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ABSTRACT

With the advancement in Deep Learning technologies,
computers today are able to achieve unimaginable success
in several domains involving images and audio. One such
area in 3D audio where the applications of deep learn-
ing can be promising is in binaural sound localization
for headphones, which requires individualized and accu-
rate representations of the filtering effects of the anthro-
pometric measurements of a listening body. Such filters
often are stored as a set of Head Related Impulse Re-
sponses (HRIRs) or in their frequency domain representa-
tions, Head Related Transfer Functions (HRTFs), for spe-
cific individuals. A challenge in applying deep learning
networks in this area is the lack of availability of vast num-
bers of complete and accurate HRTF datasets, which is
known to cause networks to easily over-fit to the train-
ing data. As opposed to images, where the correlations
between pixels are more statistical, the correlations that
HRTFs share in space are expected to be more a function of
the body and pinna reflections. We hypothesize that these
spatial correlations between the elements of an HRTF set
could be learned using Deep Convolutional Neural Net-
works (DCNNs). In this work, we first present a CNN-
based auto-encoding strategy for HRTF encoding and then
we use the learned auto-encoder to provide an alternate so-
lution for the interpolation of HRTFs from a sparse distri-
bution of HRTFs in space. We thereby conclude that DC-
NNs are capable of achieving results that are comparable
to other non deep learning based approaches, in spite of
using only a few tens of data points.

1. INTRODUCTION

With the increasing demand for Virtual Reality (VR) tech-
nology, there is an increasing need to accurately model
sound localization. When a sound source originates from
a particular point in space around the head, it undergoes
different sets of reflections off of body parts and the pinna
before reaching each ear. This difference in reflections,
along with the difference in times of arrival and the ampli-
tudes of arrival of the sound source at each ear is what is
understood to give humans the perception of direction of
the sound source. In order to then add direction to a sound
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source being played through headphones, one needs to fil-
ter the sound source with the transfer functions between
the desired points of origination of the sound source and
the points at which the sound signal enters each ear. These
transfer functions, known as the Head Related Transfer
Functions (HRTFs), or as their time domain representa-
tions, the Head Related Impulse Responses (HRIRs), are
unique for every point in space, for each ear and for every
individual.

To allow for the sound source to be perceived as originat-
ing from every direction in space, every individual would
need to measure and store the HRTFs for each ear, ideally
for every point in space around the head, or practically at
least sampled at several hundred points. However, having
to measure as many HRTFs for an individual is a time con-
suming and tedious process that requires very sophisticated
and expensive equipment, making it impractical for con-
sumers to record their own sets of HRTFs. One way then to
be able to give binaural spatial audio experience to the lis-
teners is to either provide a generic non-individual HRTF,
or present the users with several non-individual HRTFs to
pick from, the one that works best. Such non-individual
HRTFs however, are known to introduce noticeable local-
ization errors [1] which motivates the research in HRTF
individualization (also referred to as personalization in lit-
erature), in order to estimate the individual HRTFs of a
subject without having to measure the HRTFs for every in-
dividual.

A recent survey [2] summarizes the various methods that
have been proposed towards the task of HRTF personal-
ization. Some early works such as [3] aimed at select-
ing the best fitting HRTF-set from a larger database of
HRTFs with anthropometric data as input features. Such
approaches would perceptually work only if the user’s an-
thropometric features are close enough to atleast one of the
subjects in the database. Hence, some other works later
such as [4] used linear regression techniques which pro-
vided better results than HRTF selection. Going further,
not constraining to linearity, in recent years, several deep
learning techniques have been proposed for the individu-
alization of HRTFs. A recent paper [5] provides a great
summary of the various deep learning methods that have
been devised in this field. Some works such as [6±8] pro-
posed using fully connected networks to predict HRTFs
given an input of the anthropometric features, while some
other works such as [9,10] have proposed using perceptual
listening feedback to train the network.
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1.1 Problem Statement A - HRTF Encoding

