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Reproducibility Summary

Scope of Reproducibility
In this paper, we attempt to verify the claims that the paper [1] makes about their pro‐
posed CGN framework that decomposes the image generation process into independent
causal mechanisms. Further, the author claims that these counterfactual images im‐
proves the out‐of‐distribution robustness of the classifier. We use the code provided by
the authors to replicate several experiments in the original paper and draw conclusions
based on these results.

Methodology
Weuse the same hyperparameters and architecture asmentioned in CGN [1]. We use the
PyTorch code publicly available by the author. Wemake several changes to their code for
theMNIST datasets since it gives spurious results/errors. Since we use ImageNet 1000 as
a replacement for the ImageNet dataset, wemodify the code accordingly. We reproduce
tables 1‐6 from CGN [1] paper, excluding results for models from other papers.

Results
We validated each of the author’s claim through the experiments given in the original
paper and few additional experiments of our own. Overall, we foundmany experiments
yielding identical results while some deviations were observed with both the Counter‐
factual Generative Network and the subsequent classification task. We were able to ex‐
plain most of these deviations through our additional experiments while some couldn’t
be validated due to computational limitations.

What was easy
Overall, clear environment setup instructions, well working code and availability of pre‐
trained CGN models for both datasets proved valuable to validate the authors’ claim.

What was difficult
Some experimental details were not reported in the original paper which made vali‐
dations time consuming. ImageNet based experiments were replaced with ImageNet‐
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[Re] Counterfactual Generative Networks

1k(mini) due to the computational limitation which made it difficult to validate the au‐
thor’s original claims. Pre‐trained classification models could have proven helpful in
this case, but were unavailable, which meant we had to train the classifier from scratch.
Code changes were required to obtain baseline results which was tedious considering
different code architecture was implemented for MNIST & ImageNet.

Communication with original authors
We emailed the authors regarding inception score, MNIST dataset hyperparameters and
ImageNet hyperparameters.
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1 Introduction

Neural Networks (NNs) have become ubiquitous in machine learning due to their pre‐
dictive power. However, a shortcoming of NNs is their tendency to learn simple correla‐
tions that lead to good performance on test data rather than more complex correlations
that generalise better. This shortcoming is apparent in the task of image classification,
where NNs tend to overfit to factors like background or texture. To address this short‐
coming, [1] proposes a method of generating counterfactual images that prevent classi‐
fiers from learning spurious relationships.
The authors take a causal approach to image generation by splitting the generation task
into independent causal mechanisms. The authors considered three separately learned
Independent Mechanisms (IMs) to generate shapes, textures and backgrounds for an
image. For the MNIST setting, all IM specific losses are optimized end‐to‐end from
scratch, while in the ImageNet setting, each IM is initialized with weights from pre‐
trained BigGAN‐deep‐256 [2]. The counterfactual image is then generated by passing
the result of each IM to a deterministic composer function.
In this report, we use the publicly available code provided by the authors to reproduce
the results of the paper and validate the authors’ claims. In this endeavour, we made
modifications to the code to determine the efficacy of their generative model and vali‐
date its impact on improving the out of distribution robustness of a classifier.

2 Scope of reproducibility

In this report, we investigate the following claims from the original paper:

1. Generating high‐quality counterfactual images that decompose into independent
causal inductive biases, these mechanisms disentangle object shape, object tex‐
ture and background

2. Using counterfactual images improves the shape vs texture bias which is an inher‐
ent problem of deep classifiers

3. Using counterfactual images improve the out‐of‐distribution robustness for the
classifier during the classification task

4. The Generative model can be trained efficiently on a single GPU with the help of
powerful pre‐trained models

We attempt to reproduce the experiments from the paper [1] and perform exploratory
analysis on the abovementioned claims. We propose using an extra loss function tomit‐
igate some of the shortcomings during counterfactual generation process and generate
heatmap plots to study the classifier behaviour.

