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Abstract: A right module M over an associative ring R with unity is a QTAG -module if every finitely generated

submodule of any homomorphic image of M is a direct sum of uniserial modules. Here we characterize the finitely

generated submodule N of a QTAG -module M such that all homomorphisms or monomorphisms of the finitely

generated submodule N into the QTAG -module M , or all endomorphisms of the finitely generated submodule N ,

extends to an endomorphism of the QTAG -module M .
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1. Introduction and Basic Setup

The 1950s, 1960s and 1970s were a period of tremendous progress in the study of abelian groups. Many people

interested in module theory have worked on generalizing the theory of abelian groups. In fact, the theory of

modules is highly motivated by abelian groups. It is obvious that virtually anything in the theory of abelian

groups were generalized for modules over dedekind rings, prime rings, noetherian/artinian rings and hnp-rings

etc.

In the 1970s, a particularly interesting approach to this search for generalizations was developed. Over an

arbitrary associative ring with unity, a class of modules was defined by Singh [14] using two conditions relating

to uniserial modules.

(I) Every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of M , for any submodule W of

U , any non-zero homomorphism f : W → V can be extended to a homomorphism g : U → V , provided

the composition length d(U/W ) ≤ d(V/f(W )).

It was shown that the theory of these modules very closely paralleled the theory of torsion abelian groups;

for this reason they were referred to as TAG-modules. Later on, it was shown that, for almost all applications,

one of these conditions was not needed; ignoring this nearly superfluous condition, the slightly more general

concept of a QTAG-module was initiated by the same author in [15]. These definitions allowed for the transla-

tion of almost all of the theory of torsion abelian groups into parallel results about QTAG-modules. Facchini

and Salce [3] also have considered the problem of detecting finite direct sums of uniserial modules. Bican and

Torrecillas [1] worked on torsion free modules but the structures of torsion free QTAG-modules and torsion
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QTAG-modules are entirely different. The present paper is a natural extension of work already done in this

field and certainly contributes to the overall knowledge of the structure of QTAG-modules.

Some basic definitions used in this paper have also been used in the works of one of the co-author and these

are presented as quotations and referred appropriately here.

“All the rings R considered here are associative with unity (1 6= 0), and the modules M are unital right

modules satisfying (I) and (II). A module M over a ring R is called uniserial if it has a unique decomposition

series of finite length. A module M is called uniform if intersection of any two of its non-zero submodules is

non-zero. An element x in M is called uniform if xR is a non-zero uniform (hence uniserial) module. For any

module M with a unique decomposition series, d(M) denotes its decomposition length. For any uniform element

x of M , its exponent e(x) is defined to be equal to the decomposition length d(xR). For any 0 6= x ∈ M ,

HM (x) (the height of x in M ) is defined by HM (x) = sup{d(yR/xR) : y ∈ M, x ∈ yR and y uniform} .

For k ≥ 0, Hk(M) is defined as Hk(M) = {x ∈ M | HM (x) ≥ k} . The module M is h -divisible [11] if

M = M1 =
∞⋂
k=0

Hk(M), where M1 is the submodule of M generated by uniform elements of M of infinite

height. The module M is h-reduced if it does not contain any h-divisible submodule. In other words, it is free

from the elements of infinite height. The module M is called bounded [14], if there exists an integer k such

that HM (x) ≤ k , for all uniform elements x ∈M .”

“A submodule N of M is h-pure [10] in M if N ∩Hk(M) = Hk(N), for every integer k ≥ 0. A submodule

B of M is called a basic submodule [11] of M , if B is an h-pure submodule of M , B is a direct sum of uniserial

modules and M/B is h-divisible. Mimicking [12], for any uniform element x ∈M, there exist uniform elements

x1, x2, . . . such that xR ⊇ x1R ⊇ x2R ⊇ . . . and d(xiR/xi+1R) = 1. For any 0 6= x ∈ M , the Ulm-sequence

of x in M is defined as UM (x) = (HM (x), HM (x1), HM (x2), . . . ). These sequences are partially ordered

because UM (x) ≤ UM (y) if HM (xi) ≤ HM (yi) for every i.”

