	with	two	measurement	procedures:	A	standard	adaptive	staircase	21 

procedure	 and	 the	 model-based	 selection	 procedure.	 For	 this	 proof	 of	 concept,	 an	 existing	22 

auditory	processing	model	was	adopted.	Its	four	free	parameters	enabled	the	characterization	of	23 

the	subjects’	250	Hz	channel.	The	model	parameters	best	predicting	the	subject’s	sensitivity	to	a	24 

diotic	and	various	dichotic	conditions,	were	obtained	using	a	maximum-likelihood	approach.	On	25 

average,	the	same	accuracy	of	model	parameter	estimation	was	reached	2.5	times	faster	with	the	26 

model-steered	procedure	compared	to	the	standard	adaptive	procedure.	Difficulties	regarding	27 

the	 choice	 of	 a	 reliable	 model	 and	 issues	 to	 be	 considered	 when	 deciding	 on	 reasonable	28 

discretization	steps	of	the	model	parameters	are	discussed.	Although	the	physiological	causes	of	29 

an	individual’s	results	cannot	be	diagnosed	with	this	procedure,	a	characterization	in	terms	of	30 

functional	parameters	is	possible.		31 

Introduction 32 

The	aim	of	audiological	diagnostics	is	to	identify	the	causes	of	a	person’s	hearing	impairment.	A	33 

broad	range	of	measurement	techniques	covering	all	kinds	of	deficits	in	the	auditory	system	is	34 

available	(for	a	review	see	Hoth	&	Baljic,	2017).	To	achieve	a	good	diagnosis,	comprehensive	test	35 

batteries	 including	 subjective	and	objective	 tests	are	usually	 carried	out	as	a	 first	 step.	While	36 

some	measurements	are	specific	to	test	for	a	particular	pathology,	often	a	combination	of	tests	is	37 

required	to	differentiate	between	different	causes.	This	linking	of	data	to	the	underlying	cause	or	38 

pathology	is	the	second	step	of	the	diagnostic	process,	and	poses	challenges	for	audiologists,	ENT	39 

doctors,	 and	 researchers	 alike,	 for	 two	main	 reasons.	 First,	 a	 variety	 of	 pathologies	 and	 their	40 

combinations	 can	 cause	 a	 similar	 outcome.	 Therefore,	 the	 realization	 that	 more	 data	 on	 a	41 



ISH2022 

2 

particular	experiment	or	stimulus	would	have	been	required	often	comes	subsequent	to	the	data	42 

collection.	Obtaining	this	data	is	sometimes	no	longer	practically	possible	and	often	inconvenient.	43 

Even	if	data	would	exist	in	abundance,	a	second	challenge	remains:	The	auditory	system	consists	44 

of	several	highly	non-linear	stages	intertwined	with	multiple	efferent	regulations.	An	experienced	45 

professional	might	be	able	 to	 interpret	 the	data	and	 relate	 it	 to	 a	unique	pathology,	but	 such	46 

diagnosis	 remains	 qualitative.	 A	 quantitative	 description	 of	 pathology-descriptive	 parameters	47 

with	confidence	ranges	could	provide	information	such	as:	The	estimated	loss	of	type	I	auditory	48 

fiber	synapses	is	25%,	and	ranges	between	20%	and	30%.		49 

Computer	 models	 have	 been	 suggested	 as	 possibly	 assistants	 in	 relating	 data	 to	 potential	50 

pathologies.	 Panda	 et	 al.	 (2014)	 used	 a	 physiological	model	 of	 the	 cochlea	 (Meddis,	 2006)	 to	51 

simulate	data	from	a	psychoacoustic	test	battery	from	hearing-impaired	listeners.	By	varying	one	52 

model	 parameter	 at	 a	 time,	 they	 created	 individualized	 computer	 models	 that	 enabled	53 

suggestions	on	underlying	pathologies	of	their	patients,	although	a	combination	of	parameters	54 

would	have	yielded	even	better	results	in	some	cases.		55 

Comprehensive	 physiological	 models	 of	 the	 auditory	 system	 require	 a	 large	 number	 of	56 

parameters	to	be	confined	(e.g.	Verhulst	et	al.,	2018).	In	addition,	physiological	redundancies	and	57 

co-dependencies	 in	 the	 system	 are	 useful	 to	 stabilize	 auditory	 perception	 against	 small	58 

disturbances	 or	 minor	 impairments,	 but	 they	 also	 lead	 to	 ambiguities	 in	 confining	 model	59 

parameters	(e.g.	Klug	et	al.,	2020).	Functional	models,	on	the	other	hand,	require	fewer,	though	60 

more	abstract,	parameters,	such	as	filter	bandwidth,	internal	noise,	or	attenuation.	For	instance,	61 

Plomp	(1978)	presented	a	quantitative	model	predicting	speech	understanding	in	noise	that	had	62 

only	the	two	parameters	attenuation	and	distortion.	Confining	these	parameters	does	not	lead	to	63 

a	description	in	terms	of	physiological	characteristics.	Nevertheless,	such	functional	models	can	64 

help	with	profiling	hearing	impaired	persons	and	can	predict	the	benefit	to	be	expected	from	a	65 

hearing	aid	or	hearing	prosthesis.		66 

The	amount	of	experimental	data	required	to	confine	the	model	parameters	depends	critically	on	67 

two	factors:	Measurement	accuracy	and	–	most	of	all	–	the	number	of	free	model	parameters.	A	68 

single	parameter	can	often	be	estimated	from	data	obtained	within	a	few	minutes	(e.g.	Brand	&	69 

