
Unrealizable Cores for
Reactive Systems Specifications

Shahar Maoz
Tel Aviv University

Tel Aviv, Israel

Rafi Shalom
Tel Aviv University

Tel Aviv, Israel

Abstract—One of the main challenges of reactive synthesis, an
automated procedure to obtain a correct-by-construction reactive
system, is to deal with unrealizable specifications. One means to
deal with unrealizability, in the context of GR(1), an expressive
assume-guarantee fragment of LTL that enables efficient syn-
thesis, is the computation of an unrealizable core, which can
be viewed as a fault-localization approach. Existing solutions,
however, are computationally costly, are limited to computing
a single core, and do not correctly support specifications with
constructs beyond pure GR(1) elements.

In this work we address these limitations. First, we present
QuickCore, a novel algorithm that accelerates unrealizable core
computations by relying on the monotonicity of unrealizability,
on an incremental computation, and on additional properties of
GR(1) specifications. Second, we present Punch, a novel algorithm
to efficiently compute all unrealizable cores of a specification.
Finally, we present means to correctly handle specifications that
include higher-level constructs beyond pure GR(1) elements.

We implemented our ideas on top of Spectra, an open-
source language and synthesis environment. Our evaluation over
benchmarks from the literature shows that QuickCore is in
most cases faster than previous algorithms, and that its relative
advantage grows with scale. Moreover, we found that most
specifications include more than one core, and that Punch finds
all the cores significantly faster than a competing naive algorithm.

I. INTRODUCTION

Reactive synthesis is an automated procedure to obtain a
correct-by-construction reactive system from its temporal logic
specification [26]. GR(1) is an assume-guarantee fragment
of Linear Temporal Logic (LTL) that has an efficient sym-
bolic synthesis algorithm [7]. GR(1) specifications include
assumptions and guarantees that specify what should hold in
all initial states, in all states and transitions (safeties), and
infinitely often on every computation (justices). The expressive
power of GR(1) covers many well-known LTL specification
patterns [12], [19], and it has been recently applied in several
domains, including robotics (see, e.g., [18]).

One of the main challenges of reactive synthesis in general
and of GR(1) synthesis in particular is to deal with unrealizable
specifications [2], [8], [11], [15], [16], [21]. To help engi-
neers debug unrealizable specifications, several works have
suggested the computation and use of an unrealizable core,
a locally minimal subset of guarantees that is sufficient for
unrealizability. Computing the core may be viewed as a fault-
localization approach to unrealizability.

However, existing solutions to computing an unrealizable
core suffer from three main limitations. First, core computation

in existing solutions is costly, as it requires many invocations
of realizability checking. Second, existing solutions are limited
to finding a single core and thus provide only partial infor-
mation about the realizability problems in the specification
at hand. Third, existing solutions are limited to pure GR(1)
specifications, and do not correctly handle specifications with
richer language constructs. All these limit the applicability
of core computations as an effective means to dealing with
unrealizability.

In this work we address these three limitations. Our first
contribution is QuickCore, a novel algorithm that accel-
erates unrealizable core computations. The effectiveness and
correctness of QuickCore are based on four observations.
First, that unrealizability is monotonic. Second, that core
computations can be incremental. Third, that checking the
realizability of specifications with fewer justices is typically
significantly faster than of those with more justices. And
fourth, that minimizing initial guarantees requires only one
fixed-point computation.

Our second contribution is Punch, an algorithm to ef-
ficiently compute all unrealizable cores of a specification.
Moreover, Punch computes the intersection of all cores
without having to compute all of them. In particular, Punch
is able to quickly check whether a core that was found is the
only one that may be found.

Finally, our third contribution is the extension of core
computations to correctly handle specifications that include,
beyond pure GR(1) elements, higher-level constructs such
as patterns, past LTL operators, monitors, and counters, as
supported, e.g., in Spectra [20]. This is important in order to
correctly apply core computations to these more compact and
readable specifications, and to present the results not at the
level of the internal representation but at the abstraction level
used by the engineer who wrote the specification.

It is important to note that while QuickCore is specific
to GR(1) unrealizability, Punch is in fact a generic algorithm
for computing all cores. Indeed, the definition and correctness
of Punch in Alg. 3 is independent of realizability checking
or GR(1). Thus, Punch can be used, e.g., to compute all
vacuity cores [23], all realizable cores (subsets of assumptions
that suffice for realizability), and more generally, all locally
minimal subsets for any monotonic criterion (e.g., unsatisfia-
bility). Similarly, our third contribution on correctly dealing
with higher-level constructs beyond pure GR(1) applies not

25

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

1558-1225/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00016

1 env boolean b1;
2 env boolean b2;
3 env boolean b3;
4

5 sys Int(1..3) f;
6

7 // No buttons are initially pressed
8 asm !b1 and !b2 and !b3;
9

10 // Request is removed when satisfied
11 asm G ((b1 and f=1) -> next(!b1));
12 asm G ((b2 and f=2) -> next(!b2));
13 asm G ((b3 and f=3) -> next(!b3));
14

15 // Request must remain while unsatisfied
16 asm G ((b1 and f!=1) -> next(b1));
17 asm G ((b2 and f!=2) -> next(b2));
18 asm G ((b3 and f!=3) -> next(b3));
19

20 // Lift is initially at lowest floor
21 gar f=1;
22

23 // Always stay at same floor or move to adjacent floor
24 gar G (f>=next(f)-1 and f<=next(f)+1);
25

26 // Do not move up when there are no requests
27 gar G (f<next(f)) ->(b1 or b2 or b3);
28

29 // Eventually grant each request
30 gar GF (b1 -> f=1);
31 gar GF (b2 -> f=2);
32 gar GF (b3 -> f=3);
33

34 // Visit every floor infinitely often
35 gar GF f=1;
36 gar GF f=2;
37 gar GF f=3;

Listing 1
LIFT CONTROLLER SPECIFICATION, ADOPTED FROM [23]

only to unrealizable cores, but, in principle, to any similar
analysis of specifications with higher-level constructs that are
reduced to GR(1). We consider this generality a nice advantage
of our work, with possible future applications beyond the focus
of the present paper.

We implemented our ideas on top of Spectra, a rich
specification language and open source tool set for reactive
synthesis [20]. All our algorithms are implemented on top of,
and compared to, recently suggested heuristics for realizability
and core computations for GR(1) [13]. We validated and
evaluated our work on benchmarks from the literature. The
evaluation shows that QuickCore is in almost all cases faster
than previous algorithms and that many specifications indeed
include more than one core. It further shows that Punch
is much faster than a competing naive algorithm, and that
it is able to compute almost all cores for the SYNTECH
benchmarks in reasonable times.

Means to deal with unrealizability of temporal specifica-
tions have been studied in the literature. Beyond unrealizable
cores [15], these also include different approaches to counter-
strategy generation [16], [22] and assumption refinement or
repair [2], [8], [21]. We discuss related work in Sect. IX.

II. RUNNING EXAMPLE

As a running example, we use a lift specification (see
Lst. 1), taken from [23], which has appeared in several variants
in previous GR(1)-related papers [2], [7], [8], [25]. The
specification is written in Spectra format [20], [28]. It is small

and simple, to fit the paper presentation. In our evaluation we
have used larger and more complex specifications, taken from
benchmarks.