It is worthwhile noticing that several results which hold for TAG-modules are also valid for QTAG-modules

[13]. Many results, stated in the present paper, are clearly generalizations of [2]. For the better understanding of

the mentioned topic here one must go through the papers [3, 8, 9]. Our notations and terminology are standard

and follow essentially those from [4, 5]. As usual, for any uniform element x ∈M , NxR denotes the submodule

of M .

2. Main Results

We start with the following.

Definition 2.1. Let e(M) denote an exponent of the QTAG-module M such that for any k ≥ 0, Hk(M) = 0,

and HM (x) ≤ k for all uniform elements x of M . If M is not bounded then e(M) =∞ .

Now, we are ready to formulate the following lemma.

Lemma 2.1. Let NxR be the submodule of the QTAG-module M such that the extension of all monomorphisms

of NxR →M is an endomorphism of M .

(i) If M has unbounded basic submodule then NxR ∩M1 = {0} .

(ii) If M = S ⊕ T where S is bounded and T is h-divisible then either
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(a) e(x) ≤ e(S) and NxR ∩ T = 0 or

(b) e(x) > e(S) and x = s+ t where s ∈ S, t ∈ T such that e(S) = e(s) and e(t) > e(S) .

Proof. (i) If M has unbounded basic submodule and x, y ∈M then NyR is a direct sum uniserial module such

that e(NyR) ≥ e(x). Thus, it is a routine matter to see that there exists a monomorphism NxR → NyR which

is the extension of an endomorphism of M . Consequently, NxR ∩M1 = {0} and we are done.

(ii) Assume that M = S ⊕ T with e(S) = n and T is h-divisible.

(a) If e(x) ≤ n then we are done.

(b) If e(x) > n , and let x = s + t such that s ∈ S and t ∈ T . Then e(t) > n ≥ e(s). Let s1 ∈ S be any

element such that e(s1) = n . Then e(s1 + t) = e(t) = e(x), and there exists an endomorphism φ : M → M

such that φ(x) = s1 + t . Since HM (s1) = 0, we observe that HM (x) = 0, whence e(s) = n .

We continue with other statement, namely

Lemma 2.2. If M and x are as in Lemma 2.1(ii)(b) then NxR is the submodule of M such that the extension

of all homomorphisms of NxR →M is an endomorphism of M .

Proof. Since e(s) = e(S), NsR is a direct summand of S . Let φ : NxR → M be a homomorphism such that

φ(x) = y + t1 , where y ∈ S and t1 ∈ T . Since NsR is a summand of S and e(s) ≥ e(y), then there exists

a map φ1 : S → S defined by φ1(s) = y extends to a homomorphism ϕ1 : S → M . Since T is injective and

e(t) = e(x) ≥ e(t1), then there exists a map φ2 : T → T defined by φ2(t) = t1 extends to a homomorphism

ϕ2 : T →M . Hence ψ = ϕ1 + ϕ2 is an extension of an endomorphism φ from M to M .

Now we investigate the criteria for uniserial modules in which the extension of all homomorphisms of

NxR →M is an endomorphism of M . We consider therefore uniserial modules NxR containing no elements of

infinite height in M .

Definition 2.2. [2]. For any uniform element x of M and n ∈ N , an Ulm sequence of length n is a strictly

increasing infinite sequence UM (x) = (α0, α1, . . . , αn−1,∞, . . . ), with each αi an ordinal, under the conventions

that each ordinal αi <∞ , ∞ <∞ and the constant sequence (∞) is the unique Ulm sequence of length zero.

Remark 2.1. [2]. The set of Ulm sequences is well-ordered pointwise with maximum (∞) , no minimum but

infimum N = (0, 1, . . . , n, n + 1, . . . ) . This means in particular that if x, y ∈ M and UM (x) ≤ UM (y) , where

UM (x) has length n and UM (y) has length m , then n ≥ m .

Definition 2.3. [2]. For any uniform element x ∈ M , an Ulm sequence UM (x) is called finite if all its

non-infinity entries are finite. In particular, (∞) is a finite Ulm sequence.

An Ulm sequence UM (x) has a gap before k if αk > αk−1 + 1. The gap before n , where n is the length

of UM (x), is called the trivial gap.

Regarding Lemma 2.1, the following immediately follows.

Corollary 2.1. Let M be a QTAG-module with x ∈ M , and NxR is the submodule of M such that the

extension of all monomorphisms of NxR →M is an endomorphism of M , then UM (x) is finite.