Kollmeier,	2002).	Appraisal	of	 three	parameters,	however,	can	already	be	expected	to	require	70 

several	hours	of	data	collection,	at	least	in	psychophysics	(e.g.,	Herrmann	&	Dietz,	2021).	In	many	71 

cases,	it	may	be	prudent	to	adjust	the	measurement,	based	on	interim	results.	The	approach	of	72 

Sanchez	 Lopez	 et	 al.	 (2018)	 for	 instance,	 can	 identify	 the	most	 informative	 predictors	 in	 an	73 

auditory	 test	 battery,	 based	 on	 the	 preceding	 results.	 Instead	 of	 conducting	 all	 tests	 on	 each	74 

individual,	 only	 a	 subset	 of	 tests	 is	 sufficient	 for	 the	 characterization	of	 listeners.	 These	 tests	75 

represent	the	nodes	of	a	decision	tree	that	lead	to	different	diagnoses.	Another	way	to	confine	the	76 

assessment	 of	 model	 parameters	 in	 a	 theoretically	 most	 time-efficient	 way	 is	 a	 maximum	77 

likelihood-based	procedure	running	in	parallel	to	the	measurement,	and	selecting	those	stimuli	78 

or	tests	that	cause	the	best	refinement	in	model	parameters	(Herrmann	&	Dietz,	2021).	So	far,	79 

this	approach	has	only	been	tested	with	a	simulated	patient.	Theoretically,	it	can	be	used	with	any	80 

model	and	experiment.	Nevertheless,	the	demands	on	the	chosen	model	are	high.	It	must	provide	81 

good	 fits	 to	 all	 data	without	 too	many	parameters.	Otherwise,	 systematic	deviations	between	82 

model	 and	 data	 under	 any	 one	 experimental	 condition	 may	 cause	 the	 procedure	 to	83 

overemphasize	 this	 condition	 or	 to	 cause	 some	 other	 form	 of	 undesired	 behavior.	 Also,	 co-84 

dependencies	of	the	model	parameters	should	be	at	a	minimum.		85 

The	goal	of	the	present	study	was	to	test	the	feasibility	of	model-based	experiment	steering	for	86 

the	 prediction	 of	model	 parameters	 characterizing	 individual	 subjects.	 As	 the	 authors	 of	 this	87 

study	 are	 working	 particularly	 on	 binaural	 aspects,	 a	 simple	 model	 of	 binaural	 hearing	 was	88 

exemplarily	used	 for	 the	present	proof	 of	 concept.	 The	 chosen	model	 can	be	 fit	 to	 accurately	89 

simulate	individual	tone-in-noise	detection	sensitivity	(Encke	&	Dietz,	2021).	90 
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Methods 91 

Model-based selection framework 92 

The	method	presented	in	Herrmann	and	Dietz	(2021)	can	be	separated	into	two	parts:	An	analysis	93 

module	with	likelihood-based	parameter	estimation,	and	a	stimulus-selection	module	running	in	94 

parallel	to	the	measurement.		95 

The	analysis	module	can	also	be	used	on	data	that	was	not	taken	using	model-based	steering.	It	96 

only	requires	the	model	to	operate	as	an	artificial	observer,	meaning	that	it	receives	the	same	97 

stimuli	 as	 real	 subjects,	 and	provides	 an	output	 that	 can	be	 analyzed	 in	 the	 same	way	as	 the	98 

experimental	data.	All	data	is	compared	to	pre-calculated	model	predictions,	based	on	a	selected	99 

set	of	parameter	combinations.	The	dimensionality	of	this	table	equals	the	sum	of	stimulus-	and	100 

model	parameters.	The	comparison	of	data	and	table	yields	a	multi-dimensional	likelihood	table.	101 

The	 compound	 likelihood	 of	 each	 model	 parameter	 is	 calculated	 by	 summing	 the	 likelihood	102 

values	over	all	other	parameters.		103 

With	 the	 stimulus-selection	 module,	 the	 chosen	 stimulus	 is	 (based	 on	 the	 current	 model	104 

parameter	 estimations)	 expected	 to	 provide	 the	 most	 information	 for	 refining	 the	 model	105 

parameter	 estimates.	 The	 procedure	 chooses	 the	 stimulus	 condition	 that	 cause	 the	 largest	106 

reduction	in	the	confidence	range	of	likelihood	over	the	model	parameters.	If	one	parameter	is	107 

diagnostically	more	interesting	than	others,	the	measurement	can	be	steered	towards	minimizing	108 

the	confidence	range	of	this	particular	parameter,	or	to	give	it	a	higher	weighting.	Here,	however,	109 

the	unweighted	sum	of	all	confidence	intervals	in	units	of	discretization	steps	is	minimized.	To	110 

quantify	the	width	of	the	confidence	intervals,	a	function	of	the	form	111 

	
–
(x − µ)!

2σ!
	 (1) 	

was	fitted	to	the	summed	log-likelihood,	corresponding	to	a	Gaussian	fit	of	the	likelihood.	The	112 

parameter	σ	controls	the	width	of	the	function.	It	is	used	as	a	marker	of	confidence	in	the	model	113 

parameter	assessment.	It	will	be	referred	to	here	as	the	confidence	range.	More	details	can	be	114 

found	in	Herrmann	and	Dietz	(2021).	115 

Auditory model 116 

As	noted	in	the	Introduction,	an	accurate	model	is	a	crucial	prerequisite	for	using	the	model-based	117 

selection	framework.	For	this	proof	of	concept,	we	opted	for	the	binaural	processing	model	of	118 

