

Horizon 2020 European Union Funding for Research & Innovation

Computational Screening of Fluorescent Protein Mutants

Dmitry Morozov

dmitry.morozov@jyu.fi

Vaibhav Modi

vaibhav.modi@aalto.fi

Gerrit Groenhof

gerrit.x.groenhof@jyu.fi

Fluorescent proteins

Osamu Shimomura, Martin Chalfie and Roger Tsien, Nobel Prize in Chemistry 2008

Chromophore

Could be reversibly photo-switchable

Applications

The GFP-family proteins is widely used as a marker because of its very useful properties such as: high stability, minimal toxicity, non-invasive detection and the ability to fluoresce without specific equipment

Variety of fluorescent proteins

Excitation and Emission Characteristics of Fluorescent Proteins

Fluorescent Protein	Excitation Wavelength (nm)	Emission Wavelength (nm)
wtGFP	395/475	510
ECFP	433	475
EGFP	488	507
EYFP	513	527
DsRed	558	583
B-PE	545/565	575
R-PE	410/545/565	578
APC	650	660

Development of task-specific FPs

FluProCAD Workflow Overview

Application I: Predicting Structures

- Pairwise RMSD for each structure
- Group neighbors within cut-off threshold
- Largest group forms a cluster and eliminated from the pool of M structures
- Iterate until pool is empty

rsGreen0.7 protein mutants

<u>Objectives</u>

Starting structure

rsGreen0.7 (eGFP variant) PDB: 4XOW

• Prepare mutant structures

- •Classical MD equilibration
- •Clusterization of the trajectory
- •Blind check MD against crystal structures

<u>Mutants</u>

- 1. K206A
- 2. K206A/F145H
- 3. K206A/F145M
- 4. K206A/H148G
- 5. K206A/E222G
- 6. K206A/E222V

In total 14 mutants have been modelled

Stability of the structures

8

Stability of the structures

Stability of the structures

Application II: Thermodynamic properties prediction

Thermodynamic properties:

- wt-GFP vs 4 mutants: S65T, F64L, A206K and S65T/F64L (eGFP)
- Molecular Dynamics to refine crystal structure
- **GROMACS** + **PMX** for free energy evaluation of dimerization and folding
- Blind prediction of mutant properties with unknown structure

Structures of the mutants

Free energies of dimerization and folding

GFP MUTANTS	ΔΔG (kcal/mol)	
	Folding	Dimerization
S65T	6.399 (±0.8393)	-8.241 (±0.9198)
F64L	-3.726 (±0.2041)	-1.955 (±0.4097)
A206K	3.457 (± 0.1529)	10.481 (± 0.5241)
eGFP	10.125	-4.789
(F64L/S65T)	(± 0.2927)	(± 0.6471)

- <u>F64L</u>: improved stability
- <u>A206K</u>: Prefers to be in monomeric form
- Validated MM-MD models against known crystal structures.
- Predict solution structures for (un)-known mutants with no crystallographic data (K206A).

Why A206K prefer to be monomer?

Application III: Photochemical Properties

Spectra of wtGFP and 4 mutants

Outlook: excited state reactions

GROMACS + CP2K

Ultra-fast proton transfer in GFP mutant <u>S65T/H148D</u>.

QM subsystem : Chromophore + Asp148

Method: TD-DFT

Functional: PBE

Basis: DZVP-MOLOPT-GTH

Software: GROMACS-CP2K

Summary

- MD simulations + Clustering predicts solution structures for FP mutants (avGFP: 4 mutants and rsGreen0.7: 14 mutants)
- Free energy calculations predicted effect of mutations on folding and dimerization
- Evaluated the effect of mutations on photochemical properties
- Local database for MM and QM/MM parameters
- Automated setup of free energy and QM/MM calculations
- Computational mutagenesis protocol for fluorescent proteins

Acknowledgements

Prof. Peter Dedecker

Dr. Elke De Zitter

Prof. Jeremy Harvey

Funded by the European Union Horizon2020 program Grant agreement No.675728

19