3 Methodology

Alex et al. [1] propose a Counterfactual Generative Network (CGN) framework to gener‐
ate high‐quality counterfactual images, which can be used to train invariant classifiers.
The architecture of a CGN is composed of three IMs that are trained to generate back‐
grounds, shapes, and textures. Each IM is provided with a label. The task of the invari‐
ant classifier is to predict the label of a specific IM, regardless of the labels of the others.
In conjunction with the composer function, the use of counterfactual images generated
by the three IMs prevents the classifier from learning spurious relationships that arise
from training on a natural dataset only.
The architecture of the CGN consists of a GAN as the backbone of each IM. Each IM sam‐
ples random noise µ ∼ N(0,1), along with an independently sampled label to generate
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samples. The output xgen is generated using an analytical function from the Composer
’C’,

xgen = C(m, f, b) = m⊗ f + (1−m)⊗ b

where ’m’ is the mask (alpha map), f is foreground and b is background. ⊗ denotes the
element wise multiplication.
The losses Lrec (xgt, xgen), L1 reconstruction loss, Lperceptual as shown in Fig. 1 are
used to improve the quality of generated images. Once the CGN is trained, u and y are
randomized per mechanism such that new counterfactual xgen are generated. Further‐
more, hyperparameters such as CF ratio (the ratio indicates how many counterfactuals
are generated per sampled noise) can be used to control the number of samples that are
being generated. These samples are then used to train the classifier and evaluated on
the corresponding test set.

cGAN

CGN

BigGAN

BigGAN

BigGAN

BigGAN U2-Net

U2-Net

Figure 1. Architecture diagram from [1] for ImageNet [3] dataset.We observe that the architecture
consists of fbg, ftexture, fshape to assist with the generation ofxgen. A powerful pre‐trainedBiggan‐
256 [2] is used to images from noise for each of the independent mechanisms. The shape and
background are extracted with the help of a pre‐trained U2‐net [4], while texture is obtained by
minimizing perceptual loss between the foreground (ftext and a patch grid obtained from the
value within the mask). The composer is analytically defined which uses alpha blending to gener‐
ate the counterfactual xgen. Components with trainable parameters are ’green’ and without are
’blue’.

3.1 Model descriptions
The ImageNet variant follows the architecture that is illustrated in Fig. 1. The MNIST
variant applies a simpler architecture by applying a second texture mechanism rather
than a background mechanism.

3.2 Experimental setup and code
We use the datasets mentioned in [1], excluding ImageNet [5] due to limited resources
and computational constraints.
For all the experiments, we make use of standard dataset splits akin to the CGN paper
[1]. Considering the computational constraint to train a classifier on ImageNet [3], we
used the pre‐trained CGN to generate counterfactual images and trained a classifier on
ImageNet‐1k(mini) and mini‐imagenet datasets.

3.3 Hyperparameter search
We found that the hyperparameters provided by the authors were stable, and so we did
not conduct a hyperparameter search in this report.

01https://kaggle.com/ifigotin/imagenetmini‐1000
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Description
Dataset

Colored MNIST Consists of digits in red or green.
Double Colored MNIST Consists of more varied backgrounds and digits than Col‐

ored MNIST.
Wildlife MNIST An attempt to build MNIST [6] closer to the ImageNet [5],

texture was added as a bias to the data. The ten digits of
the striped texture class encode the foreground lables and
the background is labelled with the with the texture class
’veiny’.

ImageNet‐1k(mini) Subset of the ImageNet‐1k [7], available here 1 that contains
34745 images in train set and 3923 for validation set, each
split among 1000 classes individually.

Table 1. Datasets used

3.4 Computational requirements
All models are run on Nvdia GTX1080Ti GPUs (11Gb VRAM). For the MNIST datasets,
training a CGN and a classifier each took approximately one hour.

4 Results

A lack of compute power prevented us from replicating the experiments on ImageNet.
As aworkaround, we limit ourselves to verifying the results using the ImageNet‐1k(mini)
dataset. This is beneficial because it extends the results of the paper and evaluates the
method on a new dataset, and ensures that results can be reproduced with limited re‐
sources by referring to our report/code and the CGN paper.