The specification models a controller for a three floors
lift. The lift has three request buttons, one on each floor.
Requests are represented by environment variables b1, b2,
and b3, which may be independently true or false. The current
floor of the lift is represented by the system variable f. The
environment is required to initially have no requests (l. 8),
turn off any granted request at the next step (ll. 11-13), and
keep ungranted requests (ll. 16-18). The system is required to
start the lift on the first floor (l. 21), and to disallow the lift to
move more than one floor at a time (l. 24). The system is also
required not to move up when there are no requests (l. 27),
to eventually grant every request (ll. 30-32), and to make sure
every floor is visited infinitely often (ll. 35-37).

The specification is unrealizable but it is not easy to see why
and debug it. So, the engineer may want to employ a fault-
localization approach and find an unrealizable core, a locally
minimal subset of guarantees that is sufficient for unrealiz-
ability. A modified specification with only these guarantees is
already unrealizable; removing any one guarantee from that
specification, will render it realizable.

By running our new algorithm QuickCore the engineer
finds that the set of guarantees in lines {21,27,36} is a core.

However, an unrealizable core is not necessarily unique, i.e.,
the specification may induce additional unrealizable cores. Our
new algorithm Punch, first finds the above core, then finds
that the guarantee in line 27 is the intersection of all the cores,
and finally reports all five remaining cores, namely {21,27,37},
{27,35,36}, {27,35,37}, {27,36,37}, and {24,27,30,37}. As
our evaluation shows, having more than one core is indeed
rather common.

Note that the early detection of the intersection of all
the cores indicates whether additional cores exist. Moreover,
the intersection is of interest, since making the specification
realizable by removing or weakening only one guarantee is
only possible with the guarantees in the intersection. Finally,
the size of the intersection serves as a lower bound on the size
of any of the cores induced by the specification.

III. PRELIMINARIES

A. LTL, GR(1), and Realizability

We use a standard definition of linear temporal logic (LTL),
e.g., as found in [7], over present-future temporal operators
X (next), U (until), F (finally), and G (globally), and past
temporal operator H (historically), for a finite set of Boolean
variables V . LTL formulas can be used as specifications of
reactive systems, where atomic propositions are interpreted
as environment (input) and system (output) variables. An
assignment to all variables is called a state.

GR(1) is a fragment of LTL. A GR(1) specification contains
initial assumptions and guarantees over initial states, safety
assumptions and guarantees relating the current and next
state, and justice assumptions and guarantees requiring that an
assertion holds infinitely many times during a computation.

26

We use the following abstract syntax definition of a GR(1)
specification taken from [23].

Definition 1 (Abstract syntax of a specification). A GR(1)
specification is a tuple Spec = 〈Ve, Vs, D,Me,Ms〉, where Ve
and Vs are sets of environment and system variables respec-
tively, D : Ve ∪ Vs → Doms assigns a finite domain to each
variable1, and Me and Ms are the environment and system
modules. A module is a triplet M = 〈I, T, J〉 that contains
sets of initial assertions I = {In}in=1, safety assertions T =
{Tn}tn=1, and justice assertions J = {Jn}jn=1 of the module,
where i = |I|, t = |T | and j = |J |. The set of elements of
module M = 〈I, T, J〉 is BM = I ∪{G Ti}ti=1 ∪{GF Ji}

j
i=1.

Given a set Z of variables, Z ′ = {Xv|v ∈ Z} contains a
copy of its variables at the next state. Let Me = 〈Ie, Te, Je〉,
Ms = 〈Is, Ts, Js〉, and V = Ve ∪ Vs. Then, the elements
of Ie, Te, Je, Is, Ts and Js are propositional logic expressions
over Ve,V ∪ V ′

e ,V,V,V ∪ V ′ and V respectively.
GR(1) has efficient symbolic algorithms for realizability

checking and controller synthesis, presented in [7], [25].
For this a game structure of a two-player game G =
〈V,X ,Y, θe, θs, ρe, ρs, ϕ〉 is defined. The GR(1) game has a
set of variables V = Ve∪Vs, environment and system variables
(X = Ve and Y = Vs resp.), environment and system initial
states (θe = ∧d∈Ied and θs = ∧d∈Isd resp.), environment and
system transitions (ρe = ∧t∈Te

t and ρs = ∧t∈Ts
t resp.), and

a winning condition ϕ =
∧

j∈Je
GFj →

∧
j∈Js

GFj.
A GR(1) specification is realizable, i.e., allows an imple-

mentation, iff the system wins the game. Roughly, this means
that if the environment keeps all initial assumptions then
the system should keep all initial guarantees, as long as the
environment keeps all safety assumptions the system should
keep all safety guarantees, and in all infinite plays, if the
environment keeps all justice assumptions the system should
keep all justice guarantees.

For this the algorithm of [7], [25] computes a winning
region which is a set of winning states from which the system
has a winning strategy. A winning strategy prescribes the
outputs of a system for all possible environment choices that
allows the system to win. The winning region is computed
according to a fixed-point computation over transitions and
justices alone. GR(1) realizability checks if for all initial
environment choices the system can enter a winning state.
GR(1) synthesis computes a winning strategy, if one exists.

B. Monotonic Criteria and Cores

Given a set E, and a monotonic criterion on subsets of E, a
core is a local minimum that satisfies the criterion. Formally:

Definition 2 (Monotonic criterion). A Boolean criterion over
subsets of E is monotonic iff for any two sets A,B such that
A ⊆ B ⊆ E, if A satisfies the criterion then B satisfies the
criterion.

1The use of any finite domain rather than only Boolean variables is
straightforward and supported by many tools, including Spectra.

Definition 3 (Core). Given a set E and a monotonic criterion
over its subsets, a set C ⊆ E is a core of E iff C satisfies the
criterion, and all its proper subsets C ′ ⊂ C do not satisfy the
criterion.

Unrealizability is monotonic w.r.t. subsets of guarantees,
i.e., adding guarantees to an unrealizable specification keeps it
unrealizable. Intuitively, this is so because adding guarantees
strengthens the constraints on the system, and does not change
the constraints on the environment. Formally:

Proposition 1 (Unrealizability is monotonic). Given two
specifications, Spec1 = 〈Ve, Vs, D,Me,M

1
s 〉, and Spec2 =

〈Ve, Vs, D,Me,M
2
s 〉, such that BM1

s
⊆ BM2

s
. Then, if Spec1

is unrealizable, Spec2 is also unrealizable.

C. Existing Domain-Agnostic Minimization Algorithms

We recall three existing domain-agnostic minimization al-
gorithms from the literature, namely delta debugging [29]
(DDMin), QuickXplain [14], [24], and linear minimization,
which we denote by LinearMin. All three algorithms find
a core of a set E, given a monotonic criterion check.

Algorithm 1 The delta debugging algorithm DDMin from [29]
as a recursive method that minimizes a set of elements E by
partitioning it into n parts (initial value n = 2)

1: for part ∈ partition(E,n) do
2: if check(part) then
3: return ddmin(part, 2)
4: end if
5: end for
6: for part ∈ partition(E,n) do
7: if check(E \ part) then
8: return ddmin(E \ part, max(n− 1, 2))
9: end if

10: end for
11: if n ≥ |E| then
12: returnE
13: end if
14: return ddmin(E, min(|E|, 2n))

We show a pseudo-code for DDMin in Alg. 1. The inputs
for the algorithm are a set E and the number n of parts of
E to check. The algorithm starts with n = 2 and refines E
and n in recursive calls according to different cases (ll. 3, 8,
and 14). The computation starts by partitioning E into n
subsets and evaluating check on each subset part and its
complement. If check holds (l. 2 or l. 7), the search is
continued recursively on the subset part or on its complement
respectively. If check holds neither on any subset part nor
on the complements, the algorithm increases the granularity of
the partitioning to 2n (l. 14) and recurs, or terminates when
the granularity is not smaller than the size of E (l. 12). DDMin
has quadratic worst-case complexity and logarithmic best-case
complexity in terms of |E|.
QuickXplain is a recursive divide and conquer algorithm

that minimizes each half, one after the other, in an incremental
way (see Sect. III-D). It has a worst-case complexity of O(k+

klog(|E|
k)), where k is the size of the largest core. To the

best of our knowledge, QuickXplain was never previously

27

applied to computing unrealizable cores for reactive systems
specifications.