16



Rafiquddin and Ayazul Hasan

Proof. Let x ∈ M such that e(x) = n . Then the Ulm sequence of x in M of length n is given by

UM (x) = (HM (x), HM (x1) . . . , HM (xn−1),∞ . . . ).

⇒ UM (x) is finite if and only if NxR ∩M1 = {0} .

⇒ for every k , HM (x′) =∞ where d(xR/x′R) = k if and only if Hk(x) ∈M ′ , the h-divisible part of M .

⇒ UM (x) = (0, 1, . . . , n − 1,∞ . . . ) if and only if NxR is a summand of M such that e(NxR) = n , and for

x, y ∈M , UM (x+ y) ≥ min{UM (x), UM (y)} .

Lastly, if HM (x) = 0 and UM (x) has the first non-trivial gap before k , then M has a direct summand of

exponent k . The proof is over.

Now we are able to characterize uniserial modules with no elements of infinite height.

Theorem 2.1. Let M be a QTAG-module and x ∈M be an element of exponent n such that NxR∩M1 = {0} .

The following are equivalent.

(i) NxR is the submodule of M such that the extension of all homomorphisms of NxR → M is an endomor-

phism of M ;

(ii) NxR is the submodule of M such that the extension of all monomorphisms of NxR → M is an endomor-

phism of M ;

(iii) UM (x) has at most one non-trivial gap and if a gap occurs before the index m ≥ 0 and HM (x′) = m+ ` ,

d(xR/x′R) = m then M has no uniserial summand of exponents between m+ 1 and n+ `− 1 .

Proof. (i)⇒ (ii). This is obvious.

(ii) ⇒ (iii). Let x ∈ M and NxR is the submodule of M such that the extension of all monomorphisms

of NxR → M is an endomorphism of M . Now the Ulm sequence UM (x) has a trivial gaps, therefore the

submodule NxR is a direct summand of M . Henceforth, we get that UM (x) has at least one non-trivial gap.

Let us consider UM (x) = (α0, . . . , αn−1,∞, . . . ) has at least two non-trivial gaps. By hypothesis, all heights

αi are integers, we write down X = Nx1R ⊕ · · · ⊕ NxrR is a direct summand of M . Thereby, because by

assumption a strictly increasing chain of positive integers 0 < m1 < m2 < · · · < mr such that

(i) r ≥ 3,

(ii) e(x1) < e(x2) < · · · < e(xr) = mr + n , and

(iii) x = Hm1(x1) +Hm2(x2) + · · ·+Hmr (xr).

Let y ∈M such that e(y) = Hm1
(x1) +Hm2−1(x2) +Hm3

(x3) + · · ·+Hmr
(xr) = n . But

HM (y′) = e(x1)−m1 +m2 − 1 < e(x1)−m1 +m2 = HM (x′),

where d(xR/x′R) = d(yR/y′R) = e(x1) −m1 . Hence UM (y) � UM (x), which is a contradiction. Therefore

UM (x) has exactly one non-trivial gap. Choose m be the index such that UM (x) has a gap before m . Then

HM (x′) = m+ ` where d(xR/x′R) = m and ` > 0.

Suppose that NaR is a direct summand of M such that e(NaR) = n ≤ k ≤ n + `− 1, for some a ∈ M . If

b = Hk−n(a) then Hm(b) 6= 0 since n > m . Moreover,

HM (b′) = k − n+m ≤ n+ `− 1− n+m = m+ `− 1 < HM (x′),

where d(xR/x′R) = d(bR/b′R) = m . Therefore UM (b) � UM (x), but e(b) = e(x), a contradiction.
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Now suppose that NaR is a direct summand of M such that e(NaR) = m+ 1 ≤ k ≤ n−1, for some a ∈M .

We observe that b = x+a such that e(b) = n . But HM (x′) > m = HM (a′), where d(xR/x′R) = d(aR/a′R) =

m , hence HM (b′) = HM (x′ + a′) = m < HM (x′), where d(xR/x′R) = d(aR/a′R) = d(bR/b′R) = m . We

therefore obtain that UM (b) � UM (x), a contradiction.

(iii) ⇒ (i). Let x be as in (iii). Now the Ulm sequence UM (x) has a trivial gaps then NxR is a direct

summand of M .