Using deep learning for predicting HRTFs however, comes
with a challenge that the number of available and com-
plete HRTF datasets is limited. To avoid over-fitting then
in such situations, it is advantageous to reduce the num-
ber of parameters being used in the neural network. This
is often achieved by reducing the number of parameters
to predict, by encoding the HRTFs into a sub-dimensional
space. One approach for dimensionality reduction was pro-
posed by [11], through using Principle Component Anal-
ysis (PCA) to project the HRTFs linearly onto dimensions
with maximum variance. A suggestion was later reported
in [7] that a statistical approach such as PCA fails to en-
code features that are essential to the individuality of the
HRTFs. Some other works such as [12,13] proposed using
fully connected auto-encoders to encode the HRTFs. A
fully connected auto-encoder learns the encodings of ev-
ery single HRTF in space individually, but does not con-
sider the correlations that adjacent HRTFs share in space.
Hence, as the first part of our work, we propose encoding
the HRTFs by learning the correlations that HRTFs share
in space using a Convolutional Neural Networks (CNN)
based auto-encoder, hypothesizing that the features en-
coded in such a latent space would be a function of the
body reflections hence making it more specific to every in-
dividual.

1.2 Problem Statement B - HRTF Interpolation

Most of the previous approaches for HRTF individualiza-
tion rely on finding a mapping between the anthropometric
measurements of individuals to their HRTFs. Having con-
sumers to provide their anthropometric measurements is
not necessarily a very practical solution. With the increas-
ing availability of surround sound systems today, a rather
futuristic goal would be to measure a sparse set of HRTFs
with the available speakers and be able to interpolate to a
complete set of HRTFs. Multiple approaches have been
proposed previously to solve the problem of HRTF inter-
polation. Some mathematical approaches such as linear
interpolation and thin plate spline interpolation have been
previously employed in works such as [14±17]. Some key
findings from these works suggest that thin plate spline
interpolation of log magnitude HRTFs seems to achieve
best interpolation results and that the number of HRTFs in
space could be reduced to about 80 to allow for an accu-
rate reconstruction. Some other works focus on studying
the fitting of HRTFs onto the spatially continuous spheri-
cal harmonics (SH) domain to allow for a continuous in-
terpolation which was first proposed by [18]. The required
order of the SH increases with frequency, and the higher
the order required, the more the number of HRTFs are re-
quired. It was reported in [19] that for accurate reconstruc-
tion of HRTFs upto 20kHz, about 1600 HRTFs would be
required, less than which leads to spatial aliasing which
leads to high-shelf like energy increase in the SH interpo-
lated HRTFs [20]. Some deep learning approaches such
as [21,22] have also been proposed in the past for learning
HRTF interpolations, both of which deploy fully connected
networks to tackle the problem. Following the success in

the image world, where CNN based approaches have pro-
vided promising results for interpolation and super reso-
lution as in [23, 24], we propose, as the second part of
our work, a CNN based approach for interpolating from a
few sparsely distributed HRTFs in space to to the complete
HRTF set.

The remainder of the paper is structured as follows. In
section 2, we briefly review the theory of HRTFs and our
data preparation strategy. In section 3 we describe our pro-
posed model architectures and the training procedures. In
section 4, we describe our experiments and discuss the re-
sults for the same and finally we provide concluding state-
ments in section 5.

2. DATA & DATA PREPARATION

2.1 Understanding HRIRs and HRTFs

For a particular point in space, the left and right HRIRs
hl[n] and hr[n] are defined as the impulse responses for the
acoustic system that the sound signal undergoes from its
point of origination to the point it reaches the left and right
ears respectively. The HRTFs Hl(ω) and Hr(ω) are the
complex valued frequency domain representations for the
left and right HRIRs respectively which can be represented
in terms of their magnitude and phase responses as

Hl/r(ω) = |Hl/r(ω)|. ̸ Hl/r(ω), (1)

where the phase response ̸ Hl/r(ω) could be represented
as,

̸ Hl/r(ω) = ejψ(ω) (2)

From [25], it is possible to derive the minimum phase
response Hmin(ω) of an HRTF from its magnitude re-
sponse |H(ω)|. H(ω) can also be represented in terms of
Hmin(ω) as

H(ω) = Hmin(ω).e
jψall(ω).e−jωT , (3)

where eψall(ω) is an all-pass phase component and e−jωT

corresponds to the propagation delay T .
Several past works [26±29] have shown that the all-pass

component ejψall(ω) could be considered perceptually in-
significant upto around 10kHz. Given then that Hmin(ω)
could be obtained from |H(ω)|, it is possible to estimate
H(ω) from only its magnitude response and the propaga-
tion delay T . In this work, we will only focus on estimating
|H(ω)|. Estimation of the propagation delays is beyond the
scope of this paper.