4.1 Results reproducing original paper

Can Image generation process be decomposed into independent causal inductive biases effectively? —
We begin the experiment by training a CGN on the three variants of the MNIST dataset.
We observe in Fig. 2 that the digits in case of colored MNIST dataset lose their shape
when reconstructed, whereas for double colored and wildlife MNIST, the digits look
much better. Since we do not clearly understand why the shape in Colored MNIST is
poor, we generated a mask timeline to verify any patterns. Fig. 3a details the same. Fur‐
ther analysis on this was conducted and recorded in 4.2. We also propose an additional
loss function to help mitigate this problem.

Figure 2. For brevity, we display only first 3 digits that were generated by training from scratch by
us for the given three MNIST datasets.
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Quality of Counterfactual Images on ImageNet-1k — To quantify the quality of the composite
images produced by the CGN, the authors calculate the inception score (IS). The details
of the IS calculations (inception model used, number of images used) were not men‐
tioned in the paper. In an attempt to recreate the results regarding IS, we use the Ope‐
nAI implementation 1. We plot the results of IS vs the number images using 10 splits in
Fig. 9. We observe the IS converges to an IS of 198.
Wemade use of the pre‐trained CGN trained on ImageNet‐1k that was present as part of
the codebase to generate counterfactual images. Since there is no quantitative way to
measure the quality of counterfactual images, we reproduced the images given in the
original paper. We achieved a similar quality of counterfactual images but also noted
deviations. Fig. 7 shows all the images that were given in the original paper. A deviation
in the mask is observed for the class ’Agaric’ and ’Cauliflower’. The difference in the im‐
ages to the original paper prompted us to collect the classes with poorer counterfactual
images to observe any patterns.
Fig. 8 is generated from the pre‐trained CGN that have a low quality of images picked
from random classes. Since the analysis is qualitative, we relied on the realism of the
counterfactual compared to original images from that class. Images under the classes
’Cliff dwelling’ ’American Chameleon’ suffer from Texture‐background entanglement re‐
sulting in the counterfactual with no subject. On the other hand, the images under the
class ’Goldfinch’, ’Junco’ suffer from reduced realism due to linear constraints applied
on the composer.

Impact of counterfactual images towards shape-bias of the classifier —

Experiments conducted with ImageNet-1k(mini) dataset — In order to identify the impact of
shape bias on the classifier, we made use of the proposed architecture for the classifier
ensemble that included 3 different heads. The ensemble includes a pre‐trained classi‐
fier(we made use of Resnet‐50) as the backbone, while attaching 3 different heads to
it. Each head controls the variance with respect to one of the 3 independent mecha‐
nism(Shape, Texture, Background) which are individually trained from scratch. The
result from these heads are averaged to get the prediction accuracy of the classifier en‐
semble.
The results in Table 2(a) for ImageNet‐1k(Mini) showed a considerable deviation. The
shape bias is marginally lower compared to the baseline result while the texture bias is
high. The reduction in the shape bias could be due to the smaller dataset that we are
using. Since this is ambiguous to validate the original claim we conducted additional
experiments which are detailed in section 4.2.

Do Counterfactual images improve the OOD robustness of the classifier? —

Classification Accuracy (MNIST Dataset) — Firstly, we trained a classifier on counterfactuals
generated by the pre‐trained CGN provided by the authors. It was not clear how many
counterfactual images the classifier should be trained on, but the accuracies in Table 3
were similar to the results in the ablation study in Fig. 7 using 106 counterfactuals, so
this is the number we chose. There was also ambiguity between the statements in the
paper and the code about the classifier being trained on any real images, so we trained
two classifiers. One classifier was shown real images, and the other was not.
The classifier trainedwith counterfactuals generatedby thepre‐trainedmodels achieved
comparable results to those in the paper. From table 3, it can be seen that the pre‐trained
models achieved train accuracies that differed by less than 3%, and test less than 1.5%
compared to the results in the paper. However, the classifier trained on counterfactu‐
als generated by CGNs that we trained (using the provided configurations) performed

1https://github.com/nnUyi/Inception‐Score
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Shape Bias
Dataset

ImageNet‐1k 48.1%

ImageNet‐1k + CGN/Shape 47.00%
ImageNet‐1k + CGN/Text 37.01%
ImageNet‐1k + CGN/Bg 47.02%