Finally, LinearMin was originally suggested in [11],
and compared with DDMin in [15]. LinearMin goes over
elements of the input set one by one, and removes an element
iff the criterion holds for the set without the element. An
example of LinearMin can be found in ll. 11-16 of Alg. 2.
The complexity of LinearMin is linear in |E|.
D. Minimization With a Base and Incremental Core Compu-
tation

We define a notion of minimization with a base as follows.

Definition 4 (Minimization with a base). Assume a set
E of elements, two disjoint subsets Base,A ⊆ E,
and a minimization algorithm Alg that detects cores ac-
cording to a monotonic criterion check. Assume also
that the set Base ∪ A satisfies the criterion. We denote
by MinWBase(Alg,E,Base,A, check) an algorithm that
computes a locally minimal A′ ⊆ A s.t. Base ∪ A′ satisfies
the criterion, by applying Alg to A, and replacing every
check(X) operation with check(Base ∪X).

Monotonicity is ensured for minimization with a base
because A1 ⊆ A2 implies Base ∪A1 ⊆ Base ∪A2.

Note that Base does not have to be a subset of a core
of E, and it may contain a core. Base only has to satisfy
A ∩Base = ∅, and that Base ∪A satisfies the criterion. The
following holds trivially.

Proposition 2. Given the notations of Definition 4,
(i) If Base is a subset of all cores of E, then Base ∪A′ is

a core of E.
(ii) If Base contains a core of E, then A′ = ∅.

Finally, we use the idea of incremental minimization in
some of our algorithms. Lemma 1 states that incrementally
minimizing two subsets that partition a set produces a core.

Lemma 1 (Incremental Core Computation). Let A and B
be disjoint sets such that E = A ∪ B satisfies a monotonic
criterion. Let A′ be a locally minimal subset of A such that
A′ ∪ B satisfies the criterion, and B′ be a locally minimal
subset of B such that A′ ∪ B′ satisfies the criterion. Then
A′ ∪B′ is a core of E.

Proof. By definition A′ ∪ B′ satisfies the criterion. A′ exists
because E satisfies the criterion, and B′ exists because A′∪B
satisfies the criterion.

To prove that A′ ∪ B′ ⊆ E is locally minimal, let x ∈
A′∪B′. If x ∈ A′ then by definition of A′, (A′\{x})∪B does
not satisfy the criterion, thus by monotonicity (A′ \ {x})∪B′

does not satisfy the criterion either. Otherwise x ∈ B′, and by
definition of B′, A′∪ (B′ \{x}) does not satisfy the criterion.

IV. QUICKCORE
We are now ready to present our first contribution, the

QuickCore algorithm, which aims to accelerate unrealiz-
able core computations. The correctness and efficiency of

QuickCore rely on the following observations. First, that
unrealizability is monotonic (see Prop. 1). Second, that it is
possible to compute a core incrementally (see Lemma 1).
Third, that checking the realizability of specifications with
fewer justices is typically much faster. Fourth, that removing
justice assumptions from an unrealizable specification that has
no justice guarantees preserves unrealizability and preserves
winning regions. And finally, that minimizing the initial as-
sertions requires only a single computation of the winning
region of the system, plus a small constant number of symbolic
operations.

A. QuickCore Algorithm Overview

Roughly, QuickCore begins by trying to remove as many
justices as possible. Therefore, if no justice guarantees are
required for a core it removes all of them, and all justice
assumptions. Otherwise, it minimizes justice guarantees alone
using DDMin with a base. Later, QuickCore minimizes
safety guarantees using DDMin with a base. Finally, Quick-
Core minimizes all initial guarantees using LinearMin.

Algorithm 2 presents QuickCore in pseudo-code.
QuickCore minimizes guarantees, group by group, accord-
ing to their type; first justices, then safeties, and ending with
initial assertions. It begins with a realizability check of the
specification without justice guarantees in line 1. If the spec-
ification without these is realizable, at least one such justice
guarantee is required for unrealizability, and so it minimizes
justice guarantees alone (i.e., keeping all initial assertions and
safeties) using DDMin with a base in line 2. Otherwise, it
determines that the core it computes has no justice guarantees
(line 4) and removes all environment justices in line 5 before
it continues to look for system safeties and initial assertions.

With a specification that has a minimized set of justice
guarantees and maybe no environment justices, QuickCore
uses DDMin with a base in order to minimize the set of safeties
alone (line 7). It keeps initial assertions and the minimized
justice guarantees unchanged.

At the last stage of QuickCore, it computes the winning
region of the system in line 8 for the specification with the
minimized set of justices and safeties. It now uses linear mini-
mization in the loop in lines 11-16, going over initial assertions
one by one, and checking if the system wins without each. If
so, we keep this initial assertion because we want to maintain
unrealizability. Checking this is done with SysWin(θe, θs, w),
which determines if for every possible environment choice
satisfying θe, there is a choice for the system from θs that is
inside the winning region w. This is computed with a small,
constant number of symbolic operations.

Remark 1. Realizability checks in our implementation use the
performance heuristics suggested in [13]. QuickCore must
disable two of these heuristics, namely, fixed-point recycling
and early detection of unrealizability, before line 8, in order to
avoid an incomplete winning region computation. For example,
the latter heuristics may over-approximate the winning region
by halting the outer greatest fixed-point when the winning

28

region becomes small enough to ensure that the system loses.
This is good enough for realizability checks, so we use it safely
before line 8, yet using it from that line on may wrongly keep
some initial guarantees.

Example 1. For the specification in Lst. 1 (see Sect. II),
QuickCore finds that at least one justice is required for
a core in line 1, and detects the justice in line 36 of the
specification with the minimization in line 2. Given this justice,
the safety in line 27 of the specification is detected in line 7.
Lines 11-16 decide that given the above two guarantees, the
only initial guarantee of the specification (line 21) is required
for the core. The resulting core is thus the set of guarantees
in lines {21,27,36}.

Algorithm 2 QuickCore Given an unrealizable specification find
a locally minimal subset of guarantees that keeps it unrealizable
Require: An unrealizable specification S = 〈Ve, Vs, D,Me,Ms〉, where

Me = 〈Ie, Te, Je〉 and Ms = 〈Is, Ts, Js〉
Ensure: An unrealizability core of S

. Begin by minimizing only justice guarantees
1: if Realizable(〈Ve, Vs, D,Me, 〈Is, Ts, ∅〉〉) then
2: Jc ← MinWBase(DDMin, BMs , Is ∪ Ts, Js,¬Realizable(S))
3: else
4: Jc ← ∅
5: Me ← 〈Ie, Te, ∅〉
6: end if

. Continue with minimizing only safety guarantees
7: Tc ← MinWBase(DDMin, BMs , Is ∪ Jc, Ts,¬Realizable(S))

. End with minimizing only initial guarantees
8: w ← ComputeWinRegion(〈Ve, Vs, D,Me, 〈Is, Tc, Jc〉〉)
9: Ic ← Is

10: envIni← ∧d∈Ied
11: for i ∈ Ic do . Use linear minimization for initial guarantees
12: Ic ← Ic \ {i}
13: if SysWin(envIni,∧d∈Icd,w) then
14: Ic ← Ic ∪ {i}
15: end if
16: end for
17: return Ic ∪ Tc ∪ Jc

B. Correctness of QuickCore

QuickCore is correct in the sense that it detects an
unrealizable core of the guarantees. To prove correctness we
will show that (1) Finding cores of subsets of guarantees
one by one yields a valid core; (2) Removing all justice
assumptions from a specification with no justice guarantees
impact neither the realizability of any subset of guarantees,
nor the winning region of the system; and (3) It is enough
to compute the winning region of the system once when
minimizing initial guarantees.