Encke	and	Dietz	(2021).	 It	can	predict	correct	rates	of	 tone-in-noise	detection	 for	a	variety	of	119 

dichotic	and	diotic	stimuli.	It	consists	of	a	monaural	and	a	binaural	branch.	The	monaural	branch	120 

is	sensitive	to	differences	in	energy	between	the	reference	and	the	target	signal.	The	sensitivity	121 

is	inversely	proportional	to	model	parameter	σmon.	The	binaural	branch	is	based	on	the	difference	122 

between	the	Fisher’s	z-transformed	complex	correlation	coefficients	of	a	reference	signal	and	a	123 

target	signal	As	this	 transformation	would	result	 in	 infinite	sensitivity	to	divergence	of	a	 fully	124 

coherent	 signal,	which	 is	 not	 observed	 in	 the	 auditory	 system,	 the	 parameter	𝜌*	 (0<𝜌*<1)	was	125 

introduced	 before	 z-transformation,	 thus	 limiting	 maximum	 sensitivity.	 As	 in	 the	 monaural	126 

branch,	model	parameter	σbin	is	inversely	proportional	to	binaural	sensitivity,	i.e.	to	the	Euclidian	127 

distance	between	the	z-transformed	complex	correlation	coefficient	of	target	and	reference.		128 

Predicted	detection	thresholds	for	the	NπS0	and	the	N0Sπ	condition	are	the	same	with	this	model.	129 

This	 is	 not	 the	 case	 in	 behavioral	 data	 (e.g.	 Hirsh,	 1948).	 To	 account	 for	 this	 difference,	 we	130 

introduced	a	 fourth	parameter	Δ𝜌*	 into	 the	model.	 It	 represents	 the	 linear	 increase	 in	𝜌*	when	131 

changing	from	anti-phasic	to	in-phase	noise.	132 

Model	predictions	are	shown	in	Figure	1.	In	each	panel,	one	model	parameter	was	varied,	while	133 

the	other	three	parameters	were	set	to	a	fixed	value	in	the	center	of	their	respective	range.	As	134 
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described	 above,	 each	 model	 parameter	 introduces	 changes	 to	 specific	 stimulus	 conditions,	135 

whereas	others	are	not	affected.	136 

	137 

Figure	1 —	Model	 predictions	 (signal-to-noise	 ratio	 corresponding	 to	 79.4%	 correct)	 for	138 
different	model	 instances.	 In	 each	panel,	 one	model	 parameter	was	 varied	 (color	 coding),	139 
while	the	other	three	parameters	were	set	to	a	fixed	value	in	the	center	of	their	respective	140 
range.	141 

Measurements 142 

Five	young	(age:	20-26	years)	participants	(three	female,	two	male)	conducted	the	experiments	143 

with	informed	consent	(approved	by	the	ethics	committee	of	the	University	of	Oldenburg).	The	144 

listeners	received	monetary	compensation	for	the	time	spent	on	the	experiments.	Self-reported	145 

normal	 hearing	 was	 verified	 by	 pure	 tone	 audiometry.	 None	 of	 the	 listeners	 had	 hearing	146 

thresholds	exceeding	20	dB	HL	and	there	was	no	more	than	10	dB	difference	in	hearing	threshold	147 

between	the	two	ears	at	any	octave	frequency	between	125	Hz	–and	10	kHz.	A	training	phase	to	148 

familiarize	participants	with	the	task	preceded	the	experiments.		149 

Tasks and stimuli 150 

The	study	consisted	of	two	parts.	All	subjects	participated	in	the	same	tone-in-noise	detection	151 

task	with	(1)	an	adaptive	staircase	procedure	and	(2)	the	model-based	steering	procedure.	A	four	152 

interval,	 two	alternatives	 forced-choice	 experiment	was	 conducted.	Three	 intervals	 contained	153 

only	 the	 noise	 with	 a	 bandwidth	 of	 100	 Hz	 (spectrally	 rectangular	 band-pass	 white	 noise),	154 

centered	around	250	Hz.	The	second	or	third	interval	additionally	contained	a	pure	tone.	This	155 

pure	tone	of	250	Hz	was	either	inter-aurally	in	phase,	or	differed	in	phase	by	180	degrees.	The	156 

noise’s	interaural	correlation	ρ	ranged	from	anti-correlated	to	fully	correlated	(-1,	-0.75,	-0.5,	0,	157 

0.5,	0.75,	1).	The	stimuli	were	chosen	to	be	comparable	to	the	those	used	in	Robinson	and	Jeffress	158 

(1963).	The	duration	of	the	intervals	was	0.6	s,	each	with	a	pause	of	0.2	s	between	intervals.	A	159 

cosine	rise-and-fall	window	of	20	ms	was	applied	to	the	noise	and	pure	tone	separately.	The	tone	160 
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started	when	the	noise	was	at	full	amplitude.	The	sound-pressure	level	of	the	noise	was	fixed	at	161 

67	dB,	whereas	the	tone	level	was	varied	adaptively	during	both	experiments,	as	described	below.	162 

The	listeners	sat	in	a	sound-attenuating	booth	on	a	comfortable	chair	in	front	of	a	computer	163 

screen	and	a	computer	keyboard.	The	signals	were	transmitted	to	an	external	audio	interface	164 

(ADI-2	DAC	FS,	RME,	Heimhausen,	Germany)	and	presented	using	circumaural	headphones	165 

