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Abstract

In this work, we present a novel control approach to human-robot collaboration that takes into account ergonomic
aspects of the human co-worker during power tool operations. The method is primarily based on estimating and
reducing the overloading torques in the human joints that are induced by the manipulated external load. The human
overloading joint torques are estimated and monitored using a whole-body dynamic state model. The appropriate robot
motion that brings the human into the suitable ergonomic working configuration is obtained by an optimisation method
that minimises the overloading joint torques. The proposed optimisation process includes several constraints, such
as the human arm muscular manipulability and safety of the collaborative task, to achieve a task-relevant optimised
configuration. We validated the proposed method by a user study that involved a human-robot collaboration task,
where the subjects operated a polishing machine on a part that was brought to them by the collaborative robot. A
statistical analysis of ten subjects as an experimental evaluation of the proposed control framework is provided to
demonstrate the potential of the proposed control framework in enabling ergonomic and task-optimised human-robot
collaboration.

Keywords: Human-Robot Interaction, Ergonomics, Human performance modelling,
Industrial/organizational/workplace safety

1. Introduction1

The great potential and benefits of human-robot col-2

laboration (HRC) are becoming increasingly evident in3

industrial communities that are influenced by a shift4

from mass production to highly customised, low volume5

manufacturing processes [1]. Collaborative robots can6

automatise repetitive and high-effort tasks and can re-7

duce human task load by providing physical assistance,8

and therefore may potentially improve the working con-9

ditions of human workers. On the other hand, humans10

have better cognitive capability and can therefore super-11

vise robots operation or transfer new skills to the collab-12

orative robot [2, 3] thus adding a certain level of flexi-13

bility to the process and contributing to effective accom-14

plishment of a broad range of manufacturing tasks.15
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One of the most evident problems that arises from16

the integration of the human co-worker into the robot’s17

workspace is human safety. Ensuring a safe interaction18

between the human and robot counterparts should be19

the main prerequisite of any collaborative robot con-20

trol. The prominent examples of such safety strate-21

gies are collision detection and reactive motion planning22

techniques [4, 5, 6], to avoid physical contacts between23

the robots and humans. Other approaches explore the24

use of compliance control strategies [7] to limit impact25

forces [8], or robots skins [9] to detect physical con-26

tacts and react accordingly. In this direction, a concept27

of safety map was recently introduced to give the con-28

troller the information about human injury occurrence29

and inherent global or task-dependent safety properties30

of a robot in a unified manner [10]. Furthermore, some31

researchers have proposed to use expert human demon-32

strations in an attempt to achieve safe collaborative be-33

haviour of the robot [11, 12, 13, 3].34

While the above mentioned strategies can prevent35
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robots from causing physical injuries to human, never-36

theless, that does not mean the human will not sustain37

injuries that may come due to the improper task execu-38

tion or working conditions. In fact, former studies have39

shown that several occupational injuries and illnesses40

are caused by the exertion of excessive physical effort41

and repetitive motions in lifting, pushing or pulling on42

objects (e.g. drill, polish tool, etc.) [14, 15, 16]. In this43

direction, various heuristic, experienced-based guide-44

lines have been proposed to prevent injuries related to45

such work activities [17, 18], by focusing on human46

pose, tool or task types, and the environmental condi-47

tions. Nevertheless, most of the existing techniques to48

monitor human ergonomics neglect the dominant effect49

of interaction dynamics, which can contribute to the im-50

provement or worsening of human ergonomics, or they51

do not consider robotic co-workers [19].52

To improve human ergonomics in interactive scenar-53

ios, the collaborative robots must observe and track54

human dynamic and kinematic states using their sen-55

sory systems (see Fig. 1). Nevertheless, the dynamical56

modelling of the human body is a very complex task57

[20, 21]. Such precise models may be computationally58

too expensive for on-line uses and are therefore limited59

to off-line processing [22, 16, 23]. Off-line techniques,60

on the other hand, lack the adaptability and may not be61

suitable in dynamically changing environments. Some62

previous work aimed at addressing the required on-line63

adaptability needs [24, 25, 26, 2, 27], however, only64

kinematic aspects of human partner were taken into ac-65

count. Other methods in HRC used on-line human ef-66

fort models that can approximate the dynamical aspects,67

such as minimum joint torque index [28] or muscle fa-68

tigue index [3, 29], with the observation only limited to69

the human arm and did not consider human whole-body70

dynamics.71

To address the above-mentioned limitations, we re-72

cently proposed a method for on-line estimation of the73

overloading joint torques2 in static poses of the human74

body [30], which relies on a dynamic model of the hu-75

man and uses various real-time sensory measurements.76

The accuracy of the proposed model in estimation of77

the whole-body centre of pressure (CoP) and the over-78

loading joint torques has been evaluated in our previ-79

ous work [30]. A principled simplification of the human80

whole-body model enabled on-line estimation of human81

dynamic states. We then integrated this method into a82

robot control framework in HRC that enabled the robot83

to minimise the human overloading joint torques by as-84

2The overloading joint torque refers to the torque induced into the
human joint by an external load.