2.2 Database

We used the CIPIC database [30] for this work. The
database consists of HRIRs of 45 subjects, each 200 sam-
ples long, sampled at a sampling rate of 44.1kHz and mea-
sured at 1250 points around the head, at a constant radius
of 1m. The positions are sampled in the form of 25 rings
along the azimuth axis and at 50 points per ring along the
elevation axis as shown in Fig. 1.
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Figure 1. Sampling locations of HRTFs in the CIPIC
database (a) front (b) side. The spacing between rings is
5◦ near the center of the head, and increases up to 15◦

towards the side of the head. The 50 points along every
ring are equally spaced, but the spacing is larger towards
the center of the head and smaller at the sides of head, to
maintain a constant radius.

2.3 Data Processing and Arrangement

The HRIRs in the CIPIC database have a dynamic range of
[−2, 2]. We first obtain the magnitude HRTFs as

Hmag(ω) =

∣∣∣∣∣∣

2 ∗ FFT
{
h[n]
2

}

nfft

∣∣∣∣∣∣
, (4)

where nfft, the fft length, is set to 256. Hmag(ω) is
clipped to the minimum at 10−6 and we pick only the first
128 bins corresponding to positive frequencies, hence the
factor of 2 to account for the energies of the negative fre-
quencies. Equation (4) ensures that Hmag(ω) lies in the
range of [10−6, 1]. We then obtain the log magnitudes of
the obtained magnitude HRTFs and scale them as

Hlog(ω) =
log10(Hmag(ω))

6
+ 1, (5)

hence ensuring that Hlog(ω) has a dynamic range of [0, 1].
The 1250 so obtained HRTF log magnitudes in the

database are then arranged in a 3D tensor having a size of
[128 x 25 x 50] such that the first dimension corresponds to
the frequency axis and the second and the third dimensions
correspond to the azimuths and the elevations respectively.
In this paper to follow, we will refer to the above tensor as
the HRTF-tensor.

3. PROPOSED MODEL AND TRAINING
SPECIFICATIONS

3.1 The Model

3.1.1 Part A - AutoEncoder

The model architecture for our proposed auto-encoder con-
sists of a contracting and expanding path inspired by the
very successful U-NET architecture [31]. An example
structure having a model depth of 3 is shown in Fig. 2.
In this we first pass our input HRTF-tensor through the
encoder which consists of multiple convolutional blocks
starting with a convolution having a kernel size of (3, 3),

stride (1, 1) and a padding of (1, 1) ensuring that the spa-
tial sizes are maintained (will be referred to as the size-
maintaining convolutional block from her on). This is fol-
lowed by several downsampling convolutions having ker-
nel sizes of (2, 2) and strides also of (2, 2), with no 0
paddings. These kernels hence, both learn the features and
also downsample the HRTF-tensor through multiple depth
levels along the spatial dimensions. At the final depth level
we apply one final size-maintaining convolution to obtain
the encoded space. The achieved encoded space is then
passed through the decoder which consists of a structure
reversing the process carried out by the encoder. In this we
start with a size-maintaining convolution followed by sev-
eral transposed convolutional blocks up the depth levels,
with kernel sizes, strides and paddings set appropriately, so
as to make sure that the feature maps have the same spatial
sizes as the corresponding feature maps of the encoder at
the corresponding depth levels. Finally at depth level of
0, we have one final size-maintaining convolutional block
that outputs the predicted HRTF-tensor. Just as the convs
in the encoder, the transposed convs in the decoder are re-
sponsible for both learning the deep features and upsam-
pling in the spatial dimensions. We use the exponential
linear units (ELU) activations for all the convolutions and
the transposed convolutions, except for the final layer in
the decoder predicting the HRTFs, where we use the Sig-
moid activation. We also experimented with using batch
normalization, and found its effects to be negligible.