(a) Impact on shape bias

IN‐9 Mixed Mixed BG‐Gap
Same Rand

Dataset

ImageNet‐1k 17.27% 6.37% 7.65% 1.28%
ImageNet‐1k 18.2% 14.05% 12.35% 1.7%
+ CGN

(b) Out‐of‐distribution accuracy for ImageNet
variants

Top‐1 Train Accuracy Top‐5 Train Accuracy Test Accuracy
Dataset

ImageNet‐1k(mini) 91.27% 97.35% 73.12%
ImageNet‐1k(mini) + CGN 90.32% 97.24% 11.36%

(c) Train and Test accuracies for ImageNet‐1k(mini) with Resnet‐50 backbone

Table 2. Results for experiments conducted using Imagenet‐1k(mini) dataset

Colored MNIST Double‐colored MNIST Wildlife MNIST
Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc

Pre‐Trained (Ours/With real images) 100.0 96.98 98.9 92.29 99.7 88.35
Pre‐Trained (Ours/Without real images) 100.0 92.70 98.9 90.42 99.8 85.09
Trained (Ours/With real images) 98.7 68.96 96.8 88.54 99.9 72.93
Trained (Ours/Without real images) 98.7 43.88 96.7 87.90 99.9 75.28
Original+CGN (Theirs) 99.7 95.10 97.4 89.00 99.2 85.70

Table 3. MNIST Classification Accuracy

significantly worse on colored MNIST and wildlife MNIST in terms of test accuracy. We
anticipate that the provided configurationswere not the same as the configurations used
to acquire the results in the paper.
The presence of real images in the dataset for the pretrained models appeared not to
have a significant effect on train or test accuracy. The largest gain obtained by includ‐
ing real images was approximately 4%. This demonstrates that the ambiguity regarding
whether or not real images were used in the training of the classifier was inconsequen‐
tial. For the CGNs that we trained, however, the presence of real images improved the
performance of the classifier significantly.

Classification Accuracy(ImageNet Dataset) — The classifier was trained on counterfactual im‐
ages from pre‐trained CGN and ImageNet‐1k(mini). The results in table 2(c) indicate the
trend that was observed. The training accuracy showed a similar trend to the original
paper’s classifier (trained on ImageNet). There is a similar drop in the training accuracy
compared to the baseline(ImageNet‐1k).
Even though the original paper does not include the test accuracy for the classifier for
the same distribution, we found that the classifier does not perform well with respect
to the test data. The drop in top‐1(the predicted class is the correct class that the image
corresponds to) & top‐5(5 out of 1000 classes with the highest probability as predicted by
the classifiermatches the actual label) accuracy compared to the baselinewas attributed
to the ability of the counterfactual models to reduce the shape bias of classifier which
would improve the classifier’s robustness to unseen data. However, this is invalidated by
the low percentage of the test accuracy. To further understand why the classifier ensem‐
ble is not performing well with unseen test data, we conducted additional experiments
to explain the same behaviour.

Out of distribution accuracy — : A similar study as given in the paper was conducted to un‐
derstand how the trainedmodel performswith an out‐of‐distribution dataset. Table 2(b)
contains the information with respect to the ImageNet‐1k(mini) + CGN. There is a sig‐
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nificant reduction in the accuracy of the out‐of‐distribution dataset. The baseline also
showed a similar trend, andwe could not achieve the higher percentage reported as part
of the paper. We concluded that the baseline result is on the lower side primarily be‐
cause of the size of the ImageNet‐1k(mini) dataset that was used for training. Since the
results show that the ensemble classifier improves the out‐of‐distribution robustness
compared to the baseline, the percentage was still very low to make any conclusion.
Both the trend with the test accuracy and out‐of‐distribution accuracy falls on the lower
side, which prompted us to investigate further. We generated explainability plots us‐
ing the same distribution and out‐of‐distribution data to determine how the model is
behaving with and without the heads that disentangle shape, texture, background. We
recorded All of the experiments as part of section 4.2.