Cooperation task 
with heavy tool

Observation of 
the human state

Anticipation of the 
robot behaviour

Figure 1: The illustration of the proposed concept. The proposed
ergonomic control of human-robot collaboration aims to minimise the
effect of overloading joint torques and maximise the arm manipulation
ability while performing a repetitive manufacturing task.

sisting the human to work in a more suitable configu-85

ration [31]. Nevertheless, one of the disadvantages of86

this control framework was that it assumed static body87

pose of the human. More importantly, the method re-88

quired measurement of ground reaction forces of the89

human by force plates, which can severely reduce its90

applicability in realistic industrial settings. In addition,91

the method was not able to account for some impor-92

tant task-dependent parameters, such as manipulability93

of the human at hand, which can improve the effective-94

ness of collaboration and contribute to a better produc-95

tion quality.96

The aim of this paper is to propose a novel human-97

robot collaboration control method that can guide hu-98

man co-workers to more ergonomic working configu-99

rations during dexterous operations such as drilling or100

polishing by using a power tool. Unlike the method in101

[31], the proposed method does not require the ground102

reaction force measurements during the on-line phase103

and is not limited to static poses3, both of which can104

increase its applicability in real industrial settings. Fur-105

thermore, the proposed method accounts for manipula-106

tion capacity of the human at hand during the optimisa-107

tion procedure, to ensure that the human has good ma-108

3While in many industrial tasks the body remains relatively static
during the task execution (e.g., polishing an object with a machine,
etc.), many tasks involve some kind of arm movements that makes
them dynamic.
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nipulation capacity in the optimised configuration. We109

selected the two indicators so that one of them can ac-110

count the dynamic aspects while the other can account111

for kinematic aspects, blending information about hu-112

man dynamic loading and task performance which can113

contribute to reducing stress and improving productiv-114

ity. Joint torque is a basic variable that describes the115

human effort, and reducing it would imply that the op-116

erator must provide less effort to perform a task. Mean-117

while, manipulability can describe the controllability of118

the task velocities at hand, and can be associated with119

comfort since higher manipulability would simply im-120

ply easier control of the task velocities. However, there121

are other indicators that can be considered and selected122

for the optimisation. For additional indicator selection123

one can refer to the related literature [32, 33].124

A user study which includes ten subjects provided125

detailed statistics in order to validate our approach.126

The experimental task was a collaborative polishing, in127

which the task of the human was to operate the polishing128

machine, while the appropriate robot motion that was129

to bring the object into the ergonomic working config-130

uration. We analysed and compared the results of hu-131

man overloading joint torques in the body, human arm132

manipulability capacity, and measured muscle activities133

in the arm between six pre-selected working configura-134

tions, spread across the human arm workspace, and the135

optimised configuration, as obtained by the proposed136

method.137

A preliminary study of this work was presented138

at 2017 IEEE-RAS International Conference on Hu-139

manoid Robotics [34]. The specific contributions of140

this paper that go beyond the preliminary study are: 1)141

considerable extension of method formulation that takes142

into account human muscular manipulability instead of143

a classic manipulability, which does not properly ac-144

count for human biomechanics, 2) experiments on ten145

subjects supported with statistical analysis and 3) a thor-146

ough evaluation procedure.147

2. Observation layer148

In this section, we introduce an observation layer to149

monitor the human current states in real-time. This150

layer measures the human kinematics and uses a dy-151

namic model of the human to estimate the overloading152

joint torques in the body. We first need to perform an153

off-line calibration to identify the subject-dependent pa-154

rameters of the dynamical model, it will be explained155

in the human whole-body model by using the statically156

equivalent serial chain (SESC) technique. Once the pa-157

rameters are identified, the model is used for the real-158

time estimation of human overloading joint torques.159

2.1. Human Whole-Body Model160

The proposed estimation of human overloading joint161

torques is based on the method we recently proposed162

in [31]. In this approach, the overloading joint torques163

are determined by the difference of CoP displacement164

and the ground reaction forces (GRF) relation between165

the condition where the effect of an external interaction166

force is present and where it is not present. However,167

one of the limitations of this approach is that it assumes168

a static condition of the human body. Another limitation169

is that it needs an external force plate to measure the170

CoP that is affected by the interaction force. In this pa-171

per, we extend the previous concept in order to make the172

estimation of the overloading joint torque in dynamic173

poses without using external force plate devices.174

The CoP components in the dynamic condition are175

characterised by the differences between the accelera-176

tion about the centre of mass (CoM) and the angular177

momentum [35, 36]. Let CP = [CPx CPy]T ∈ R2
178

and CM = [CMx CMy CMz]T ∈ R3 denote CoP and179

CoM, respectively. Let us suppose we have a whole-180

body modelled by a point mass, and such a model, rest-181

ing on a flat ground and rotationally stable, the rate of182

change of spin angular momentum is equivalent to zero.183

Thus, CP can be represented as184

CP =

[
CPx

CPy

]
=

[
CMx

CMy

]
−

(CMz −CPz)
C̈Mz + gz

[
C̈Mx

C̈My

]
, (1)

where gz is acceleration due to gravity, and CPz is the185

height of ground, which is equal to zero, since we as-186

sume that the ground is flat and is not moving with re-187

spect to ΣW . As such, the CoP vector can be obtained188

by taking the CoM. We use a SESC technique [37] in189

order to determine the whole-body CoM of a articulated190

multi-body system (e.g. human). The CoM of a model191

with an n number of links as192

CM = x0 + BΦ, (2)

where x0 ∈ R3 is the position of the human floating base193

frame Σ0, which is connected to the inertial frame ΣW .194

To identify the subject parameters Φ̂, a linear system195

in (2) should be solved by a classical least-squares prob-196

lem. To do this, measuring two components (i.e., x and197

y) of the B and 0CM = CM − x0 for p poses should198

be taken. Although not all CoM information but two199

components as 0CMx,y are measured by the measurement200

(e.g. force plate, etc.), we are able to create a linear201

system when an enough set of p poses are measured.202
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Let Ω =
[
0C1|Mx