Suppose that UM (x) has a gap before the index m , and let y be a uniform element of M such that

e(y) = k ≤ e(x). We claim that UM (x) ≤ UM (y).

Let us assume that UM (y) = (β0, . . . , βk−1,∞, . . . ). We have two cases to consider.

Case(i): βk−1 is finite. In order to demonstrate UM (x) ≤ UM (y), we have to prove that HM (x′) ≤ HM (y′)

where d(xR/x′R) = d(yR/y′R) = m , since UM (x) has only one gap and this occurs before m .

Suppose that HM (x′) > HM (y′) where d(xR/x′R) = d(yR/y′R) = m . If n1, . . . , nr are the positive indexes

before the gaps occur and we write βni
= ni +mi+1 and m1 = β0 then we get the uniserial direct summands

with d(xR) = ni +mi , where i = 1, . . . , r .

If m = 0 then we have no uniserial direct summands with d(xR) = 1, . . . , n+ `− 1. Then every element y

with e(y) ≤ n must have height ≥ ` .

If m > 0, nj ≤ m be the largest index ni ≤ m . Then HM (y′) = m+mj+1 < m+` such that d(yR/y′R) = m

and M has a direct summand of exponent nj+1 +mj+1 . Since m < nj+1 ≤ n , then M has a uniserial direct

summand with d(xR) = k and m < k < n+ ` , which is a contradiction.

Case(ii): βm−1 is infinite. Let c = HM (x′) such that d(xR/x′R) = n−1. If B =
⊕
i>0

Bi is a basic submodule

of M . Let M = B1 ⊕ · · · ⊕ Bc ⊕ Hc(M) be the direct decomposition and set y = y1 + · · · + yc + y1 where

yi ∈ Bi for all i = 1, . . . , c and y1 ∈ Hc(M). Thus UM (x) ≤ UM (y1). But y − y1 satisfies Case (i) and

e(y − y1) < e(x). Therefore UM (x) ≤ min{UM (y − y1), UM (y1)} , and it follows that UM (x) ≤ UM (y).

Recall from [6] that if M is a QTAG-module and N ⊆ M , the valuation of N induced by height in M is

defined by v(x) = HM (x), the height of x in M , for all x ∈ N and N = P ⊕ Q is a valuated direct sum if

v(p+ q) = min{v(p), v(q)} for all p ∈ P and q ∈ Q .

Lemma 2.3. Let M be a QTAG-module, and let P,Q be the submodules of M such that the extension of all

homomorphisms of P and Q into M is an endomorphism of M with P ∩Q = 0 . If P ⊕Q is the submodule

of M such that the extension of all endomorphisms of N is an endomorphism of M , then P ⊕Q is a valuated

direct sum.

Proof. Assume that P ⊕ Q is not valuated direct sum. Then there exists a pair (p, q) ∈ P ⊕ Q such that

HM (p, q) > min{HM (p), HM (q)} . For example, say HM (p, q) > HM (p). Let φ ∈ End(P ⊕ Q) be the

natural projection onto P . Then HM (φ(p, q)) = HM (p) < HM (p, q) and hence φ cannot be extended to an

endomorphism of M , which is a contradiction. We are done.

Lemma 2.4. Let L be an h-pure submodule of the QTAG-module M such that L is a direct sum of uniserial

modules and M/L is h-divisible. Let φ : N → M be a homomorphism for some finitely generated submodule

N of L . Then the following are equivalent.
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(i) φ can be extended to an endomorphism of M ;

(ii) φ can be extended to a homomorphism φ1 : L→M ;

(iii) φ can be extended to a homomorphism φ1 : L→M such that φ1(L) is bounded.

Proof. (i)⇒ (ii) is obvious.

(ii) ⇒ (iii). Let us first extend that φ to a homomorphism φ2 : L → M . Since N is finitely generated and

L is a direct sum of uniserial modules, there is a finite direct summand S of L such that N ⊆ S . For every

complement T of S in L , S ⊕ T = L , we have φ1 : L → M such that φ1(a + b) = φ2(a) for all a ∈ S and

b ∈ T .

(iii) ⇒ (i). Let φ1 be as in (iii). Then the extension of φ1 is an endomorphism of M such that φ1(L) is

bounded by t for some t ≥ 0. By the h -divisiblity of M/L , we have M = L+Ht(M). Thus, for every a ∈M
there are b ∈ L and c ∈M such that a = b+Ht(M). Since L is h-pure in M , there exists a map φ2 : M →M

such that φ2(a) = φ1(b). Henceforth, it follows that φ2 is an endomorphism of M which extends φ .