(HD650,	Sennheiser	electronic	GmbH,	Wedemark,	Germany).	To	visually	support	the	temporal	166 

sequence,	four	rectangles	lit	up	on	the	screen	in	succession	during	the	four	intervals.	The	167 

participants’	task	was	to	decide	whether	the	second	or	the	third	interval	differed	from	the	first	168 

and	last	“cueing”	intervals.	Responses	could	only	be	given	after	the	fourth	interval,	and	were	169 

then	entered	by	pressing	the	number	‘2’	or	‘3’	on	the	keyboard.	The	button	press	was	followed	170 

by	visual	feedback	on	the	screen	indicating	whether	the	choice	was	correct.	After	a	delay	of	250	171 

ms,	the	next	trial	was	presented.	 172 

Adaptive staircase procedure 173 

The	first	portion	of	the	experiments	was	a	standard	adaptive	staircase	procedure	varying	the	tone	174 

level	 following	a	1-up	3-down	rule	converging	to	79.4%	correct	responses	(Levitt,	1971).	The	175 

initial	step	size	of	6	dB	was	halved	every	two	reversals,	until	a	step	size	of	1.5	dB	was	reached	and	176 

lasted	for	a	total	of	8	reversals.	Runs	under	the	14	stimulus	conditions	(seven	noise	correlations,	177 

each	with	two	tone	phases)	were	presented	in	random	order.	Each	condition	was	presented	five	178 

times	to	the	participants.	Whenever	possible,	a	full	set	of	14	conditions	was	measured	on	the	same	179 

day.	180 

After	 completion	 of	 data	 collection,	 the	 analysis	 module	 with	 likelihood-based	 parameter	181 

estimation	was	applied	to	assess	the	most	likely	model	parameters	underlying	these	results.	For	182 

visualization	 of	 the	 measured	 data,	 and	 for	 a	 comparison	 with	 the	 model	 predictions	 of	 the	183 

analysis	module,	detection	thresholds	corresponding	to	79.4%	correct	responses	were	computed	184 

from	the	average	of	the	last	eight	reversals	of	the	adaptive	tracks.	185 

Model-steered procedure 186 

In	the	second	portion	of	the	experiment,	the	measurement	procedure	was	steered	by	the	model-187 

based	 selection	 approach	 introduced	 above.	 The	 range	 and	 discretization	 steps	 of	 the	model	188 

parameters	needed	to	be	confined	prior	to	the	measurement	phase.	The	model	was	run	for	all	189 

combinations	of	possible	model	parameters	(model	instances),	and	all	combinations	of	possible	190 

stimulus	parameters	(stimulus	condition).	To	reduce	the	amount	of	data,	a	logistic	function	was	191 

fitted	 to	 the	model	 outcome	 (signal-to-noise	 ratio)	 over	 level	 for	 each	 combination	 of	model	192 

instance	and	stimulus	condition.	These	thresholds	and	slopes	were	saved	in	what	is	referred	to	193 

as	the	model	table.	During	the	model-steering	procedure,	only	the	model	outcome	stored	in	this	194 

model	table	was	available	for	the	likelihood-fitting.	195 

Depending	 on	 how	 the	 parameters	 influenced	 the	 model	 outcome,	 the	 relation	 between	 the	196 

possible	values	was	chosen	differently.	For	σmon	and	σbin,	factorial	steps	of	√2! 	(one	third	octave)	197 

ranging	 from	0.15	 to	0.96	were	chosen.	Parameters	𝜌*	 and	Δ𝜌*	were	chosen	with	 steps	of	2/3.	198 

Weighted	by	the	noise	correlation,	they	were	added	and	are	used	as	the	exponent	in	199 

	 ,1 − 2(#$%∆#$).𝜌		 (2) 	

as	multiplier	<1	 to	reduce	 the	nominal	 signal	correlation	ρ	prior	 to	Fisher’s	z-transformation.	200 

Ranges	 from	 -26/3	 to	 –	 14/3	 for	𝜌*	 and	 2/3	 to	 14/3	 for	 Δ𝜌*	were	 chosen.	 To	 ensure	 that	 the	201 

expected	model	parameters	of	each	subject	were	covered	by	the	range	of	each	model	parameter	202 

provided,	 several	 piloting	 trials	were	 necessary.	 The	 effects	 of	 changes	 in	 each	 of	 the	model	203 

parameters	are	shown	in	Figure	1.	204 

With	human	subjects,	unlike	artificial	subjects	switching	between	perceptually	differing	stimulus	205 

conditions	 between	 single	 trials	 leads	 to	 less	 reliable	 responses	 and	 poorer	 immediate	206 
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performance	(e.g.	Taylor	&	Rohrer,	2010).	To	circumvent	this,	two	additions	were	made	to	the	207 

original	 procedure.	 First,	 the	measurement	phase	was	 split	 into	 several	measurement	blocks,	208 

each	with	a	fixed	number	of	repetitions	of	the	same	stimulus	instance.	For	this	study,	28	blocks	209 

of	30	repetitions	of	the	same	condition	(but	varying	level	corresponding	to	the	point	of	maximal	210 

expected	 information)	 were	 completed	 by	 the	 subjects.	 After	 each	 block,	 the	 framework	211 

computed	the	next	stimulus	to	be	presented.	Second,	the	first	two	repetitions	of	each	block	were	212 

carried	out	merely	to	permit	familiarity	with	the	new	stimulus	condition,	but	were	neither	saved	213 

nor	used	for	the	steering	procedure.	With	this,	a	total	of	840	trials	were	presented,	of	which	784	214 

(28	blocks	x	28	repetitions)	were	stored.	The	first	four	blocks	were	measured	under	pre-defined	215 

conditions	 before	 the	 likelihood-based	measurement	 steering	 algorithm	 started.	 This	 was	 to	216 

initialize	the	model	with	a	good	database	for	the	selection	of	the	subsequent	stimulus	conditions.	217 

The	conditions	chosen	for	these	initial	blocks	were:	one	purely	monaural	condition	(N0S0),	the	218 

two	extreme	binaural	conditions	(N0Sπ	and	NπS0),	plus	one	intermediate	condition	(Nρ=	0.75Sπ).		219 