0C1|My · · · 0Cp|Mx
0Cp|My

]T
be203

a 2p × 1 vector that is composed of the stack of mea-204

sured CoM’s x and y component. Similarly, the stacked205

orientation matrix W due to the p poses can be con-206

structed a 2p × 3(n + 1) matrix by using the rows of207

the orientation matrix B. The stacked matrix W is in-208

vertible by using Moore-Penrose generalised inverse as209

W+ =
(
WT W

)−1
WT , we then identify the SESC pa-210

rameters vector Φ̂ as (details can be found in [31])211

Φ̂ = W+Ω. (3)

As a consequence, we can obtain a real-time estima-212

tion of CoP vector ĈP ∈ R2 from (1) using an on-line213

estimation of the human CoM ĈM , as well as its acceler-214

ation. The estimated subject-specific SESC parameters215

during an off-line calibration phase in (3) are used in (2)216

to obtain the on-line CoM model. The acceleration of217

the CoM vector is then calculated by using the Kalman218

filtering approach [38].219

The basic strategy of the previous approach to esti-220

mate the overloading joint torques is to use the model-221

estimated whole-body CoP ĈPwo and the measured CoP222

CPwt in conditions with or without the effect of exter-223

nal forces [31]. However, in this case, external sensory224

devices (e.g., force plate, sensor insoles) are required225

which would hinder the applicability. An extension of226

this approach considers to increase the applicability in227

realistic scenarios (e.g., industrial setting) that elimi-228

nates the requirement of using extra sensory systems.229

In this paper, we propose an extension of SESC pa-230

rameters that addresses the presence of an external ob-231

ject/tool (e.g., tool, machine, etc.) that is being manip-232

ulated by the human. The contribution of this extension233

can update the human CoP model to include an exter-234

nal object/tool, it is able to obtain the CoP in real-time235

instead of measuring it. Such an approach can be ap-236

plied in cases when the robot can either estimate the237

parameters of unknown object/tool (e.g., measurement238

by its own sensory system as the force/torque sensor,239

torque sensor, etc.), when objects/tools are estimated by240

the perception system according to the predefined tool241

database (e.g., detect by the vision system, etc.).242

The modified SESC parameters refer to the new mass243

distribution of a branch where the external object/tool is244

manipulated. LetΦ =

[
φ

T

0 · · · φ
T

n

]T
be a 3(n + 1)×1245

vector of the modified SESC parameters. When the ob-246

ject/tool is applied to the end-point of a branch (e.g.,247

hand, foot, etc.), the k-th modified SESC parameter,248

where k refers to an index of a segment within the249

branch (e.g., base, upper arm, and lower arm), should250

be updated as251

φk =
1

M + me

(
Mφk + mk

edk|next

)
, (4)

where M is the total mass represented by the sum of252

the whole-body link masses and me is the external ob-253

ject/tool mass. kdk|next ∈ R3 is the link length vec-254

tor of the k-th segment measured from the frame at-255

tached to k-th segment to the next segment in the en-256

gaged branch. Intuitively, the last segment of the modi-257

fied SESC model can be considered by an extension of258

the original SESC to the additional segment as the ex-259

ternal object/tool. Hence, the link length of the last k-th260

segment is obtained by CoM of the external object/tool.261

For example, if the the object/tool is applied to the right262

hand (i.e, the segment’s index of right arm branch is263

k ∈ [0, 3, 4]), the SESC parameters of right arm will be264

achieved by the link length; 0d0|next: base to right shoul-265

der; 3d3|next: right shoulder to right elbow; 4d4|next: right266

elbow to CoM position of the external object/tool.267

Using the real-time CoP estimation function (1), the268

CoP with externally loaded condition ĈPwt is calculated269

by using the extended model Φ from (4) in (2).270

2.2. The Overloading Joint Torque271

In the proposed method, the floating base human272

model is used in a way that each link of human is273

articulated through n revolute joints, whose locations274

are defined by a local reference frame Σi at the corre-275

sponding joint. The pelvis link is selected as a base276

frame Σ0. The system configuration is represented as277

q =
[
xT

0 θT
0 qT

h

]T
∈ R6+n, where x0 ∈ R3 and278

θ0 ∈ R3 are the position and orientation of Σ0 with re-279

spect to ΣW , while qh are angular positions of n human280

joints. The spatial velocity of the base frame can be281

expressed as ϑ0 =
[
υT

0 ωT
0

]T
∈ R6, where υ0 and ω0282

correspond to linear and angular velocities, respectively.283

The dynamic relationship between the body motion284

and external forces at various contact points is given as285

M
[
ϑ̇0
q̈h

]
+ C

[
ϑ0
q̇h

]
+ G = STΓ +

nk∑
i=1

JT
pi

Fi, (5)

where M, C, and G represent the inertia matrix, vec-286

tor of centrifugal and Coriolis forces, and vector of the287

gravity force, respectively. S = [0n×6 In×n] is a se-288

lection matrix for the actuated joints and Γ is the n × 1289

vector of applied joint torques. Jpi is the Jacobian of290

4



∆𝜏 ↓

𝛿𝑝

Muscular
Manipulability 
ellipsoid (13)