4.2 Results beyond original paper

For Additional Result 1 we make use of CGN [1] architecture that has been designed for MNIST
datasets due to computational limitations. —

Additional Result 1 - Does fbg , ftexture, fshape and Lperceptual (Perceptual loss) proposed in [1]
cover all aspects of background, shape, texture? — CGN [1] makes use of texture loss Ltext

(xgt, xgen), = sampling 36 patches of size 15 x 15 grid from regions wherever mask has
values near 1. Further, from these 36 patches, a patch grid of 6 x 6 is used. It is then
upscaled to 256 x 256 resolution, which is in turn used an input to the Perceptual loss
Lperceptual between foreground f and patch grid Ltext(f, pg). However, we observe that
important image properties such as luminance, contrast, structure are not taken into
consideration with the Ltext loss proposed in CGN [1] for the generated image and the
ground truth image and also because
Hence, we propose the usage of an additional Loss function Lssim (SSIM) [8]. In ad‐
dition, motivated by results as shown in [9], [10] L2 loss unlike SSIM [8] over different
distortions of the image remains constant instead of recognising them . It complements
the structural lossLrec. Default Gaussian Kernel of 11 was used as a hyperparameter for
SSIM [8].
We observe from Table 4 that using SSIM [8] loss improves classification accuracy on the
Wildlife MNIST dataset. Qualitative improvements in the generated images can be seen
in Fig 3b. Images trained with SSIM [8] loss show better structure and crisper outlines.
Improvements can be seen using SSIM [8] loss on the Double Colored MNIST dataset to
a lesser extent. However, accuracy on the colored MNIST dataset decreases. This may
be due to the dataset’s shape/structure/bias.

mask
after 10k after 20k after 40k after 46k

iterations

generated digit samples

(a)Wildlife MNIST mask samples obtained using
default hyper‐parameters mentioned in CGN [1].

mask
after 10k after 20k after 40k after 46k

iterations

generated digit samples using SSIM loss

(b) Wildlife MNIST mask samples obtained by adding
SSIM [8] loss.

Figure 3. Results for experiments conducted using Wildlife MNIST dataset
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Using pretrained weights Training from scratch Trained from scratch with SSIM [8]
Datasets

Colored MNIST 96.42 61.12 44.77
Double Colored MNIST 86.26 86.19 87.88
Wildlife MNIST 71.89 61.94 77.64

Table 4. Accuracy for MNIST datasets when SSIM [8] loss function is used. For the Wildlife dataset
and Double colored dataset we observe an increase in the overall accuracy when compared to
what has been reported in the paper with the usage of SSIM [8]

Exploring classifier robustness with ImageNet — From 2(c), we find a considerable drop in
the training and test accuracies(top‐1) compared to the baseline. To explain the perfor‐
mance of the model, we integrated lime[11] package to generate explainability heatmap
plots.(code reference lime_plots.py)
Same distribution Test set Fig 4 shows the outcome of the plots using the same im‐
age(fromanunseen set) run through 2 different classifiers. Firstly, we used a pre‐trained
Resnet‐50 to find out the robustness of the same towards unseen dataset. Secondly, we
made use of a fully trained classifier ensemble with a pre‐trained Resnet‐50 as the back‐
bone and 3 different heads as specified in the original paper[1]. The results are recorded
by obtaining the top‐5 classes with highest probability.
The image on the left of Fig 4 was classified as ’iPod’ with regions including the object
and the background contributing towards it. The plot shows how the classifier is ex‐
tracting information from not only the object but also the background to determine the
correct class. On the other hand, the image on the right shows the explainability plot
when the suggested classifier ensemble is used. It performs poorly categorising the im‐
age as ’American_chameleon’ with a higher probability when compared to the actual
classification ’iPod’. The heatmap sheds the light into this behavior showing that the
classifier does not include the background(as evident from the red zone) and focuses
primarily on the object shape to make a decision.
From the above experiments through visual plots, we are able to determine that the
counterfactual images to skew the shape‐bias of the classifier does not contribute to the
robustness towards unseen data within the same distribution. This can be attributed
to the inclusion of counterfactual images that are of reduced realism which affects the
classifier from learning meaningful information from the dataset at hand.