The	choice	of	suitable	initialization	blocks	also	required	knowledge	acquired	during	the	piloting	220 

of	 the	study.	With	 the	model-based	selection	procedure,	 the	accuracy	of	 the	model	parameter	221 

estimation	 can	 be	 tracked	 and	 used	 to	 terminate	 the	 experiments.	 For	 the	 present	 ‘proof-of-222 

concept	 type’	 study,	 no	 termination	 criterion	was	 set.	With	 such	 a	 termination	 criterion,	 the	223 

measurement	ends	when	the	desired	confidence	range	is	reached	in	all	of	the	model	parameters.	224 

Weighting	some	parameters	more	strongly	than	others	for	the	stimulus	selection	is	also	possible.	225 

To	 allow	 for	 comparisons	 between	 the	 two	 procedures,	 the	 784	 trials	 in	 the	 model-steered	226 

procedure	were	oriented	on	 the	number	of	 trials	 in	one	 full	 set	 of	 conditions	 in	 the	 adaptive	227 

procedure	(on	average	~750	trials,	depending	on	measurement	set	and	subject).	228 

	229 

Figure	2 —	 Tone-in-noise	 detection	 thresholds	 of	 the	 five	 subjects.	 The	 orange	 triangles	230 
represent	thresholds	for	stimuli	with	anti-phasic	tones,	the	blue	circles	for	tones	that	were	231 
inter-aurally	 in	phase.	The	 standard	deviations	across	 the	 five	 trials	of	 each	condition	are	232 
represented	as	error	bars.	The	solid	lines	represent	the	model	predictions	for	the	fit	with	the	233 
model	parameters	presented	in	Table	I.	234 

Results 235 

Adaptive staircase procedure 236 

The	 tone-in-noise	 detection	 thresholds	 are	 shown	 in	 Figure	 2.	 Using	 the	 likelihood-based	237 

analysis,	model	parameters	corresponding	best	to	the	subjects’	data	were	obtained.	The	resulting	238 

model	predictions	are	displayed	as	solid	lines	in	the	same	figure,	and	show	the	estimated	signal-239 
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to-noise	ratio	for	79.4%	correct.	Model	parameters	obtained	by	the	analysis	module	can	be	found	240 

in	Table	I.	241 

As	expected,	the	thresholds	for	the	conditions	without	binaural	cues	(N0S0,	the	right-most	blue	242 

data	point	and	NπSπ,	the	left-most	orange	data	point)	are	the	highest.	Thresholds	improved	with	243 

increasing	average	IPD	difference	between	masker	and	target,	until	the	lowest	thresholds	were	244 

obtained	for	NπS0	(leftmost	blue	data	point)	and	N0Sπ	(rightmost	orange	data	point).	Within	the	245 

latter	condition,	all	subjects	reached	the	lowest	of	their	thresholds.	246 

The	model	fit	captures	the	behavior	of	all	subjects,	with	only	small	deviations	for	single	stimulus	247 

conditions.	The	coefficient	of	determination	R²	ranged	between	79.9	%	for	S4	and	96.5	%	for	S2	248 

and	was	averaged	89.8	%.	Lower	values	of	σmon	correspond	to	lower	thresholds	in	the	monaural	249 

conditions.	Lower	values	of	σbin	correspond	to	lower	thresholds	in	those	conditions	with	binaural	250 

cues.	As	described	in	the	Methods	section,	mainly	the	thresholds	for	NπS0		and	N0Sπ	are	affected	251 

by	parameter	𝜌*,	whereas	Δ𝜌*	enables	fitting	the	difference	between	NπS0		and	N0Sπ.	252 

Table	I —	 Model	 parameters	 estimated	 by	 the	 analysis	 module	 for	 data	 of	 the	 adaptive	253 
staircase	 procedure	 and	 the	 model-steered	 procedure.	 	 The	 deviation	 between	 the	 two	254 
procedures	is	color-coded	with	light	grey	for	one	bin,	middle	grey:	two	bins,	and	dark	grey	255 
corresponding	to	three	bins.		256 

subject	 procedure	 model	parameter	
σmon	 σbin	 𝜌*	 Δ𝜌*	

S1	 adaptive	
model-steered	

0.38	
0.38	

0.24	
0.30	

-6.00	
-6.00	

2.00	
2.00	

S2	 adaptive	
model-steered	

0.48	
0.48	

0.30	
0.60	

-6.00	
-7.33	

2.67	
2.67	

S3	 adaptive	
model-steered	

0.48	
0.48	

0.60	
0.48	

-6.67	
-6.67	

2.67	
2.67	

S4	 adaptive	
model-steered	

0.38	
0.60	

0.48	
0.48	

-6.67	
-6.67	

2.67	
1.33	

S5	 adaptive	
model-steered	

0.48	
0.48	

0.30	
0.48	

-6.00	
-6.67	

2.00	
2.00	

Model-steered procedure 257 

The	model	 table	was	 pre-calculated	 overnight	 on	 a	 regular	 i5	 laptop.	 The	 table	 contains	 the	258 

thresholds	and	slopes	of	the	logistic	functions	representing	the	model	output	for	the	combination	259 

of	the	2x7	stimulus	conditions	and	the	9x9x7x7	model	instances,	leading	to	a	total	of	55566	model	260 

calls	for	each	stimulus	level.		261 

When	using	the	stimulus-selection	module,	model	parameters	were	estimated	for	every	trial.	The	262 

development	 of	 the	 normalized	 likelihood	 of	 the	 four	 parameters	 over	 trials	 and	 the	 stimuli	263 

chosen	by	the	procedure	are	shown	in	examples	for	subject	S4	in	Figure	3.	In	each	of	the	upper	264 

four	 panels,	 the	 likelihood	 values	 are	 summed	 over	 the	 other	 three	 parameters	 and	265 

independently	normalized	by	the	mean	of	the	summed	likelihood	for	each	model	parameter	and	266 

each	trial.	Over	the	course	of	the	trials,	the	likelihood	distribution	reduced	in	width	around	the	267 

maximal	value.		268 

The	first	stimulus	condition	in	the	experiment	(N0Sπ)	did	not	deliver	information	on	the	monaural	269 

threshold.	For	this	reason,	the	estimation	of	σmon	only	starts	refining	with	the	second	block	(N0S0).	270 