Anticipation layer

∆𝜏

∆𝑪'(

𝚺𝟎

Observation layer

𝚺𝑩
Robot

Base Frame

O
nline

𝜟𝝉 < Safe Margin

Identification of 
human whole-body 

model [30]

Moving the robot with 
optimised 𝜹𝒑	

O
ffline

Yes

No

O𝐩𝐭𝐢𝐦𝐢𝐬𝐚𝐭𝐢𝐨𝐧	Eq. (10)

Estimation of
Overloading torque 𝜟𝝉

Eq.(9)

Figure 2: The overall procedure of the proposed method. The observation (left) and the anticipation layer (right) for estimating and reducing
the overloading joint torques in human-robot collaboration are illustrated.

the contact constraints pi, where the nk number of con-291

straint contact wrenches Fi are applied with respect to292

ΣW . Such a Jacobian matrix Jpi =
[
Jb

pi
Jr

pi

]
reveals293

the contribution from the passive chain for the floating294

base and the actuate joints on the branch where Jr
pi

cor-295

responding to the displacement of joints on the contact296

point with respect to the base frame Σ0.297

The overloading joint torques are calculated from the298

difference between the joint torques calculated in con-299

ditions with and without the external forces. Due to300

the external load, the CoP is also displaced compared301

to the CoP in the unloaded condition. Similarly to (5),302

the torque vector in condition without the external force303

Γwo is expressed by using estimated whole-body CoP304

ĈPwo from the original SESC parameters in (3) as305

STΓwo = Γb −

n f∑
i=1

JT
ĈPwoi

Fi|wo, (6)

where Γb ∈ Rn+6 corresponds to the left part of (5),306

which is the joint torque vector of human body without307

the contact constraints (e.g., ground contact, hand con-308

tact, etc.). n f ∈ [1, 2] is the number of ground contact309

points at the foot. The vertical GRF (vGRF) Fwo, which310

is obtained from the human body mass, act on the hu-311

man body by the transpose of the Jacobian as JT
ĈPwoi

Fi|wo312

at the point of estimated CoP ĈPwoi.313

On the other hand, the condition with the external ob-314

ject/tool produces a torque Γwt, which is calculated by315

using ĈPwt from the modified SESC parameters as316

STΓwt = Γb −

n f∑
i=1

JT
ĈPwt i

Fi|wt −

nh∑
j=1

JT
ah j

F j|h, (7)

where Fwt is the vGRF vector applied at ĈPwt in this317

condition that is obtained from the combined mass of318

the human body and the external object/tool. Fh repre-319

sents the pre-estimated mass of the object/tool that are320

applied at the contact points ah. JĈPwt i
and Jah j refer to321

the contact Jacobian at the point of ĈPwt i and ah j, re-322

spectively. nh ∈ [1, 2] is the number of operated hands323

where the tools/objects are handled.324

Consequently, the overloading joint torques are de-
fined by the difference between the torque vectors from
(6) and (7) as

ST ∆Γ =

nh∑
j=1

JT
ah j
η j∆F −

n f∑
i=1

(
(JT

ĈPwt i
− JT

ĈPwoi
)Fi|wt

+JT
ĈPwoi

ζi∆F
)
, (8)

where ∆F =
∑n f

i=1 ∆Fi|w = −
∑nh

j=1 F j|h is the sum of325

the interaction forces. As regards the distribution gain326

(
∑

i ζi = 1 and
∑

j η j = 1) related to the number of con-327

tact points, we can consider that the gain is defined by328

the employed human model; for example, if the model329

is interacting with environment using a single arm and330

single foot, hence η = 1 and ζ = 1. A further exam-331

ple of the multi-interaction model has been reported in332

[39] where the model assumes a symmetric distribution333

of the grasp forces in two hands while carrying an ob-334

ject (η j = 0.5), but the force distribution on the feet (ζi)335

is computing by the synergistic model approach in real-336

time.337

3. Anticipation layer338

This section introduces an anticipation layer4 that is339

used by the robot to predict the optimal configuration340

4The ”anticipation” refers to the ability of the method to anticipate
overloading joint torques and then react to minimise them.
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of task execution to accommodate ergonomic working341

conditions for the human co-worker. This layer relies342

on the observation layer (see Fig. 2) to obtain the de-343

sired configuration of the task execution through a con-344

strained optimisation technique that reduces the joint345

torque variation of human under several constraints. In346

particular, we used the human arm muscular manipu-347

lability as a constraint in this optimisation to facilitate348

the human movements in achieving a good manipula-349

tion capacity in the optimised configuration.350

3.1. Optimisation351

Here we present the minimisation procedure of hu-352

man overloading joint torque vector with respect to353

body configuration and given constraints. This consid-354

eration was to avoid potential injuries caused by the ex-355

cessive loading effect during the execution of a collabo-356

rative task.357

The optimisation process is defined as358

min
qh

∥∥∥∆ΓTW∆Γ
∥∥∥ , (9)