Figure 4. Heatmap plots and corresponding classification(probability in%) of the top 5 best classes
for the image iPod. From left to right, same image classified with a pre‐trained Resnet‐50 & Clas‐
sifier ensemble architecture from the original paper [1]. Green regions contribute towards the
classification while red regions do not.

5 Discussion

5.1 What was easy
It was easy to set up the environment as listed/indicated in the README file of the
Github repository. Although not all commands were explicitly listed, it helped us navi‐
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gate through and run the code. The presence of .yaml files for each dataset in the case
ofMNIST [6] helped us to train CGNs and classifiers with well‐working hyperparameters
quickly.
ImageNet experiments were structured clearly inmultiple sections within the codebase.
It made it easier to understand the difference in the architecture that was followed to
handle Mnist, ImageNet. Since, reliance on pre‐trained network for ImageNet was im‐
portant, the presence of scripts to download all the data, weights made the setup easier.

5.2 What was difficult
In the case of the architecture for ImageNet, replacing it with ImageNet‐1k or Mini‐
ImageNet required code changes. The python parameters to load the dataset(–data) had
no effect that prompted changes in the dataloader.py. The classifier(train_classifier.py)
did not have provision to generate the values without mandatorily providing the coun‐
terfactual information. This proved to be a challenge as we needed the baseline results
to compare the performance of the proposed model. Code modification was done to
accommodate the same and the experiment was conducted.
The results from the original paper included the inception score for the proposed CGN,
but we could not find a code block to calculate the same. Considerable amount was
spent on trying to find out the hyperparameters that was needed to generate the coun‐
terfactual images. Since the inception score was dependent on the number of counter‐
factuals generated, we worked towards identifying the correct hyperparameters before
continuing with classifier training.
Can the generativemodel be trained on a single GPU? From table 5, wewere able to train
the generative model from scratch for all variations of MNIST. However, for Imagenet
architecture, with the default parameters, it was going to take upwards of 200 hours.
Therefore, we were unable to verify this claim.

5.3 Suggestions for reproducibility
In general, the resources provided by the authors on GitHub in conjunction with the
explanations in the paperwere sufficient to generate similar results to those found in the
paperwith relative ease. However, in the future, itmaybehelpful if the authors provided
the weights of the exact models used in the paper, along with the hyperparameters used
to train them.
In addition, the size of the ImageNet dataset makes running several experiments infea‐
sible without significant compute power. Therefore, we suggest that additional exper‐
iments using a subset of ImageNet (i.e. Mini‐ImageNet) be added to the report for the
sake of reproducibility.
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Appendix

A Ablation Study

We conducted experiments to recreate the MNIST Ablation Study. For this study, the
pre‐trainedmodel provided by the authors was used. We observed a similar trend to the
authors. An increase in the number of counterfactual images used in training resulted
in higher training accuracies. However, our values differed significantly from those in
the report, as seen in Fig. 5 and Fig. 6 . In particular, we observed higher accuracies
for each dataset, especially when only 104 counterfactuals were used in training. This
differencemay be explained by differences between the pre‐trainedmodels provided by
the authors and the models that were used to generate the plots.

Figure 5. Recreated MNIST Ablation Study

Figure 6. Original MNIST Ablation Study from CGN[1]

B Training time for Generative Model

The following table shows the training time for each generative network against the
dataset that was used.
Note: The ImageNet based CGN depends only on the BigGAN‐256 backbone and U2‐net
to train. The MNIST based CGN architecture however, trains using the dataset without
any pre‐trained weight as backbone. ImageNet counterfactual generation was going
to run for 1.2 million iterations(0.5s/iteration), which was not computationally feasible
with our resources.

Table 5. Training time for CGN for different datasets

Dataset Training Time in hours (approx)

Colored MNIST 0.6
Double‐colored MNIST 0.6

Wildlife MNIST 3.5
Imagenet 167

ReScience C 8.2 (#2) – Ankit et al. 2022 12

https://rescience.github.io/


[Re] Counterfactual Generative Networks

C Counterfactual Images

The following images using the pre‐trained CGNmodel that was provided with the code‐
base. Minor deviations were observed with the image given in the paper to the result
we obtained.

