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What is credit risk?

The Basel Committe on Banking Supervision (2000) defines Credit risk as
the potential that a bank borrower or counterparty will fail to meet its
obligations in accordance with agreed terms.
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Why is it important?

For financial institutions:
Credit Risk is acknowledged as one of the most significant risks a bank
faces
It is important to manage credit risk because if borrowers do not re-
pay their loans, the lender loses money. And if this loss occurs on
a large scale, it can affect the company’s liquidity and even cause its
bankruptcy.
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Why is it important?

For the population:
Access to credit is essential to support social mobility and financial
success
According to the world bank, 1.7 billion adults remain unbanked
Being unbanked or underbanked presents the lack of credit history,
meaning that people cannot obtain a credit no for being bad payers,
but rather lack the attributes to be evaluated by traditional credit scor-
ing models
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How do banks measure the creditworthiness of a borrower?

To determine the creditworthiness of a borrower, financial institutions
have applied credit scoring for decades.
The purpose is to estimate whether a customer will pay back the loan
and avoid granting credit to people with a high probability of default.
Credit Scoring uses personal information, banking data, and the pay-
ment history.
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How do we improve the borrowers’ creditworthiness
assessment?

Financial institutions, fintech, and researchers have worked in two main
ways to improve the creditworthiness assessment: better algorithms or
more data, specifically alternative data sources.
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What will we see today?

A bit of both worlds, new algorithms, and alternative data sources. In
particular, we will use graph data as an alternative data source.
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What is graph data?

We define graph data as that information that records the relationships
or interactions among entities. In this way, a network corresponds to a
group of nodes in which edges connect pairs of nodes.
In this study, the nodes represent people or companies, and the edges
represent the multiple kinds of interaction between them.
We will refer to a network as a Social Network when nodes are people
or companies, and edges denote any social interaction like friendship,
acquaintances, neighbors, colleagues, or affiliation to the same group
(Easley & Kleinberg 2010)
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Why do we use graph data?

We are social individuals, generating and maintaining relationships with
other individuals throughout our lives. Our friends do not seem like a
random sample of the population, and they share our beliefs, opinions,
hopes, hobbies, or mutual interests.
So it is logical to think that our relatives could help us in case of economic
difficulties.
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How do we extract knowledge from graphs?

We will use network representation learning:

Feature Engineering
Network Embeddings
Graph neural networks (GNN)
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Disclaimer

From now on, we will review the results of Muñoz-Cancino et al. (2021):
Muñoz-Cancino, R., Bravo, C., Ríos, S. A., and Graña, M. (2021). On
the combination of graph data for assessing thin-file borrowers’ credit-
worthiness. arXiv preprint arXiv:2111.13666.

You can check the article for all the details.
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Data Description

The information used in this research originates from a Latin American
bank. The information provided by the financial institution to create
networks originates from varied sources and can be cataloged as follows

[WeddNet] Network of marriages
[TrxSNet] Transactional services Network
[EnOwNet] Enterprise’s ownership Network
[PChNet] Parents & Children Network
[EmpNet] Employment Network
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Feature Sets

Borrower
NodeStats
EgoNet
N2V
GNN
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Node2Vec Features
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Figure: Node2Vec to Features
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GNNs Features
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Figure: Graph Convolutional Networks and Graph Autoencoders to Features
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Credit Scoring with Social Networks

The credit scoring models are built with information about the financial
system for 24 months.
Target: A person or company is considered defaulter when it is 90 or
more days past due within twelve months from observing him.

Table: Description of dataset

Scoring application Model Observations # Features
Unbanked Application

Scoring
Business Credit Score 29,044 687
Personal Credit Score 192,942 1,283

Behavioral Scoring
Business Credit Score 931,910 687
Personal Credit Score 1,978,664 1,283
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Credit Scoring Performance

Table: Improvement in AUC relative to the benchmark model (mean and std), mea-
sured as rowAUC−BenchScoreAUC

BenchScoreAUC
. We only report results when the equal performance

hypothesis is rejected, with a confidence level of 95%; otherwise, we display *.
The best performance in each column is shown in bold; more than one bold value
indicates the hypothesis of equal performance between those models cannot be
rejected.

Feature Set
Business Credit Score Personal Credit Score

Application Behavioral Application Behavioral
Borrower * 0.58% ± 0.06% 1.45% ± 0.39% 0.95% ± 0.06%
Borrower + NodeStats * 1.13% ± 0.12% 2.02% ± 0.49% 1.07% ± 0.06%
Borrower + EgoNet 8.96% ± 3.37% 2.33% ± 0.15% 2.31% ± 0.64% 1.25% ± 0.08%
Borrower + GNN,N2V 3.92% ± 2.03% 1.77% ± 0.13% 3.17% ± 0.55% 1.96% ± 0.04%
Borrower + NodeStats + EgoNet 9.00% ± 3.47% 2.37% ± 0.16% 2.39% ± 0.60% 1.32% ± 0.08%
Borrower + NodeStats + GNN,N2V 4.25% ± 1.84% 1.94% ± 0.16% 3.26% ± 0.48% 2.03% ± 0.05%
Borrower + NodeStats + EgoNet + GNN,N2V 8.43% ± 2.83% 2.80% ± 0.16% 3.58% ± 0.61% 2.18% ± 0.04%
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The advantages of Graph Representation Learning Blending

Table: Graph Representation Learning blending performance. The performance
enhancement of training a model using all graph representation learning methods
(full: Borrower + NodeStats + EgoNet + GNN,N2V ) is measured as the relative
increase in AUC (

[full]AUC−columnAUC
columnAUC

).

Scoring Model
Feature Set

Borrower
EgoNet

Borrower
NodeStats
EgoNet

Borrower
GNN,N2V

Borrower
NodeStats
GNN,N2V

Application
Scoring

Business Credit Score * * 4.33% 4.00%
Personal Credit Score 1.23% 1.16% 0.39% 0.31%

Behavioral
Scoring

Business Credit Score 0.47% 0.43% 1.02% 0.85%
Personal Credit Score 0.92% 0.84% 0.22% 0.15%
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Conclusions

We introduced a framework to combine traditional hand-engineered fea-
tures with Graph Embeddings and Graph Neural Networks features.
This framework produces a single score, facilitating its users to decide
to approve or reject a credit.
Our results are the first to validate and test graph data over both cor-
porate and consumer lending, showing that the information from graphs
has a different effect depending on the client under analysis, people, or
companies.
To the best of our knowledge, this is the first study that considers
the credit behavior of an entire country, together with social networks
that allow characterizing its entire population and consolidate multiple
types of social and economic relationships: parental, marital, business
ownership, employment, and transactional services.
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THANK YOU!
If you have any questions, just write me an email at

rimunoz@uchile.cl
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