where ∆Γ ∈ Rn is the overloading joint torques359

vector which is obtained from (8) and W =360

diag
[
∆Γ1/Γmax1 · · · ∆Γn/Γmaxn

]
∈ Rn×n is the361

weight matrix with components Γmaxn . Although the362

maximum joint torque values are not explicitly reported363

in previous works, however, starting from the torque ca-364

pacity values of the work by Snook and Ciriello [40]365

such weighing factor can be tuned experimentally.366

In the optimisation process, we consider several con-367

straints. To ensure a safe configuration after the optimi-368

sation, upper and lower bounds qL and qU of the human369

joint angles are constrained within the human body lim-370

itations. The postural stability in an arbitrary configu-371

ration is considered by position of the CoP CP ∈ R2,372

which should only exist inside the stable region εs (i.e.373

within the support polygon of feet). The robot end-374

effector position that controls the placement of the co-375

manipulated object is constrained within the feasible376

shared workspace of the human and the robot. The ap-377

plication of such constraints in the optimisation process378

ensures the stability and safety of the human co-worker379

and the collaboration task.380

The final constraint is the endpoint manipulability of381

the human arm. In general, humans adjust the con-382

figuration of their body and limbs in order to max-383

imise the kinematic and dynamic properties according384

to given tasks and environmental conditions [41]. In385

robotics, the classic measure for the kinematic and dy-386

namic properties of a robot end-effector is the manip-387

ulability, which provides an idea of how well the end-388

(1) Pectoralis major
(2) Clavicular and sternal part of Deltoid muscle
(3) Biceps short head and Triceps long head 
(4) Biceps long head
(5) Triceps lateral and medial head
(6) Brachioradialis and Brachialis

𝜆max

𝜆min

Shoulder

Elbow

M1

M2

Manipulability capacity 
M1 > M2

(5) (6) 

(1) 

(2) (3) 

(4) 

Figure 3: Ten muscles are considered in the definition of arm ma-
nipulability capacity. The resulting ellipsoid and its major and minor
axes are conceptually illustrated in this figure.

effector can produce velocity or force in different direc-389

tions of the Cartesian space [42]. Manipulability can390

be geometrically represented as an ellipsoid at the end-391

effector, whose radius in a specific direction indicates392

the velocity/force production ability. In a specific ex-393

ample, if the task requires that the object/tool is manip-394

ulated in a complex manner, which involves production395

of end-effector force and velocity equally in various di-396

rections of Cartesian space, the configuration of the arm397

should be maintained close to where endpoint manipu-398

lability ellipsoid is isotropic. Nevertheless, the classic399

manipulability, which has been extensively studied in400

the robotic manipulators actuated by electric motors, is401

not able to faithfully measure the manipulation ability402

of the human body. This is because the human body is403

actuated by the muscles that have spring-like properties404

and antagonistically pull the joint in different directions.405

Therefore, it is necessary to account for the effect of this406

specific feature of human actuators on the endpoint ma-407

nipulability. To do so, we include muscular manipula-408

bility [43, 44] in the proposed optimisation process as a409

constraint condition. Hence, in our work, the position of410

the object/tool being co-manipulated is also constrained411

by the human arm muscular manipulability.412

The relation between the muscle forces and the end-413

point force is defined as414

F = J+T
a JT

mFm, (10)

where F is endpoint force, which can be one of the ex-415

ternal contact wrenches from (5), J+
a is MoorePenrose416

inverse of the geometric Jacobian matrix of arm, Jm is417

muscle Jacobian matrix that contains muscle moment418

arms at the joints, and Fm is muscle force, which we419
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calculate by using the Hill’s muscle model420

Fm = Fhillα, (11)

where 0 ≤ α ≤ 1 muscle activation and Fhill is a diago-421

nal matrix representing the Hill’s muscle force.422

By combining (10) and (11), the muscular manip-423

ulability is obtained from expression (J+T
a JmFhill) that424

transforms muscle activations to Cartesian endpoint425

force. Unlike classic manipulability measure that con-426

siders only geometric Jacobian Ja, muscular manipula-427

bility takes into account also muscle Jacobian Jm. As-428

suming ||α|| < 1, we can derive the expression to obtain429

the manipulability (see [44] for details)430

K = (J+T
a JmFhill)(J+T

a JmFhill)T . (12)