Similarly,	parameter	Δ𝜌*	(the	difference	between	N0Sπ	and	NπS0)	can	only	be	estimated	starting	271 
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with	the	first	trials	of	NπS0	in	block	number	three.	To	ensure	a	good	start	to	the	measurement	272 

procedure	without	too	much	emphasis	on	one	single	stimulus	condition,	the	first	four	blocks	were	273 

set	as	initialization	blocks.	Starting	with	trial	number	113	(at	the	dashed	black	line),	the	stimulus-274 

selection	module	selected	different	stimulus	 instances,	with	an	emphasis	on	N0Sπ	and	Nρ=0.75Sπ,	275 

and,	to	a	lesser	degree,	on	NπS0	and	NπSπ.	Noise	correlation	values	between	those	were	almost	not	276 

chosen	at	all.	Comparable	patterns	were	also	found	for	the	other	subjects.	The	final	estimates	of	277 

the	model	parameters	with	the	data	acquired	using	the	model-steered	procedure	are	shown	in	278 

Table	 1.	 The	 respective	 model	 parameter	 estimates	 for	 the	 data	 of	 the	 two	 measurement	279 

procedures	are	very	similar.	One	bin	deviation	(light	grey)	is	not	significant,	as	it	can	result	from	280 

discretization	following	an	arbitrarily	tiny	difference	in	the	data.	Also,	confidence	intervals	are	of	281 

the	 order	 of	 one	bin	 (0.69	bins,	 see	next	 subsection).	Darker	 grey	 shadings	 indicate	 stronger	282 

differences	 between	 the	 estimates	 of	 the	 two	 procedures.	 In	 those	 cells	without	 shading,	 the	283 

parameter	estimations	did	not	differ.	Only	for	subject	S2	did	the	parameter	estimations	differ	by	284 

more	than	two	steps	on	the	grid	(bins)	of	possible	values.	Across	subjects,	estimates	differed	by	285 

up	to	three	bins	for	σbin,	but	only	by	up	to	two	bins	for	the	other	three	parameters.	Differences	286 

across	subjects	are	only	marginally	larger	than	within-subject	differences	obtained	with	the	two	287 

methods.	288 

	289 

	290 

Figure	3 —	Mean-normalized	likelihood	(sum	over	the	other	three	parameters)	of	the	four	291 
parameters	across	trials	in	the	upper	four	panels,	and	the	stimuli	chosen	by	the	procedure	292 
across	trials	in	the	bottom	panel	for	subject	S4.	The	dashed	black	line	indicates	the	start	of	the	293 
model	steering	with	trial	number	113.	294 
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The	confidence	ranges	can	be	estimated	from	Figure	3.	Even	though	the	confidence	ranges	did	295 

not	become	smaller	with	every	single	trial,	overall,	the	accuracy	of	the	estimations	increased.	For	296 

instance,	the	mean	confidence	range	over	the	four	parameters	for	subject	S4	decreased	from	4.28	297 

bins	at	the	start	of	the	model-steering	to	0.72	bins	after	the	last	trial.	Comparable	decreases	were	298 

also	 found	 for	 the	other	subjects.	After	 the	 final	 trial,	 the	procedure	reached	a	mean	accuracy	299 

between	0.64	bins	and	0.72	bins	for	the	different	subjects	(mean:	0.69	bins).	300 

Comparison of the two procedures 301 

Figure	4	shows	the	mean	confidence	ranges	across	the	four	model	parameters	over	trials	for	the	302 

two	data	sets,	 the	adaptive	and	the	model-steered	procedures.	With	 the	 latter,	only	874	trials	303 

were	recorded.	The	confidence	ranges	are	only	shown	after	each	full	set	of	14	conditions	for	the	304 

adaptive	procedure.	These	sets	differed	slightly	in	the	number	of	trials	for	the	five	subjects.	In	305 

general,	a	decrease	of	confidence	ranges	over	trials	was	observed,	with	a	steeper	decrease	in	the	306 

model-steered	data.	For	instance,	for	subject	S1,	the	mean	confidence	range	was	1.63	bins	after	307 

the	first	set	of	the	adaptive	procedure	(693	trials).	The	value	of	1.63	bins	or	smaller	was	initially	308 

reached	after	302	trials	with	the	model-steered	procedure.	The	ratio	of	2.29	indicates	that	the	309 

same	 confidence	 range	was	 achieved	more	 than	 twice	 as	 fast	with	 the	model-based	 steering	310 

method.	To	reach	the	same	confidence	range	using	the	adaptive	procedure,	1.9	to	3.7	times	more	311 

trials	were	necessary	than	with	the	model-steering	procedure.	312 

	313 

Figure	4 —	Mean	of	confidence	ranges	(in	bins)	averaged	across	the	four	model	parameters	314 
over	trials	for	subjects	S1	to	S5.	The	estimates	for	the	model-steered	procedure	are	depicted	315 
with	 lines,	 for	 the	adaptive	procedure	with	symbols.	Color	and	marker	shape	vary	 for	 the	316 
individual	subjects.	317 