We are now able to characterize finitely generated submodules of M .

Theorem 2.2. Let M be a QTAG-module and N =
n⊕
i=1

Ni a finitely generated submodule such that N ∩

Hω(M) = 0 and each Ni = NxiR is a uniserial module of exponent ei . The following are equivalent.

(i) All the endomorphisms of N can be extended to endomorphisms of M .

(ii)(a) If ej ≤ ei then UM (xi) ≤ UM (xj) ≤ UM (x′i) such that d(xiR/x
′
iR) = ei − ej ;

(ii)(b) N =
n⊕
i=1

Ni is a valuated direct sum of uniserial modules.

Proof. (i) ⇒ (ii). As for the part (ii)(a), let i , j be two indices such that ej ≤ ei . Then there are

homomorphisms φ1 : Ni → Nj such that φ1(xi) = xj and φ2 : Nj → Ni such that φ2(xj) = x′i where

d(xiR/x
′
iR) = ei − ej . Since these homomorphisms are the extensions of the endomorphisms of N , then so

is endomorphisms of M . Moreover, UM (xi) ≤ UM (xj) ≤ UM (x′i) such that d(xiR/x
′
iR) = ei − ej . Thus, by

what we have just seen above, in view of the fact that endomorphisms do not decrease heights.

The part (ii)(b) follows directly from Lemma 2.3.

(ii) ⇒ (i). Let φ1 : Nj → N be a homomorphism, where j ∈ {1, . . . , n} . Since UM (kx) = UM (x) for all

integers k , it is enough to prove that UM (x′j) ≤ UM (Hk(φ1(xj))) such that d(xjR/x
′
jR) = t and 0 ≤ t < ej .

For every uniform element y ∈ M , we have UM (y′) such that d(yR/y′R) = t for some t ≥ 0. This can be

obtained by deleting the first t components of UM (y), it is enough to prove UM (xj) ≤ UM (φ1(xj)).

Let φ1(xj) =
n∑
i=1

kixi . Note that if ej < ei then ei − ej divides ki . Then

φ1(xj) = (
∑
ej<ei

nix
′
i) + (

∑
ei≤ej

kixi),

where d(xiR/x
′
iR) = ei − ej , and hence

UM (φ1(xj)) = min{UM (nix
′
i)) : ej < ei} ∪ {UM (kixi) : ei ≤ ej} ≥ UM (xj),

such that d(xiR/x
′
iR) = ei − ej and the proof is complete.
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The following lemma is of some interest.

Lemma 2.5. Let N be a submodule of the QTAG-module M such that the extension of all monomorphisms

of N →M is an endomorphisms of M . If V is a uniserial direct summand of N then all monomorphisms of

V into M can be extended to endomorphisms of M .

Proof. Let W be a complement of V in N , so N = V ⊕W , and φ : V →M be a monomorphism.

If φ(V )∩W = 0, then the homomorphism ϕ : V ⊕W →M such that ϕ(a, b) = φ(a)+b is a monomorphism,

hence it can be extended to an endomorphism ψ : M →M . It easy to see that ψ also extends φ .

If φ(V ) ∩W 6= 0, we first observe that Soc(φ(V )) ⊆W since φ(V ) is a uniserial module. Let φ1 : V →M

be the homomorphism defined by φ1(a) = φ(a)− a . Suppose that φ1 is not monomorphism. Then there exists

a non-zero element a ∈ V such that φ1(a) = 0. Then φ(a) = a ∈ V , hence φ(V ) ∩ V 6= 0. It follows that

Soc(φ(V )) ⊆ V , and this contradicts V ∩W = 0. Hence φ1 is a monomorphism.

Now suppose that φ1(V ) ∩W 6= 0. Then there exists a ∈ V such that 0 6= φ(a) − a ∈ W . If e(a) = m

then Hm−1(φ(a) − a) ∈ Soc(W ). But Hm−1(φ(a)) ∈ Soc(φ(W )) ⊆ Soc(W ), hence Hm−1(a) ∈ Soc(W ), a

contradiction. Then φ1(V ) ∩W = 0 and there exists an endomorphism ϕ : M → M which extends φ . Then

for every a ∈ V we have φ(a) = ϕ(a) + a , hence ϕ+ IM extends φ .