By applying singular value decomposition of K we ob-431

tained the eigenvalues λ that represent the axial lengths432

of the endpoint manipulability ellipsoid. Consequently,433

the manipulability capacity M = λmin
λmax

was defined as a434

ratio between the minimum and the maximum eigen-435

value. For our experiments we normalised this value to436

the maximum ratio of the entire workspace, which gave437

us a percentage value. A higher value of manipulability438

capacity indicates that the capacity to produce the arm439

endpoint force and velocity is better in all directions of440

the Cartesian space.441

Our arm model included two segments and two joints442

(3 DoF in the shoulder and 1 DoF in the elbow). We443

considered ten muscles (see Fig. 3): clavicular and ster-444

nal part of Deltoid muscle (shoulder), Pectoralis ma-445

jor (shoulder), Biceps short head and Triceps long head446

(bi-articular), Biceps long head (elbow), Triceps lateral447

and medial head (elbow), Brachioradialis (elbow) and448

Brachialis (elbow).449

To ensure good manipulability in all directions of hu-450

man arm endpoint, we defined a certain degree of ma-451

nipulability capacity as an optimisation constraint. The452

method therefore searched for the optimal minimum453

overloading joint torques within configurations, where454

the manipulability ellipsoid was close to isotropic. The455

optimisation problem of (9) was used to formulate456

a nonlinear programming problem, which was then457

solved using the active set method of the ALGLIB opti-458

misation library.459

3.2. Execution of the robot behaviour460

To achieve a more ergonomic working condition of461

the human co-worker, the robot uses the optimised con-462

figuration of the human body obtained through (9). Us-463

ing the forward kinematics, the current human configu-464

ration and the optimised one are expressed in Cartesian465

space. The difference between the two is used to calcu-466

late the robot end-effector trajectory, which brings the467

human from the current to the optimised configuration.468

To achieve safe and adaptive interaction between the469

human and robot, the Cartesian impedance controller by470

default was set the stiffness parameter to 1500 N/m in471

the translational axis and 150 Nm/rad in the rotational472

axis, respectively. These values provided a reasonable473

trade-off between the trajectory tracking performance474

and the end-effector compliance. The human partner475

was simultaneously provided with a visual feedback re-476

garding the optimised configuration, which made sure477

that the correct configuration was maintained.478

4. Experimental Evaluation479

Ten healthy male volunteers (age: 27.6 ± 2.3 years;480

mass: 75.1 ± 5.3 kg; height: 1.80 ± 0.03 m)5 were re-481

cruited for this study. The experiments were performed482

at HRI2 Lab of IIT, Italy. The study was approved by the483

Regional Ethics Committee of Liguria (IIT HRII 001,484

108/2018).485

First, we obtained the data for identification of dy-486

namic model (i.e., SESC parameters) of each subject.487

The subjects wore the MVN Biomech suit (Xsens Tech-488

nologies BV) and stood on a Kistlter force plate. They489

were asked to perform 140 different static configura-490

tions of their body. Note that the force plate is required491

only during the off-line calibration and is not required492

during the on-line phase.493

The experimental setup is illustrated in Fig. 4. The494

subjects wore the MVN Biomech suit to measure the495

body configuration in real-time. The experimental eval-496

uation involved a human-robot collaboration task. In497

this scenario, the robot held an object that had to be pol-498

ished by the human subject, who used a heavy hand-499

held tool (mass: 3.4 kg). To do this, we developed a500

simplified human body model with five joints (i.e., hip,501

knee, ankle, shoulder and elbow), which primarily con-502

tributed to Sagittal plane motion. Additionally, such a503

model was interacting with environment using a single504

hand and foot, hence, the contribution gain of hand and505

foot were η = 1 and ζ = 1, respectively. The task of the506

robot was to bring the object to the human, while the507

task of the human was to polish it6. In such a task, the508

5Subject data is reported as: mean ± standard deviation.
6This scenario can be generalised to other collaboration tasks (e.g.,

drilling, assembly, etc.) and handover tasks. For example, in the han-
dover task the robot brings the object to the human, who then takes it
from the robot at a certain position.
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Pisa/IIT
Soft hand

KUKA
Lightweight 

Robot

MVN
Biomech Suit

Tool

Trigno
EMG

Visual 
Feedback

Part 1:  
Workspace

Part 2:  
Optimisation

Figure 4: Overview of the experimental setup. The experimental
setup consisted of a MVN Biomech suit, a KUKA LBR IV+ equipped
with the Pisa/IIT softhand, visual feedback and wireless EMG sen-
sors. The experimental purpose consisted of two parts: task compari-
son in workspace of the arm, and evaluation in the optimisation.