(1) A core can be computed in a compositional manner,
by minimizing pairwise disjoint subsets one by one, using an
extension by induction of Lemma 1 to any number of finite
pairwise disjoint sets. Specifically, QuickCore partitions the
set of guarantees into three sets, and minimizes each set with
established algorithms for local minimum, namely, DDMin and
LinearMin.

(2) Removing all justice assumptions when no justice
guarantees are needed for a core does not affect the overall

correctness of QuickCore, because realizability checks and
computation of winning regions of the system are unchanged.

Intuitively, in an unrealizable specification with no justice
guarantees, the environment can (and must) win with finite
plays of the game. Thus, even though generally removing
assumptions may turn a realizable specification into an unre-
alizable one, this does not happen when removing justice as-
sumptions from a specification with no justice guarantees. For
such specifications, when the system does not lose finitely, it
wins the infinite games, regardless of any justice assumptions.
Accordingly, all environment justices in this case are unhelpful
in the sense defined in [11], i.e., assumptions whose removal
does not change the realizability induced by any subset of
the guarantees. Note that having several assumptions, each
unhelpful alone, does not mean that they are unhelpful as a
set, yet justice assumptions in this case are unhelpful as a set.

Formally, the game structure of the GR(1) game [7] for
both specifications is the same, because in GR(1) games,
justices appear only in the winning condition

∧
j∈Je

GFj →∧
j∈Js

GFj. When there are no justice guarantees, this con-
dition is

∧
j∈Je

GFj → >, which is an LTL tautology
regardless of the justice assumptions. This ensures both the
equirealizability, which is needed for the correctness of the
minimization of safeties in line 7, and the correctness of the
winning region computation in line 8.

(3) Finally, the correctness of the minimization of initial
guarantees follows from the fact that checking realizability
has two parts. We first compute the winning region of the
system in the GR(1) game, and then check if the system can
reach it given all possible environment initial choices. Since
the winning region depends only on safeties and justices, and
we keep them unchanged at this phase of QuickCore, it is
enough to compute the winning region only once.

C. Complexity of QuickCore

Consider a specification with n guarantees. The worst-case
complexity of DDMin is O(n2) realizability checks [29]. The
same holds for QuickCore.

V. PUNCH

We now present our second contribution, the Punch algo-
rithm for computing all cores.
Punch finds all cores of a set E according to a monotonic

criterion. The algorithm is generic in the sense that it requires
a check that evaluates the monotonic criterion, and a com-
puteCore(E′, B) that provides a core in E′ ⊆ E, given E′

that satisfies the criterion, and a set B ⊆ E′ that is a subset of
all the cores in E′. In particular, Punch detects all minimal
size cores. As a byproduct, Punch provides an efficient way to
find the intersection of all the cores, without having to compute
all of them. This intersection provides an early estimate of the
size of the smallest cores, and, in particular, an early verdict
on the existence of additional cores.

Algorithm 3 presents Punch in pseudo-code, as a recursive
algorithm that takes two parameters as input, a set E that has
at least one core, and a set K that is a subset of all the cores

29

Algorithm 3 Punch Find all cores according to a monotonic check
Require: A set E of elements such that check(E)=>
Require: A set K ⊆ E that is a subset of all cores in E
Ensure: All cores in E

1: C0 ← computeCore(E,K)
2: AllCores← {C0}
3: CI ← ∅
4: Cont← ∅
5: for x ∈ C0 \K do
6: if check(E \ {x}) then
7: add x to Cont
8: else
9: add x to CI

10: end if
11: end for
12: for x ∈ Cont do
13: AllCores← AllCores ∪ Punch(E \ {x},K ∪ CI)
14: end for
15: return AllCores

in E. The recursive algorithm finds all the cores in E. Thus,
Punch (E, ∅) returns all the cores in E.

The algorithm finds its first core C0 ⊆ E by applying
computeCore in line 1. Later, in lines 5-11, it splits all the
elements x ∈ C0\K into two sets according to whether E\{x}
satisfies the criterion. Cont gets all positives and CI gets all
negatives. Finally, in lines 12-14, for all elements x ∈ Cont, it
considers the punched sets E \ {x} (hence the name Punch),
and recursively looks for all cores inside them, while adding
CI to K. By collecting all such cores into AllCores the
computation ends.

Example 2. Applying Punch to the example in Lst. 1 finds
the six cores of the run described in Sect. II. Specifically, that
run is of PQC(BMs , ∅) (see Sect. V-C).

Two cores consist of the guarantees in lines 21, 27, and one
of the guarantees in lines 36 and 37. Indeed, if the lift starts
at the first floor, and moves up only when there are requests, it
may never be able to reach the other two floors. Three other
cores consist of the guarantee in line 27, and pairs of the
guarantees in lines 35-37, which require the elevator to visit
two different floors infinitely. Indeed, the system can be forced
to visit the lower of the two floors, and not to go up (line
27). Finally, the guarantees in lines 24, 27, 30, and 37 allow
the environment to force the lift to the first floor (line 30), the
system then may or may not move up to the second floor (line
24), which allows the environment to keep the lift bellow the
third floor (line 27), and thus fail the guarantee to visit that
floor (line 37).

A. Correctness of Punch

First we prove the following Lemma.

Lemma 2. In running Punch (E, ∅), after the loop in lines
5-11, the set CI contains the intersection of all cores in E.

Proof. K = ∅, thus CI = {x ∈ C0|check(E \ {x}) = ⊥}.
Moreover, check(E \ {x}) = > iff E \ {x} contains a core
iff x does not belong to all the cores in E.

We now show that the preconditions hold in all recursive
calls, and that Punch is sound and complete.

The Preconditions of Punch are Met in All Recursive Calls:
Punch requires that E satisfies the criterion, and that K is a
subset of all the cores in E. The two preconditions must hold
for the recursive calls in line 13.

According to line 6, ∀x ∈ Cont check(E \ {x}) = >,
which satisfies the first precondition. According to lines 5
and 9, for all x ∈ Cont, K ∪ CI ⊆ E \ {x}. Now, by
assumption, K is a subset of all the cores in E, and by similar
reasoning to that of Lemma 2, CI is also a subset of all the
cores in E. In particular, for all x ∈ Cont, K ∪ CI must be
a subset of all the cores in E \ {x}. This satisfies the second
precondition.
Punch is Sound: A set is added to our list of cores when

it is detected by computeCore in recursive calls at line 1 of
Punch. The preconditions of computeCore are met because
they match the preconditions of Punch.
Punch is Complete: This follows from Thm.1 below.

Theorem 1. Let C be a core of a set E. In running
Punch (E,K) such that K is a subset of all the cores in
E, we will have C ∈ AllCores in line 15 of Alg. 3.

Proof. By induction on n = |E|, notice that for n = 1 there
must be exactly one core of size 1, and the algorithm is correct
for both possible choices of K.