Discussion 318 

This	study	sought	to	affirm	the	feasibility	of	model-based	experiment	steering	after	a	preceding	319 

study	by	Herrmann	and	Dietz	(2021)	had	concluded	that	there	would	be	a	theoretical	advantage	320 

of	the	proposed	procedure	over	sequential	measure-and-fit	approaches.	In	the	current	study,	the	321 

model-steered	procedure	was	tested	on	real,	but	non-impaired	subjects,	instead	of	an	artificial	322 

patient	 simulated	 on	 a	 computer.	 This	 attempt	 was	 successful	 for	 two	 reasons.	 First,	 the	323 

estimated	model	parameters	were	 sufficiently	 close	 to	 those	obtained	 from	 the	 results	 of	 the	324 

standard	adaptive	procedure	(on	average	deviating	by	0.70	bins,	corresponding	to	an	average	325 

threshold	differences	of	0.98	dB).	Second,	the	same	accuracy	in	model	parameter	estimates	was	326 

obtained	1.7	to	3.7	times	faster	than	with	the	standard	method.		327 

The	proposed	measurement	procedure	can	assist	in	linking	data	to	the	underlying	pathology,	or	328 

to	a	parametric	description	of	the	individuals'	hearing	abilities.	The	procedure	will	steer	towards	329 
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those	measurements	that	can	disentangle	different	causes	of	the	observed	behavior,	even	in	the	330 

complex	auditory	processing	chain.	As	a	prerequisite	for	this	becoming	reality	in	clinical	settings,	331 

models	with	high	diagnostic	resolution	need	to	be	developed.	In	the	current	study,	an	existing	332 

simple	 model	 of	 binaural	 processing	 was	 used,	 but	 slightly	 adapted	 as	 a	 first	 attempt	 to	333 

characterize	a	 subject	 in	 the	most	 time-efficient	way.	Even	 though	 the	diagnostic	value	of	 the	334 

model	parameters	is	not	clear,	it	served	as	proof	of	concept.	335 

The	duration	of	measurements	is	limited	in	clinical	settings.	Keeping	measurement	times	as	short	336 

as	possible	is,	however,	also	of	importance	for	another	reason:	With	longer	measurement	times,	337 

unaccounted	factors	influence	the	data.	Fatigue,	attention,	motivation	or	effects	specific	to	single	338 

measurement	 days	 may	 potentially	 confound	 the	 parameter	 evaluations.	 Using	 the	 model-339 

steering	 procedure,	 confidence	 ranges	 of	 less	 than	 0.69	 bins,	 corresponding	 on	 average	 to	340 

threshold	uncertainties	of	approximately	1	dB,	were	reached	for	the	four	model	parameters	after	341 

less	than	1.5	hours.	342 

Choosing	meaningful	ranges	and	discretization	for	the	model	parameters	remains	a	critical	point.	343 

Extensive	piloting	with	adjustments	to	the	ranges	and	step	sizes	of	the	four	parameters	preceded	344 

data	collection.	Each	step	must	influence	the	model	outcome	for	at	least	one	stimulus	instance.	In	345 

the	best	case,	each	step	leads	to	similarly	large	changes	in	model	predictions.	In	Figure	1,	it	can	346 

be	seen	that	changing	σmon	by	one	step	always	leads	to	changes	in	the	estimated	signal-to-noise	347 

ratio	 of	 about	 1	 dB.	 Similar	 changes	 are	 observed	 for	 σbin	 but	 in	 other	 stimulus	 conditions.	348 

Increasing	or	decreasing	parameters	𝜌*	and	Δ𝜌*	by	one	step	always	leads	to	a	change	of	about	2	dB,	349 

but	influences	fewer	stimulus	conditions.	When	comparing	the	selected	stimulus	conditions	(see	350 

the	bottom	panel	 in	Figure	3)	 to	 the	 changes	 in	 the	model	prediction	 in	Figure	1,	 it	 becomes	351 

obvious	 which	 stimulus	 conditions	 provide	 the	 most	 information	 about	 each	 of	 the	 model	352 

parameters.	NπSπ	is	chosen,	as	it	only	depends	on	σmon.	The	frequently	chosen	condition	Nρ=	0.75Sπ,	353 

for	example,	mainly	 informs	about	σbin.	However,	 the	more	complex	 the	models	are,	 the	more	354 

difficult	it	is	to	comprehend	these	relationships.		355 

Matching	 the	 effect	 size	 of	 parameter	 steps	 is	 also	 important	 in	 the	 light	 of	 co-dependencies	356 

between	model	parameters.	Preferably,	changes	by	one	discrete	step	in	one	parameter	should	357 

not	 force	 another	 co-dependent	 parameter	 to	 change	 by	 more	 than	 one	 step,	 otherwise	 the	358 

undesirable	effect	may	occur	producing	several	maxima	in	the	likelihood	over	the	values	of	the	359 

co-dependent	model	parameter.	For	example,	if	parameter	X	changes	by	one	step	and	causes	a	360 

counter-reaction	of	parameter	Y	by	two	steps,	 the	 likelihood	function	of	parameter	Y	may	not	361 

follow	a	Gaussian	bell	shape.	High	likelihood	values	that	each	correspond	to	a	particular	value	of	362 

X	might	alternate	with	low	likelihood	values	that	have	no	direct	correspondence	to	a	particular	363 

value	of	X.	Arguably,	 fitting	a	Gaussian	 to	Y	or	even	 trying	 to	reduce	 its	confidence	 interval	 is	364 

problematic	in	such	a	case.	It	has	also	proven	to	be	important	that	estimated	parameters	do	not	365 

reach	the	boundary	of	the	parameter	range	of	the	previously	stored	model	table.	In	this	case,	the	366 

fit	with	an	inverted	parabola	cannot	represent	the	log-likelihood	values	over	the	parameters	very	367 

well.	To	fit	the	data	best,	the	apex	of	the	parabola	would	possibly	be	outside	the	boundaries.	The	368 

steepness	(given	by	parameter	a)	would	be	very	small,	resulting	in	confidence	ranges	spanning	369 