robot should adapt its behaviour in a way that the work-509

ing conditions are improved for the human co-worker,510

which signifies that any excessive joint load is prevented511

and the arm manipulability capacity value is maximised.512

The whole-body configuration should ideally be in a513

pose where the overloading joint torques are as low as514

possible, while achieving a high arm manipulability ca-515

pacity to facilitate an effective task execution. In the516

experiments, the arm manipulability capacity constraint517

was set to 80% of maximum capacity, which was ob-518

tained by scanning through the feasible arm workspace519

for each subject. This led to a good force and veloc-520

ity production capacity in all directions since the human521

arm endpoint at the manipulation location had close-to-522

isotropic manipulability ellipsoid. The time required to523

scan through the feasible arm workspace for each sub-524

ject was 87 seconds. However, this scanning process525

needs to be conducted only once for each subject and526

the result can be reused in future.527

The experimental procedure was divided into two528

stages (as shown in the right of the Fig. 4). In the529

first stage, the subjects had to perform the given task in530

six different configurations of the arm, which were dis-531

tributed around the workspace of the arm endpoint. See532

Fig. 5 for details and illustrations of the selected con-533

figurations. In the second stage, the proposed method534

was used to select the optimal working configuration in535

terms of overloading joint torques and given constraints536

(manipulability capacity, etc.). The on-line acquisition537

of the human body position data was performed using538

the MVN Biomech system. This data was then used to539

calculate vector x0 and matrix B that were necessary for540

real-time calculation of CoP in (2) and the human over-541

loading joint torque vector in (8).542

To compare the arm muscular effort during the task543

execution between the optimised configuration selected544

by the proposed method and the six different unopti-545

mised configurations, we recorded and evaluated the546

muscle activity from electromyography (EMG) while547

performing the collaboration task. For the measure-548

ments, we selected Anterior Deltoid (AD), Posterior549

Deltoid (PD), Biceps Brachii (BB) and Triceps Brachii550

(TB), which are the dominant shoulder and elbow actua-551

tors in the given configurations. The EMG signals using552

Delsys Trigno Wireless system were first processed by553

rectification and low-pass filtering and were then nor-554

malised with respect to the maximal voluntary contrac-555

tion to obtain the muscle activation for each muscle.556

4.1. Results557

The results of experiments are shown in Table 1,558

where we report the overloading joint torques, manipu-559

lability capacity value and muscle activity as measured560

by EMG. These variables were averaged across the sub-561

jects for each configuration. Fig. 6 shows summed562

mean values of overloading joint torques for different563

configurations. The mean manipulability capacity value564

for each configuration is presented in Fig. 7. The muscle565

activity capacity of the arm is shown in Fig. 8.566

The configurations 1, 4 and 6 had overall lower567

overloading joint torque in the body than the opti-568

mised configuration. Statistical differences were tested569

with post-hoc t-tests with Bonferroni correction. The570

level of statistical significance used was .05 for all571

statistical tests. The difference was 21.73±2.177 Nm572

(p <.001), 23.70±2.19 Nm (p <.001) and 35.50±1.48573

Nm (p <.001), respectively. Even though the torque574

was lower in these configurations compared to the op-575

timised configuration, the manipulability capacity was576

relatively low in all three compared to the optimised577

one. The difference was 55.31±2.19 % (p <.001),578

60.65±5.59 % (p <.001) and 83.62±2.10 % (p <.001),579

respectively. There were statistically significant differ-580

ences in all values.581

Configurations 2, 3, and 5 had higher joint torques582

compared to the optimised configuration. The differ-583

ences were 33.82±1.49 Nm (p <.001), 8.62±1.68 Nm584

(p <.001) and 10.66±1.21 Nm (p <.001), respectively.585

In addition, the manipulability capacity in these config-586

urations was on average much lower. The difference587

7The data is reported as: mean ± standard error of mean.
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Figure 5: The six different unoptimised configurations and the optimised configuration. The optimal configuration was slightly different
among the subjects, therefore the joint angle values were not specified.

Table 1: Experimental results of ten subjects. The results are separated according to seven different configurations. The data is reported as: mean
(standard error of mean). Note that the optimal configuration was slightly different among the subjects.

Configuration 1
(Fig. 5A)

2
(Fig. 5B)

3
(Fig. 5C)

4
(Fig. 5D)

5
(Fig. 5E)

6
(Fig. 5F)

Optimal
(Fig. 5G)

Manipulability
capacity [%]

37.24
(1.46)

6.60
(1.00)

51.26
(5.76)

31.89
(5.20)

61.78
(3.29)

8.92
(0.79)

92.54
(1.19)

O
ve

rl
oa

di
ng

jo
in

t
to

rq
ue

[N
m

]

Hip
7.88

(0.67)
21.25
(0.60)

15.20
(0.550)

7.48
(0.69)

15.37
(0.46)

4.16
(0.35)

13.00
(0.46)

Knee
8.57

(0.73)
21.67
(0.62)

15.72
(0.55)

8.03
(0.66)

15.89
(0.46)

4.73
(0.35)

13.35
(0.46)

Ankle
9.57

(0.78)
22.52
(0.69)

16.61
(0.60)

8.93
(0.72)

16.71
(0.49)

5.56
(0.35)

14.15
(0.54)

Shoulder
6.99

(0.30)
15.68
(0.25)

11.23
(0.17)

5.72
(0.28)

9.63
(0.20)

1.45
(0.26)

7.11
(0.26)

Elbow
0.52

(0.13)
8.78

(0.14)
5.67

(0.15)
1.98

(0.31)
8.86

(0.14)
3.28

(0.22)
8.25

(0.17)

M
us

cl
e

ac
tiv

ity
[%

]

AD
42.61
(8.65)

80.97
(15.48)

48.25
(8.90)

13.92
(2.54)

10.46
(1.94)

4.95
(2.04)

3.59
(0.72)

PD
18.19
(4.13)

50.54
(14.11)

10.87
(2.48)

2.98
(0.48)

2.85
(0.53)

21.49
(4.01)

7.65
(2.04)

BB
2.28

(0.48)
18.06
(2.37)

8.44
(1.26)

15.10
(2.64)

13.87
(2.13)

5.38
(0.63)

15.60
(2.74)

TB
16.75
(3.39)

27.88
(4.89)

10.01
(1.73)

17.35
(3.50)

10.46
(1.78)

7.86
(1.45)