Assume by induction that the claim is correct for all sets
strictly smaller than n, and fix a set |E| = n with C ⊆ E a
core of E. If C is detected in line 1, C = C0 and we are done.
Otherwise, C 6= C0. Since C is a core, and C0 satisfies the
criterion, we know that C0 6⊆ C, thus there is an x ∈ C0 such
that x /∈ C. Moreover, x /∈ K because K ⊆ C, so x ∈ C0\K.
Since C is a core of E and x /∈ C, C is a core of E \ {x}.
This means (1) that E \ {x} satisfies the criterion, which in
turn means that x ∈ Cont; and (2) since |E \ {x}| < n, by
induction C is found as a core by the call to Punch in line 13,
when the x of the loop coincides with the x in the proof. This
completes the proof.

B. Complexity of Punch

In general, the number of cores of a set according to a
monotonic criterion may be exponential in the size of the
set [4]. Thus, the worst-case complexity of Punch and of any
other algorithm that would enumerate all cores, is exponential.

Lemma 2 shows that obtaining the intersection of all the
cores requires only one core computation plus a number of
realizability checks the size of the core that we found.

C. Employing Punch to Unrealizable Cores

Employing Punch to compute all unrealizable cores re-
quires an implementation of check to check for un-
realizability. We created two implementations of Punch,
which we label PUD and PQC. In PUD, we implemented
computeCore using DDMin with a base. Specifically,
computeCore(E,K) in line 1 of Punch is implemented
with K ∪MinWBase(DDMin, E,K,E \K, check). In PQC,
we implemented computeCore with an extended version

30

of QuickCore that supports minimization with a base.
The version of QuickCore minimizes justices, safeties, and
initial assertions that do not belong to a given base set.
Prop. 2(i) ensures the correctness of both implementations of
computeCore.

VI. MEMOIZATION

We implemented memoization for our algorithms, which
allows us to avoid checking the criterion whenever the check is
redundant, based on the results of prior checks of the criterion
and on the criterion’s monotonicity.

Basically, we keep a set of prior positive checks and a set of
prior negative checks of the criterion. Whenever a check for
a set is about to occur, if we already have a positive criterion
subset, then we know the set is positive and we avoid actually
checking it. Similarly, if we already have a negative superset
then we know the set is negative. Only if memoization fails
we perform an actual check of the criterion and store the result
as positive or negative accordingly.

Two additional features accelerate the required subset
checks. First, we keep each memoized set sorted, which
enables linear time subset checks. Second, we keep the collec-
tions of positive and negative results sorted according to the
size of the memoized sets, and look for subsets and supersets
of relevant size only (this is correct because a larger set cannot
be a subset of a smaller set, i.e., if |B| > |A| then B 6⊆ A).

A. Memoization in QuickCore

Realizability checks are the most computationally expensive
parts of QuickCore. Almost all these checks occur as a part
of DDMin runs within it. We use the DDMin implementation
in Spectra. In this generic implementation of DDMin, sets for
which the criterion failed are recorded, and we avoid checking
them and their subsets because monotonicity ensures that
they must fail as well. This heuristics was already mentioned
in [29], and implemented in [15] and in [13] for unrealizable
cores. On top of it, we use the memoization mechanism we
described at the beginning of this section.

B. Memoization in Punch

We seek to avoid as many as possible calls to check and
to computeCore.

For check, we use the memoization mechanism we de-
scribed in the beginning of this section, and add all cores
found by computeCore to the set of positive sets. In PQC
and PUD (see Sect. V-C) all check operations share the same
memoization, whether the ones invoked at line 6 of Punch
or at their particular implementations of computeCore.

For computeCore, when we look for a core of a set E
(see line 1 of Punch), we use the first core that is a subset of
E in previously found cores, if one exists. This is important
because, for example, having two disjoint cores means that
without memoization, we would run a core computation to
unnecessarily seek the second core for every element of the
first core. Memoization ensures that the number of times we
run an actual core computation in Punch is equal to the
number of cores in E.

1 sys boolean b;
2

3 monitor boolean a {
4 !a; // initially false
5 G a->next(a); // once true, remain true forever
6 }
7

8 gar b;
9 gar G b iff a;

Listing 2
AN UNREALIZABLE SPECIFICATION WITH A MONITOR

VII. BEYOND PURE GR(1) SPECIFICATIONS

We now present our third contribution, correct and efficient
core computations for specifications that are reducible to
GR(1), yet include language constructs beyond pure GR(1),
such as patterns, monitors, and past LTL formulas.

A. Reducing Higher-Level Constructs into Pure GR(1)

Recall that many higher-level language constructs can be
reduced to pure GR(1) form by replacing them with additional
auxiliary variables as well as new guarantees or assumptions.
See, e.g., [19], [20].

A pattern (e.g., the response pattern G (p→ F q), which is
not in pure GR(1) form) is reduced according to a deterministic
Buchi automaton that represents it. The states of the automaton
are encoded using new auxiliary variables, its initial state is
encoded using an auxiliary assertion about the initial values
of the auxiliary variables, its transitions are encoded using an
auxiliary safety, and its acceptance condition is encoded into
a justice (assumption or guarantee).

Monitors and counters are constructs that track a certain
value. They are reduced by adding auxiliary variables that
encode that value, and optional auxiliary elements that are
assertions about its initial value, and its current and next values
(safeties). For example, the monitor in Lst. 2 adds one Boolean
auxiliary variable a, one auxiliary initial assertion (line 4), and
one auxiliary safety (line 5).

The reduction is completed by considering auxiliary vari-
ables and elements as system variables and guarantees respec-
tively. This allows one to apply GR(1) realizability checks and
synthesis.

B. A Simple but Incorrect Approach

One may suggest that core computations would minimize
the GR(1) system module elements, and then trace back to
the elements that induced them in the original specification.
This approach, however, is incorrect. As an example, for the
unrealizable specification in Lst. 2, the (incorrect) core com-
puted by this approach contains only lines 8 and 9. The reason
is that only system elements are minimized. The incorrect
computation ignores the auxiliary monitor initial assertion at
line 4 although without this assertion, the specification is real-
izable! If unrealizability is a result of auxiliary elements alone,
we may even incorrectly get an empty core (see Prop. 2(ii)).
This means that we must also consider auxiliary elements for
minimization, and at the same time avoid redundant ones that
unnecessarily complicate the reduced specification and inflate
the state space.

31

C. Our Approach

We have implemented a framework to correctly handle spec-
ifications that include high-level constructs. The framework
relies on two-way traceability between the high-level language
construct and the GR(1) elements it reduces to.

Specifically, each distinguishable specification construct, as
written by the engineer, is assigned an ID that represents all of
the GR(1) elements it reduces to. Thus, all elements induced
from patterns and past LTL operators are assigned the ID of
the high-level element they belong to, while each assertion
inside monitors and counters has its own ID.

Our implementation builds system and environment mod-
ules according to subsets of IDs. Core computation begins with
a set of all environment IDs for the assumptions, and a set of
auxiliary and system IDs for the guarantees. It performs realiz-
ability checks given subsets of IDs. For example, QuickCore
may eliminate all justice assumptions (line 5). If any of these
justice assumptions were induced by patterns, the produced
environment module avoids not only these justices but also
their matching pattern-induced initial and safety assertions, as
well as the pattern-induced auxiliary variables that encoded
the states of this pattern’s automaton. These are the exact sets
of elements and variables that match the subset of high-level
assumptions.