Let M be a QTAG-module and N ⊆M . If U is an Ulm sequence, we denote

NU = {x ∈ N : UM (x) ≥ U}, NU = {x ∈ N : UM (x) > U}

and

N(U) =
NU +H1(N)

NU +H1(N)

Recall from [7] that a ∗-basis for M is constructed in the following way.

Let M be a QTAG-module. For each ordinal σ , let Bσ be a set of representatives of the nonzero cosets

of Hσ(M) mod Hσ+1(M); in other words, Bσ contains exactly one element from each of the nonzero cosets of

Hσ+1(M) in Hσ(M). If each element x in M can be expressed as

x = b1 + b2 + · · ·+ bn (1)

where bi ∈ Bσ(i) with σ(1) < σ(2) < · · · < σ(n), then B =
⋃
Bσ is called a ∗-basis of M . The expression (1)

is called a representation of x with respect to the ∗ -basis B .

With the help of above discussion, we are able to infer the following.

Lemma 2.6. Let M be a QTAG-module and N =
n⊕
i=1

Ni a finitely generated submodule such that all

Ni = NxiR are uniserial modules such that

(i) e(x1) ≤ e(x2) ≤ · · · ≤ e(xn) ,

(ii) for all k ∈ {1, . . . , n} and for all y ∈
k⊕
i=1

Ni we have UM (xk) ≤ UM (x) , and

(iii) if e(xi) = e(xj) then UM (xi) = UM (xj) .

Then the direct sum
n⊕
i=1

Ni is a valuated direct sum of uniserial modules.
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Proof. The proof is by induction. For n = 1 the property is obvious. Suppose that (ii) is valid for all k < n .

Then
n−1⊕
i=1

Ni is a valuated direct sum of uniserial modules. Let t be the minimal index such that e(Nn) = e(Nt).

We observe that the sequence UM (xi), i = 1, . . . , n is a decreasing sequence such that UM (xi) = UM (xj) if

and only if e(Ni) = e(Nj). Moreover, it follows by (ii) that UM (xn) ≤ UM (z) for all z ∈ N . Now, for every

U we fix a basis in N(U), and we choose one representative whose Ulm sequence is U for each element in

this basis; the union of all these representatives is a ∗ -basis for N . Moreover, in this hypothesis every ∗-basis

is linearly independent and it generates N . Therefore, it is enough to prove that {xi : i = 1, . . . , n − 1} is a

∗ -basis for N .

Since L =
n−1⊕
i=1

Ni is a direct sum of uniserial valuated modules, it follows that the set {xi : i = 1, . . . , n− 1}

is a ∗ -basis for L . Let U ′ be the Ulm sequence of xn . If U < U ′ then NU = NU = N , so N(U) = 0. If

U and U ′ are not comparable then NU = NU since U ′ is minimal as Ulm sequence of an element of N , so

N(U) = 0. It is easy to see that NU ′ = N , and NU ′
= (⊕i<tNi) ⊕ (⊕ni=tH1(Ni)), so xt, . . . , xn represent a

basis in N(U ′).

If U ′ < U then

NU +H1(N) = (
⊕

UM (xi)≥U

Ni) +H1(N) = LU ⊕H1(Nn)

and

N ′U +H1(N) = (
⊕

UM (xi)≥U

Ni) +H1(N) = LU ′ ⊕H1(Nn)

Therefore every set in L =
n−1⊕
i=1

Ni which represents a basis in L(U) is also a representative set for a basis in

N(U). It follows that {x1, . . . , xn} is a ∗ -basis, and the proof is complete.

We end this paper by the following lemma.

Lemma 2.7. Let M be a QTAG-module and a, b ∈M . If UM (a+ b) = UM (a) then UM (a) ≤ UM (b) .

Proof. Suppose that UM (a) � UM (b). Then there exists a positive integer t such that HM (b′) < HM (a′) where

d(aR/a′R) = d(bR/b′R) = t . It follows that HM (c′) = HM (b′) 6= H(a′) where d(aR/a′R) = d(bR/b′R) =

d(cR/c′R) = t and c = a+ b . This contradicts our hypothesis, and we are done.
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