Many works have previously adopted such CNN-based
auto-encoding structures for various applications, for ex-
ample [32, 33]. However, our architecture differs from
other similar architectures in the following ways.

First, such typical auto-encoding networks employ a
number of convolutional layers at every depth level, before
using pooling operations for downsampling in the encoder
or after the transposed convs in the decoder. Moreover, the
number of feature maps or channels double down every
depth level. As previously mentioned in section 1, HRTFs
come with a challenge of a small dataset, which motivates
the use of as few parameters as possible to avoid over-
fitting. Hence, after multiple experiments, we concluded
that the model works best by replacing the pooling oper-
ations by the downsampling convolutional blocks, while
omitting the other convolutional layers at each depth level,
hence allowing for the feature learning to be mostly carried
out by the downsampling convs and the transposed convs,
while also keeping the number of feature maps constant
and equal to the number of frequency bins, all throughout.

Secondly, typically in 2D CNNs, each filter is expected
to learn the same spatial features for all channels. We hy-
pothesized, as also suggested in [9], that the spatial cor-
relations of the HRTFs are expected to be different along
the frequency axis. Hence we used the ºgroupsº option in
PyTorch’s Conv2D function and we set it to 8. This splits
the tensors along the channels axis into 8 groups before the
convolution operation. Each filter now only learns the cor-
relations of a single group, hence allowing for the learning
of different features for different frequency bins. We found
that this approach significantly improved the accuracy of

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

348



Depth 0

Depth 1

Depth 2

Encoder

Deco
der

Input 

HRTFs

2
5
x
5
0

nfft

1
2
x
2
5

nfft

Encoded 

Features

nfft

1
2
x
2
5

nfft

2
5
x
5
0

nfft

Predicted 

HRTFs

nfftnfft

6
x
1
2

nfft nfft

Transposed 
Conv 2x2 + ELU

Downsampling 
Conv 2x2 (8 groups) 

+ ELU

Conv 3x3 (8 groups) 
+ Sigmoid

Conv 3x3 (8 groups) 
+ ELU

Figure 2. HRTF auto-encoder model architecture. The
number above the blue blocks corresponds to the number
of channels/feature maps. The number to the left of the
blue blocks corresponds to the spatial size of the blocks at
every depth level. The spatial sizes remain constant along
every depth level. Note that nfft here corresponds to the
number of positive frequency bins.

our model.

Additionally, one of the key components of a U-NET
structure is the residual connections between the feature
maps of the encoder to the feature maps of the correspond-
ing depth level in the decoder. Although we concur that
using residual connections does improve the accuracy of
the auto-encoding structure itself, we reckon that applica-
tions of such an auto-encoding process lie in the possibility
of predicting the encoded space through other means, and
then using the decoder to obtain the HRTFs, an example
of which we show in the work to follow. In such a case,
we would not have access to the encoder during inference,
and therefore we propose not using residual connections
between the encoder and the decoder in this work.

3.1.2 Part B - Interpolation

For the next part of our work, we propose a transfer learn-
ing like approach for HRTF interpolation. In this, we use
the learned decoder from the auto-encoder network and
train a new encoder (will be referred to as the sparse-
encoder from here on) to map the sparse HRTF-tensor onto
the encoded space obtained using the auto-encoder. The
flow diagram for our model is shown in Fig. 3. The encod-
ing network for the sparse-encoder comprises of a single
convolutional layer, parameters of which are decided by
the spatial size of the input sparse HRTF-tensor that we
wish to interpolate. In this work, we demonstrate the in-
terpolation for two cases ± 1. that of a sparse HRTF-tensor
having a spatial size of 6 x 12, and 2. that of a sparse
HRTF-tensor having size 3 x 6.

For case 1 we use for the encoder, a single convolutional
layer with kernel size (3, 3), stride (1, 1) and padding of
(1, 1). For case 2 we use a single transposed convolution
layer with kernel size (2, 2) and stride of (2, 2) with no 0
padding. We use the ELU activation for both cases since
the decoder was trained to decode from an encoded space
which had gone through an ELU activation itself.

The decoder structure for both cases is the same as that
of the auto-encoder with a model depth of 3.