In Lst. 2, the correct core we compute in this way includes
lines 4, 8, and 9. Together, they are sufficient for unrealizabil-
ity, and each of them is necessary.

VIII. EVALUATION

We have implemented our ideas on top of Spectra [20],
[28], with the performance heuristics from [13]. Our im-
plementation includes QuickCore and Punch. For the
purpose of evaluation, it also includes an instance of the
DDMin algorithm implemented in Spectra, an implementation
of QuickXplain [14], [24], and a naive top down algorithm
for computing all cores we label TD (see below). All the above
implementations take advantage of the memoization described
in Sect. VI.

Means to run our implementation, all specifications used in
our evaluation, and all data we report on below, are available
in supporting materials for inspection and reproduction [1].
We encourage the interested reader to try them out.

The following research questions guide our evaluation.
R0 Which existing domain-agnostic minimization algorithm
is the most efficient in our setup?
R1 Is QuickCore efficient, in terms of the number of real-
izability checks and running time, in comparison to previous
algorithms?
R2 Is QuickCore effective, in terms of the size of the core
it finds, in comparison to previous algorithms?
R3 Are specifications with multiple unrealizable cores com-
mon and how many such cores do most specifications have?
R4 Is Punch efficient in detecting all cores?

Below we report on the experiments we have conducted in
order to answer the above questions.

Table I
EFFICIENCY OF DDMIN VS. QUICKXPLAIN

Spec set ≤ 0.1s 0.1-1s 1-10s 10-100s ≥ 100s
SYN15U 0.10 0.48 - - -
SYN17U 0.08 0.28 0.41 0.52 0.84
AM+GN 0.10 0.40 0.42 0.80 0.99

A. Corpus of Specifications

We use the benchmarks SYNTECH15 and
SYNTECH17 [13], [20], [28], which include a total of
227 specifications of 10 autonomous Lego robots, written
by 3rd year undergraduate computer science students in
a project class taught by the authors of [13]. We use all
the unrealizable GR(1) specifications from these, i.e., 14
unrealizable specifications from SYNTECH15 (which we
label SYN15U) and 26 unrealizable specifications from
SYNTECH17 (which we label SYN17U).

In addition, we used 5 different sizes of AMBA [5] and of
GENBUF [6] (1 to 5 masters, 5 to 40 senders resp.), from
each of the 3 variants of unrealizability described in [11].
We label these 30 specifications by AM+GN. Note that these
specifications are structurally synthetic and artificially inflated.
We therefore report on their performance (in R0, R1, and R4)
but not on their more qualitative aspects (R2 and R3). Still,
the supporting materials [1] include all the data we collected.

B. Validation

We have implemented an automatic test that checks that
every core that we found is indeed a locally minimal subset of
the guarantees that maintains unrealizability. We run this check
over logs of cores produced by our algorithms, independent
of their original detection. We also verified that the different
algorithms that compute all the cores of a specification (i.e.,
ones that terminated before the timeout was reached) found
the same number of cores.

C. Experiments Setup

We ran all experiments on an ordinary PC, Intel Xeon W-
2133 CPU 3.6GHz, 32GB RAM with Windows 10 64-bit OS,
Java 8 64Bit, and CUDD 3 compiled for 64Bit, using only a
single core of the CPU.

Times we report are average values of 10 runs, measured
by Java in milliseconds. Although the algorithms we deal
with are deterministic, we performed 10 runs since JVM
garbage collection and BDD dynamic-reordering add variance
to running times.

We used a timeout of 10 minutes for the algorithms that
compute all cores, and no timeout for the algorithms that find
a single core.

D. Results: Existing Domain-Agnostic Algorithms in Our
Setup

In Sect. III-C we discussed three existing domain-agnostic
algorithms for finding a local minimum given a monotonic
criterion. We also noted that DDMin was compared and found
superior to LinearMin in [15].

32

Table II
EFFICIENCY OF QUICKCORE VS. DDMIN

Spec set ≤ 0.1s 0.1-1s 1-10s 10-100s ≥ 100s
SYN15U 0.79 0.51 - - -
SYN17U 1.38 0.37 0.54 0.06 0.015
AM+GN 1.53 0.63 0.71 0.30 0.20

Table I presents the performance of DDMin versus Quick-
Xplain. The columns show the geometric mean of the ratio
of the running times (namely, the running time of DDMin
divided by that of QuickXplain), dissected by the running
time range obtained for DDMin. We use ‘-’ to mark cases
in which no specifications had DDMin running time within
the corresponding range. For example, the number 0.28 in the
second row means that for SYN17U specifications for which
a core was found by DDMin in between 0.1 and 1 seconds,
the geometric mean indicates that DDMin was more than three
times faster than QuickXplain.

The results show that DDMin is more efficient than Quick-
Xplain on all our corpus (although the gap lessens with
scale). This justifies our choice of DDMin as the domain-
agnostic minimization algorithm inside QuickCore and
PUD. It also justifies our choice to use DDMin as the baseline
algorithm for examining the efficiency of QuickCore (see
R1 below).

To answer R0: DDMin is the most efficient domain-agnostic
single core computation algorithm in our setup.

E. Results: Efficiency of QuickCore versus DDMin

Table II presents the performance of QuickCore versus
DDMin. We chose to compare QuickCore with DDMin
because DDMin is a well known and widely used algorithm
for core computation over a monotonic criteria, and because
it was previously used in the context of unrealizable cores
for GR(1) specifications. Moreover, in R0 above we showed
that DDMin is the most efficient domain-agnostic single core
algorithm on our corpus.

The columns show the geometric mean of the ratio of
the running times (namely, the running time of QuickCore
divided by that of DDMin), dissected by the running time
range obtained for DDMin, for all specifications in each set.
We use ‘-’ to mark cases in which no specifications had
DDMin running time within the corresponding range. For
example, the number 0.30 in the third row means that for
AM+GN specifications for which a core was found by DDMin
in between 10 and 100 seconds, the geometric mean indicates
that QuickCore was more than three times faster than
DDMin.

The results show that QuickCore is in most cases much
faster than DDMin. This improvement gets better with scale,
i.e., almost consistently, the slower DDMin, the faster Quick-
Core becomes relative to it. The acceleration is most notice-
able for SYN17U specifications for which DDMin require over
10 seconds. For those specifications QuickCore was faster
than DDMin by well over an order of magnitude.

Table III
CORE SIZES

Spec set Core Size QC DDMin QX Global
SYN15U 19% 5.14 5.07 5.21 5.07
SYN17U 18% 4.5 4.38 4.5 3.92

Table IV
NUMBER OF CORES

Spec set S M ≥ 5 ≥ 10 ≥ 50 ≥ 100
SYN15U 6 8 5 2 1 0
SYN17U 6 20 9 7 4 4

The only two categories in which the running time of
QuickCore is worse than that of DDMin is for SYN17U
and AM+GN specifications whose DDMin running time is at
most 100 milliseconds. Since for this range running times are
very small, we do not consider it to be a major weakness of
QuickCore.

We also computed the actual number of realizability checks
(i.e., without realizability checks avoided by memoization, see
Sect. VI) of QuickCore and DDMin (not shown in the
table). We found that the median reduction in the number
of actual realizability checks of QuickCore over DDMin
was 11.3%, 19.5%, and 15.4%, and over QuickXplain was
3.3%, 10.2%, and 27.6%, for SYN15U, SYN17U, and AM+GN,
respectively.

To answer R1: QuickCore typically performs fewer real-
izability checks than DDMin and QuickXplain, it is in
most cases much faster than DDMin, and the running time
improvement seems to become better with scale.