the	entire	possible	range	of	parameters.	Such	corrupted	confidence	ranges	lead	to	the	choice	of	370 

non-optimal	 next	 stimulus	 conditions.	 An	 additional	 advantage	 of	matching	 the	 effect	 size	 of	371 

parameter	 steps	 is	 that	 it	 allows	 the	 steering	 procedure	 to	minimize	 the	 unweighted	 sum	 of	372 

confidence	ranges,	as	measured	in	numbers	of	steps	or	bins.	The	procedure	is	then	expected	to	373 

provide	 similar	 accuracy	 for	 all	 parameters.	With	 ill-matched	parameters,	 the	model	 steering	374 

might	be	biased	towards	minimizing	the	confidence	ranges	of	some	model	parameters	more	than	375 

others.		376 

The	 computational	demand	of	 the	procedure	 can	be	a	 limiting	 factor.	Model	 tables	 cannot	be	377 

chosen	with	arbitrarily	high	resolution,	as	between	the	measurement	blocks,	the	model-steering	378 

module	needs	to	load	the	whole	table	and	to	choose	the	next	stimulus	by	computing	the	estimated	379 

confidence	ranges	for	each	stimulus	instance.	With	too-extensive	model	tables,	the	computational	380 

demands	 become	 too	 high.	 Two	 improvements	 helped	 to	 reduce	 this.	 First,	 substituting	 the	381 
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numerical	model	with	 an	 analytical	model	 reduced	 the	 computation	 time	 of	 each	model	 call.	382 

Second,	 while	 the	 model	 used	 by	 Herrmann	 and	 Dietz	 (2021)	 provided	 the	 expected	 target	383 

interval	number,	just	like	for	a	real	subject,	the	output	of	the	new	model	is	directly	the	d’	value	384 

that	can	be	converted	to	the	correct	rate.	While	this	is	not	the	response	of	a	human	subject,	it	is	385 

more	helpful	because	it	does	not	require	hundreds	of	repetitions	for	the	same	condition	just	to	386 

obtain	a	reliable	correct	rate	estimate.	387 

One	of	 the	main	concerns	remains	the	choice	of	an	accurate	model	with	diagnostic	value.	The	388 

approach	with	an	auditory	processing	model	requires	the	faithful	simulation	of	the	whole	chain	389 

from	stimulus	presentation,	 through	 internal	processing	 to	 the	subject’s	 response,	or	 to	other	390 

measurement	 data.	We	were	 able	 to	 perform	 a	 proof-of-concept,	 but	 could	 only	 characterize	391 

those	aspects	that	are	relevant	for	tone-in-noise	detection	sensitivity	at	one	frequency	and	only	392 

for	normal-hearing	subjects.	Some	of	the	four	free	parameters	are	expected	to	characterize	the	393 

consequences	of	hearing	impairment	(e.g.	Bernstein	&	Trahiotis,	2018).	Other	model	parameters	394 

such	as	filter	bandwidth	are	fixed,	however,	and	this	cannot	serve	as	a	realistic	model	for	patients	395 

with	outer-hair-cell	impairments.	Of	course,	filter	bandwidth	can	be	an	additional	parameter	to	396 

fit,	as	already	demonstrated	(Herrmann	&	Dietz,	2021),	and	most	other	specific	extensions	are	397 

also	expected	to	be	compatible	with	the	approach.	The	problem	is	the	number	of	parameters	that	398 

quickly	arise	(e.g.	Verhulst	et	al.,	2018),	especially	as	many	of	the	parameters	may	differ	from	399 

frequency	 to	 frequency.	Even	some	 frequency-independent	parameters,	 e.g.,	 the	endocochlear	400 

potential,	will	influence	performance	differently	across	frequency,	making	it	non-trivial	to	fit	one	401 

parameter	based	on	prerecorded	individual	data	(Panda	et	al.,	2014).	Abstract	models	that	even	402 

avoid	a	simulation	of	auditory	processing	may	be	more	realistic	candidates	 for	model-steered	403 

profiling	if,	 instead	of	a	detailed	diagnosis,	the	focus	of	interest	is	rather	on	the	consequences.	404 

Ideally,	each	model	parameter	should	directly	relate	to	a	practical	consequence,	e.g.,	it	can	be	a	405 

hearing-aid	fitting	parameter	(similar	to	Plomp,	1978).	406 

To	summarize,	the	distant	goal	of	diagnosing	the	causes	of	a	person’s	hearing	impairment	in	a	407 

more	objective	and	more	time-efficient	way	has	not	yet	been	reached.	First	steps	in	this	direction	408 

were,	however,	made	with	the	model-based	approach	presented	in	this	study.	Characterization	409 

of	individuals	in	terms	of	abstract	parameters	that	influence	hearing-aid	fitting	or	the	choice	of	410 

hearing	implants	is	possible.	Scientifically,	both	the	likelihood-based	fitting	and	the	model-based	411 

steering	foster	a	deeper	understanding	of	the	inner	mechanics	of	the	models	used.	The	procedure	412 

also	offers	insights	into	its	interaction	with	fitting	tools,	measurement	procedures,	and	subject	413 

peculiarities	that	are	not	captured	by	the	model.	Specifically,	as	argued	by	Herrmann	and	Dietz	414 

(2021),	tracing	why	the	model	chooses	certain	stimuli	and	in	which	order,	is	very	informative,	415 

even	 for	 an	 improvement	 of	 conventional	 manual	 measurement	 selection.	 It	 also	 makes	 it	416 

possible	 to	 fully	 understand	 the	 impact	 of	 each	 model	 parameter	 in	 general,	 and	 of	 each	417 

parameter’s	discretization	steps.		The	procedure	thus	provides	new	perspectives	for	the	design	418 

of	diagnostic	models	and	experiments.		419 
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