Cauliflower Jay King Penguin Agaric Wallaby

Figure 7. Grid of Counterfactual Images from the Pre‐trained CGN [1] as given in the original paper.
The CGN is trained with biggan‐256 as the backbone and Pre‐trained U2‐net for mask generation.

Cliff dwelling American chameleon Goldfinch Sea lion Juneo

Figure 8. Grid of Counterfactual Images from same class that have poorer xgen. All classes are
picked at random and the counterfactual analysed for ’realism’

Figure 9. Inception score (10 splits) of images generated by the pre‐trained CGN
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D SSIM Loss function

SSIM [8] is defined using the three aspects of similarities, luminance (l (x, xgen)), con‐
trast (c (x, xgen)) and structure (s (x, xgen)) that aremeasured for a pair of images {xg, xgen}
as follows: Given two images ground truth x and generated image xgen, the SSIM [8] loss
is defined as follows:

Lssim(α) = 1− Ex[l(α) · cs(α)]

l (x, xgen) =
2µxµxgen

+ C1

µ2
x + µ2

xgen
+ C1

c (x, xgen) =
2σxσxgen

+ C2

σ2
x + σxgen

2 + C2

s (x, xgen) =
σxxgcn

+ C3

σxσxgen + C3

where µ′ ’s denote sample means and σ′ ’s denote variances. C1, C2 and C3 are con‐
stants. With these, SSIM and the corresponding loss functionLssim, for a pair of images
{x, xgen} are defined as:

SSIM (x, xgen) = l (x, xgen)
α · c (x, xgen)

β · s (x, xgen)
γ

where α > 0, β > 0 and γ > 0 are parameters used to adjust the relative importance of
the three components.

Lssim (x, xgen) = 1− SSIM (x, xgen)

Additional Result 2 - Exploring the biased behaviour of CGN[1] with the datasets — To investigate
the robustness of the CGN architecture [1] to varied color augmentations, we applied
color jitter to augment the training data. We found that applying a color jitter decreased
classification accuracy by 10% on double‐colored MNIST and 50% on wildlife MNIST.
Amongst all widely known augmentations we make use of color jitter since from [12],
[13] it is evident that color jitter, sobel flter augmentations are imperative to learn useful
representations from the given dataset.
We observe that from Table 6 that when we used it on Double Colored dataset the clas‐
sifier’s accuracy decreases by almost 10 %. Similarly, there is decrease in accuracy of
Wildlife MNIST dataset by almost around 50% as indicated in Table 4.

Using pretrained weights Training from scratch Trained from scratch using jitter
Datasets

Double Colored 86.26 86.19 78.56
Wildlife 71.89 61.94 10

Table 6. Accuracy for MNIST datasets when Color Jitter augmentation is used.

To determine why the color jitter augmentation decreases training accuracy, we ob‐
served the results visually through the samples generated across 40K iterations by the
CGN. It can be seen that digit 6 loses its shape over iterations. Digits 0 and 1 have the
same background and similar digit font. These artefacts produced by the CGN[1] are
a likely cause of the classifier’s decreased performance. Which might indicate that the
CGN is overfitting itself to the image backgrounds while learning the generative model
cGAN using the loss functions.
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xgen after 10k after 20k after 40k after 46k

iterations

generated digit samples

Figure 10. Double Colored MNIST samples obtained using default hyper‐parameters mentioned in
CGN [1].

xgen after 10k after 20k after 40k after 46k

iterations

generated digit samples when color jitter is used

Figure 11. Double Colored MNIST samples obtained using addition of color jitter. We observe that
it leads to generation of samples that are not indicative of the actual samples from the Double
Colored MNIST dataset. We observe that there is difference between with/without augmentation
in terms of the brightness, contrast, overall image representations. Specifically, digit 6 loses its
shape, texture, colors. Similarly, digits 0,1 are generated using different colors in contrast to Fig.
10. Therefore, the visual samples indicate possibly why the classifier’s accuracy drops by around
10%.
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