F. Results: Effectiveness of QuickCore

Table III presents core size results. Column Core size
shows the median ratio between the size of cores found
by QuickCore and the total number of guarantees in the
specification. Columns QC, DDMin, QX, and Global show
the average absolute size of the cores found by QuickCore,
DDMin, QuickXplain, and the size of the smallest core
found until the timeout by Punch, respectively.

The results show that in the SYNTECH specifications, most
of the cores found by QuickCore are over five times smaller
than the total number of guarantees in the specification. They
further show that the cores found by QuickCore have a
slightly different size than the cores found by the other
algorithms, and that all algorithms output cores that are close
in size to the size of the globally minimal core.

To answer R2: QuickCore, DDMin, and QuickXplain
are all effective in localizing unrealizability.

G. Results: Number of Cores in Specifications

Table IV presents the number of cores in the SYNTECH
specifications. Columns ‘S’ and ‘M’ show how many spec-
ifications have a single core and multiple cores, resp. The
remaining four columns show how many of these specifica-
tions have at least 5, 10, 50, and 100 cores. For example, the

33

0

5

10

15

20

25

30

SYN15U

TD

SYN15U

PUD

SYN15U

PQC

SYN17U

TD

SYN17U

PUD

SYN17U

PQC

AM+GN

TD

AM+GN

PUD

AM+GN

PQC

#
S
p
e
ci
fi
ca
ti
o
n
s

0.1s 1s 10s 100s 600s TO

Figure 1. Running times to compute all cores using TD (left columns)
PUD (center columns), and PQC (right columns), for the SYNTECH
and the AM+GN sets, divided by increasing ranges, in seconds.

number 1 in the first row under ‘≥ 50’ means that exactly
one specification of SYN15U has at least 50 cores.

To answer R3: Most SYNTECH specifications have multiple
cores. Specifications with over 50 cores exist in each set of
specifications. These results motivate the need to compute
more than one core per specification.

H. Results: Running Times of All Cores Algorithms

In order to evaluate the performance of Punch for com-
puting all unrealizable cores, we use PQC and PUD (see
Sect. V-C).

Since Punch is the first algorithm employed to compute
all unrealizable cores for temporal specifications reducible to
GR(1), as a comparison, we use a rather naive baseline we
label TD (we discuss alternative algorithms in Sect. IX).
TD is a naive top down search for all cores. For a given

subset of guarantees, if check fails, TD knows that the
subset and all its subsets are not cores. Otherwise, it continues
recursively to all subsets that exclude exactly one element. It
detects the set as a core iff all of these subsets fail check.
It memoizes subsets we already finished computing all cores
for, to avoid unnecessary recursive calls (in addition to the
memoization described in Sect. VI). To detect unrealizable
cores, check is implemented as an unrealizability check.

Figure 1 shows the running times for SYN15U, SYN17U,
and AM+GN specifications. Each specification set has three
columns, one for TD, one for PUD, and one for PQC. Each
column shows a breakdown of how many specifications com-
pleted running within 0.1, 1, 10, 100, and 600 seconds. Finally,
we mark the number of specifications that timed out (did not
complete all 10 runs within 10 minutes) with TO.

The results show that the differences between the perfor-
mance of PUD and PQC are minor, with mostly a slight
advantage to PQC. Regardless of their minor differences, the
two instances of Punch perform significantly better than TD.
The two instances of Punch were able to find all cores of
SYN15U specifications within 100 seconds, and 22 out of
the 26 of the SYN17U specifications before the timeout was

reached. This is much better than TD, which was able to
find all cores within the timeout for less than half of the
specifications. On AM+GN specifications, PUD and PQC found
all cores for 5 and 6 specifications respectively, but TD did
not complete the computation on any of the specifications.

To answer R4: Both instances of Punch are significantly
faster than TD in finding all the cores of a specification.
PQC seems slightly better than PUD.

I. Additional Results

Recall that Punch provides early detection of the intersec-
tion of all the cores (see Sect. V-B). The size of the intersection
is a lower bound on the size of the global minimum. In
practice, it provides a good early estimate of the size of
the global minimum for SYNTECH specifications. The results
show that the core intersection size is on average 76.8% and
52.5% of the smallest core found by Punch within the timeout
for SYN15U and SYN17U respectively.

J. Threats to Validity

We discuss threats to the validity of our results. First,
symbolic computations are not trivial and our implementation
of QuickCore, DDMin, QuickXplain, and Punch may
contain bugs. To mitigate, we performed a thorough validation
using all specifications available to us, see Sect. VIII-B. Sec-
ond, we have based most of our evaluation on the SYNTECH
specifications, which were created by 3rd year undergraduate
CS students with no prior experience in writing LTL specifi-
cations (collected by the authors of [20] in classes they have
taught). We further examined specifications from the AM+GN
set. We do not know if these are representative of specifications
engineers would write in practice. Third, although we have
found that cores are typically much smaller than the complete
set of guarantees (see Tbl. III, roughly 5 guarantees instead
of 25), we did not perform a user-study, with engineers, to
examine whether users will find the reported cores useful
for understanding the reasons for the unrealizability of their
specifications.

IX. RELATED WORK

A. A Single Unrealizable Core for GR(1)

Previous works have considered the computation of an unre-
alizable core for GR(1) specifications. Cimatti et al. [11] have
used LinearMin (see Sect. III-C). Konighofer et al. [15]
have used DDMin and implemented it in the RATSY synthe-
sizer. Their comparison of DDMin with LinearMin shows
that DDMin is almost always much faster than LinearMin,
with a greater advantage on larger specifications. Firman et
al. [13] have used DDMin with several performance heuristics,
including memoization, and implemented it in the Spectra
synthesizer. All these were limited to computing a single core
and did not correctly handle specifications with constructs
beyond pure GR(1). We present QuickCore to be used
instead of DDMin. We further show how to correctly handle
specifications with constructs beyond pure GR(1). We compare

34

QuickCore to Spectra’s implementation of DDMin, i.e., with
the heuristics from [13], and our evaluation provides evidence
that QuickCore is faster and scales better than DDMin.

Our choice of DDMin for both the algorithm we compare to,
and the algorithm used within QuickCore for the incremen-
tal minimization, is based both on DDMin being a well known
and widely used domain-agnostic minimization algorithm, and
on the fact that it was the choice in previous work on GR(1)
unrealizability.

There are other domain-agnostic minimization algorithms
over monotonic criteria for single cores, e.g., QuickX-
plain [14], [24]. Compared to DDMin, QuickXplain has
a better asymptotic complexity in terms of the number of
checks (see Sect. III-C). Nevertheless, as we show in our
evaluation (Sect. VIII-D), QuickXplain performs worse on
our corpus.

For temporal specifications, Schuppan [27] presented LTL
unsatisfiability cores by weakening LTL formulas in a way
that ignores sub-formulas not required for unsatisfiability. He
further presented a similar approach for GR(1) unrealizability
cores. To the best of our knowledge, these ideas have only been
explored theoretically. Moreover, the work neither handles all
cores nor deals with extensions of GR(1).

B. All Unrealizable Cores for GR(1)

We present Punch as the first efficient algorithm to
compute all unrealizable cores of specifications reducible to
GR(1). However, Punch is a domain-agnostic algorithm.
Other domain-agnostic algorithms for all cores computations
over monotonic criteria appear in the literature, see, e.g., [17].
In [3] there is a comparison of several such algorithms, which
concludes that none of the known algorithms is better than the
others in all domains. Recently, MUST [4] was proposed as
an algorithm and tool that outperforms previous ones.
Punch is intended as a first algorithm for the computation

of all cores of unrealizable GR(1) specifications. We consider
its comparison against domain-agnostic algorithms, as well as
its specialization for GR(1) as future work, see Sect. X.