19.09
(3.23)

was 85.94±2.17 % (p <.001), 41.28±4.77 % (p <.001)588

and 30.76±2.77 % (p <.001), respectively. There were589

statistically significant differences in all values.590

The measured muscle activity capacity in the human591

arm is shown in Fig. 8. The arm muscle activity in592

configurations 1, 2 and 3 was relatively high in com-593

parison to the optimised configuration. The difference594

was 8.47±2.74 % (p =.017), 32.88±7.25 % (p =.0020)595

and 7.91±2.74 % (p =.023), respectively. The differ-596

ences were statistically significant. On the other hand,597

the muscle activity in configurations 4, 5 and 6 was598

comparable to optimised configuration. The difference599

was 0.85±1.39 % (p =.58), 2.07±1.21 % (p =.14) and600

1.56±1.65 % (p =.40), respectively. The differences601

were statistically insignificant.602

5. Discussion603

From the results of overloading joint torques in dif-604

ferent configurations, we can see that some of the tested605

configurations have overall lower torque in the body606

while performing the task. Even though the overall607

lower overloading joint torque would be more comfort-608

able for the human worker, these configurations had609

significantly lower manipulability capacity of the arm,610

which could affect the task production. Since we spec-611
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Figure 6: The sum of all overloading joint torques for different
configurations8. Different colours in the bar represent different con-
tribution from different joints.

***

***

***

***

***

***

Figure 7: The results8 of the manipulability capacity for differ-
ent configurations. The black dashed line denotes the manipulability
capacity constraint set in the optimisation process.

ified a certain required degree of manipulability capac-612

ity in the optimisation process, the optimised configu-613

ration was constrained to the cases where the manip-614

ulability was above the prescribed threshold. If such615

high manipulability capacity is not required, the optimi-616

sation could search within other configurations where617

overloading joint torques can be lower. The parameters618

of the proposed method, such as the required manipula-619

bility capacity, the constraints on configuration of body620

and the orientation of endpoint/tool, should therefore be621

selected based on the desired industrial task [15].622

The results showed that there was considerably623

8Asterisks indicate the level of statistical significance after post-
hoc tests: ∗p <.05, ∗∗p <.01 and ∗∗∗p <.001

*

**

*

p
=.
58

p
=.
14

p
=.
39

Figure 8: The results8 of the muscle activity capacity of the arm for
the different configurations. The corresponded values are defined as
a summation of subject-average muscle activations of all measured
muscles, normalised by the number of muscles. This value represents
the percentage of combined capacity of all four measured muscles.

higher combined arm muscle activity in configurations624

1, 2 and 3 compared to that in configurations 4, 5, 6 and625

the optimised configuration. The results also showed626

that the arm muscle activity in configurations 4, 5, 6627

and the optimised configuration was comparable, which628

indicates that the arm was approximately equally active629

in those configurations. Nevertheless, it should be noted630

that the muscle activity measurement was limited to the631

human arm, while optimisation of the overloading joint632

torques considered the whole body.633

The main advantage of the proposed method is in634

its reduced complexity and limited amount of required635

measurement systems, which could significantly im-636

prove its applicability in real industrial environments.637

Further reduction of the complexity can be achieved by638

using more affordable motion capture systems (e.g., Mi-639

crosoft Kinect). However, some of the more affordable640

hardware might not be suitable for all kinds of industrial641

settings and tasks. The framework offers flexibility not642

only in terms of selecting the desired amount of DoF643

of human body, which is easily modifiable based on644

the desired complexity, but also adaptation to the kine-645

matic specifics of a task (e.g. changing tools, switching646

hands). Furthermore, task constraints can be modified647

based on the target task objectives, e.g., to impose con-648

straints on dual-arm manipulability, etc.649

The manipulability could also be used as an objective650

rather than as a constraint. Using it as a constraint may651

lead to an absence of solution, however if the solution652

is found the manipulability is within the desired range.653

On the other hand, using it as an optimisation objective654
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makes it less limiting on the number of possible solu-655

tions, however it does not guarantee that the manipula-656

bility will be in the desired range. This tradeoff should657

be considered when selecting between the two options.658

In the existing study we considered only manipula-659

bility of the arm since in common industrial tasks, e.g.660

using a machine to polish an object, the body is primar-661

ily used to position the shoulder joint before the task is662

performed and then it remain relatively static, while the663

arm is doing majority of the movement required to per-664

form the task. However, if the tasks require large move-665

ments of the body, the proposed manipulability measure666

can be extended to the body.667

In the existing study we did not consider the elas-668

tic properties of muscles, which have more dominant669

role in explosive movements (e.g., jumping, throwing,670

etc.), where the energy has to be transferred from prox-671

imal muscles to distal muscles [45, 46]. The common672

industrial tasks considered in this study do not involve673

such explosive movements and therefore we considered674

only antagonistic and configuration dependant nature of675

joint torques produced by muscles in the musculoskele-676

tal model.677

The main goal of this paper was to introduce a678

method that enables the robot to account for parame-679

ters related interaction dynamics during human-robot680

collaboration and validate the approach on multiple sub-681

jects. The future work will focus on determining to what682

degree the considered parameters should be accounted683

for and what would be the long term affects on human684

subjects.685
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