C. Other Approaches to Dealing with GR(1) Unrealizability

Beyond core computations, other approaches have been
suggested to dealing with unrealizability of GR(1) specifica-
tions. Maoz and Sa’ar [22] have presented the computation
of counter-strategies, which show how the environment can
prevent any system from satisfying the specification. Kuvent
et al. [16] have presented the JVTS, a symbolic, more succinct
and simple representation of a GR(1) counter-strategy.

Other works have considered means to repair unrealizable
specifications by automatically suggesting additional assump-
tions that will make the specification realizable, see, e.g., [2],
[8], [9], [10], [21]. It may be possible to combine the com-
putation of a core or of all cores with a repair approach. See
our discussion of future work in Sect. X.

X. CONCLUSION AND FUTURE WORK

We presented three contributions related to the computation
of unrealizable cores of GR(1) specifications, including faster

algorithms for computing an unrealizable core and for comput-
ing all cores. We further presented means to correctly compute
the core when specifications include high-level constructs.

We implemented our work, validated its correctness, and
evaluated it on benchmarks from the literature. The evaluation
shows that QuickCore is usually faster than previous algo-
rithms, with a relative advantage that improves with scale.
Moreover, we found that most specifications have multiple
cores, and that Punch finds all the cores significantly faster
than a competing naive algorithm.

Our work has important implications to anyone using GR(1)
specifications and their extensions for synthesis and related
analyses. First, core computations are now faster, and comput-
ing more than one core promotes a more comprehensive view
of unrealizability. Moreover, we handle higher-level constructs
correctly and efficiently, and our algorithm for finding all cores
extends to cores for any monotonic criterion.

We consider the following concrete future work directions.
First, as Punch in its raw form is domain-agnostic, it is
important to compare its performance with recent domain-
agnostic all cores minimization algorithms over monotonic
criteria such as MUST [4].

We have already presented a variant of Punch, namely
PQC, which employs a domain-specific algorithm (a variant
of QuickCore) to compute a single core, and compared
it with another variant, namely PUD, which uses DDMin, a
domain-agnostic algorithm for a single core computation. The
results showed that PQC performs slightly better than PUD.
It may be possible to improve the performance of detecting
all unrealizable cores by taking advantage of GR(1) specific
properties in other ways.

Second, we consider means to combine the computation of
a core or of all cores with a repair approach. For example, a
repair of unrealizability that is based on weakening a small as
possible subset of the guarantees could rely on the fact that it
cannot succeed without weakening at least one guarantee from
every core, or in particular weakening one guarantee from a
non-empty intersection of all cores.

Finally, the ability to compute all cores raises questions
as to their presentation to the engineer. Should all cores be
computed and presented? Perhaps an on demand approach
should be used? In which order should we present the cores?
These questions call for further investigation and evaluation.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful com-
ments. We thank Roee Sinai for implementing the Quick-
Xplain algorithm in the Spectra environment. We thank
Inbar Shulman for comments about an earlier draft of the
paper. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
638049, SYNTECH).

35

REFERENCES

[1] Supporting materials website. http://smlab.cs.tau.ac.il/syntech/
unrealcores/.

[2] R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided refinement
of GR(1) temporal logic specifications. In FMCAD, pages 26–33. IEEE,
2013.

[3] J. Bendı́k and I. Cerna. Evaluation of domain agnostic approaches for
enumeration of minimal unsatisfiable subsets. In LPAR, volume 57 of
EPiC Series in Computing, pages 131–142, 2018.

[4] J. Bendı́k and I. Cerná. MUST: minimal unsatisfiable subsets enumera-
tion tool. In A. Biere and D. Parker, editors, TACAS, volume 12078 of
LNCS, pages 135–152. Springer, 2020.

[5] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Interactive presentation: Automatic hardware synthesis
from specifications: a case study. pages 1188–1193. EDA Consortium,
San Jose, CA, USA, 2007.

[6] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Specify, compile, run: Hardware from PSL. Electr.
Notes Theor. Comput. Sci., 190(4):3–16, 2007.

[7] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis
of Reactive(1) Designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

[8] D. G. Cavezza and D. Alrajeh. Interpolation-based GR(1) assumptions
refinement. In TACAS, volume 10205 of LNCS, pages 281–297, 2017.

[9] D. G. Cavezza, D. Alrajeh, and A. György. A weakness measure for
GR(1) formulae. In FM, volume 10951 of LNCS, pages 110–128.
Springer, 2018.

[10] D. G. Cavezza, D. Alrajeh, and A. György. Minimal assumptions
refinement for realizable specifications. In FormaliSE@ICSE 2020: 8th
Int. Conf. on Formal Methods in Software Engineering, pages 66–76.
ACM, 2020.

[11] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic
information for realizability. In VMCAI, volume 4905 of LNCS, pages
52–67. Springer, 2008.

[12] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE, pages 411–420.
ACM, 1999.

[13] E. Firman, S. Maoz, and J. O. Ringert. Performance heuristics for GR(1)
synthesis and related algorithms. Acta Inf., 57(1-2):37–79, 2020.

[14] U. Junker. QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems. In D. L. McGuinness and G. Ferguson,
editors, AAAI, pages 167–172. AAAI Press / The MIT Press, 2004.

[15] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifi-
cations: a practical approach using model-based diagnosis and counter-
strategies. STTT, 15(5-6):563–583, 2013.

[16] A. Kuvent, S. Maoz, and J. O. Ringert. A symbolic justice violations
transition system for unrealizable GR(1) specifications. In ESEC/FSE,
pages 362–372, 2017.

[17] M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible
MUS enumeration. Constraints An Int. J., 21(2):223–250, 2016.

[18] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-
Gazit. Reactive high-level behavior synthesis for an atlas humanoid
robot. In ICRA, pages 4192–4199, 2016.

[19] S. Maoz and J. O. Ringert. GR(1) synthesis for LTL specification
patterns. In ESEC/FSE, pages 96–106. ACM, 2015.

[20] S. Maoz and J. O. Ringert. Spectra: A specification language for reactive
systems. Software and Systems Modeling, 2021. To appear.

[21] S. Maoz, J. O. Ringert, and R. Shalom. Symbolic repairs for GR(1)
specifications. In ICSE, pages 1016–1026, 2019.

[22] S. Maoz and Y. Sa’ar. Counter play-out: executing unrealizable scenario-
based specifications. In ICSE, pages 242–251, 2013.

[23] S. Maoz and R. Shalom. Inherent vacuity for GR(1) specifications. In
ESEC/FSE, pages 99–110. ACM, 2020.

[24] J. Marques-Silva, M. Janota, and A. Belov. Minimal sets over monotone
predicates in boolean formulae. In CAV, pages 592–607. Springer, 2013.

[25] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs.
In VMCAI, volume 3855 of LNCS, pages 364–380. Springer, 2006.

[26] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In
POPL, pages 179–190. ACM Press, 1989.

[27] V. Schuppan. Towards a notion of unsatisfiable and unrealizable cores
for LTL. Sci. Comput. Program., 77(7-8):908–939, 2012.

[28] Spectra Website. http://smlab.cs.tau.ac.il/syntech/spectra/.
[29] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing

input. IEEE Trans. Software Eng., 28(2):183–200, 2002.

36