Encoding network

Trained decoder

Encoded 

Features

nfft

Sparse 

HRTF

nfft

Complete 

HRTF

nfft

Figure 3. Flow diagram for interpolation of sparse HRTF

3.2 Training Specifications

Of the 45 subjects available in the CIPIC database, we ran-
domly set 3 subjects aside as test subjects and trained our
models on the remaining 42 subjects. For both the auto-
encoding and the interpolation networks, we use full-batch
training using the ADAM optimizer with an initial learn-
ing rate of 0.0001. We use the early stopping strategy
where we let our training process run for a maximum of
400000 epochs and stop the training when the validation
error starts to go up while picking the model with the low-
est validation loss. More sophisticated validation strate-
gies such as leave-one-out cross validation, which is often
suited for small datasets, but which requires significant re-
sources in terms of the total training time, remain to be a
future work at the moment.

For the interpolation problem, we first trained the sparse-
encoder while freezing the weights of the pre-trained de-
coder from the autoencoder model, until the validation er-
ror reached a plateau. We then unfroze the weights of the
decoder while setting the learning rate of the decoder to
1

100

th
that of the sparse-encoder and continued the train-

ing process following the early stopping procedure. We
found that this scheme of fine-tuning the weights of the
pre-trained decoder to provide better results as opposed to
training the decoder and the sparse encoder end-to-end, or
as opposed to not fine-tuning the pre-trained decoder at all.

After experimentation, we found that use of dropouts and
regularization schemes to not be very effective for these
experiments and they only prolonged the training process,
without actually resulting in better reconstructions.

3.3 Loss Function

We used a mean Log Spectral Distortion (LSD) function
as both the loss function to train our models and the evalu-
ation criteria. For a pair of ground truth and predicted log
magnitude HRTFs H and Ĥ respectively, the LSD can be
defined as

LSD(H, Ĥ) =

√√√√ 1

k2 − k1 + 1

k2∑

k=k1

(
Ĥ(k)−H(k)

)2
,

(6)
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where the frequency bin numbers k1 and k2 correspond to
the starting and ending frequency bins respectively along
which to compute the LSD. We used full band LSD to eval-
uate our models, in other words setting k1 to 0 and k2 to
127.

4. EXPERIMENTS, RESULTS & DISCUSSION

Before moving on to the experiments, we would like to
give a few details about the LSD plots that we use to report
our results.

4.1 Understanding the LSD Plots

The LSD plot demonstrates the LSD values of the recon-
structed HRTFs for a particular subject at all points in
space available in the database, in our case 1250 points.
We use the inter-aural polar co-ordinate system to label the
azimuth θ and the elevation ϕ angles. In this, the points to
the left of the head are found at azimuths 80◦ > θ > 0◦

whereas points to the right of the head are found at 0◦ >
θ > −80◦ with θ = 0◦ being exactly in front or back
of the head. Points in front of the head are found at el-
evations −45◦ < ϕ < 90◦ while points at the back of
the head are found at 90◦ < ϕ < 230◦ with ϕ = 0◦ and
ϕ = 180◦ corresponding to the lateral plane at ear level and
ϕ = 90◦ being the point exactly above the head. Thereby,
−45◦ < ϕ < 0◦ and 230◦ > ϕ > 180◦ correspond to
points below the head and 0◦ < ϕ < 180◦ correspond to
points above the head.

In the remainder of this section, we report the results of
our auto-encoder and interpolation models. For brevity, we
will only be reporting results for the predictions of the log
magnitude HRTFs of the left ear.

4.2 Experiment 1 - AutoEncoding

The aim of this experiment was to study the reconstruction
capability of our auto-encoder model described in section
3.1.1 for model depths of 3 and 4. A model depth of 3 en-
codes the HRTF-tensor, which consists of 25x50 HRTFs,
to an encoded space having a spatial size of 6x12 and as
many channels as the number of frequency bins, in our
case 128. A model depth of 4 encodes the HRTF-tensor
one step further to an encoded space of size 128x3x6.

Fig. 4 shows the LSD plot for 2 test subjects for a model
depth of 3. Fig. 5 compares the reconstructed HRTFs with
the ground truth HRTFs for the point located at [θ = 45◦,
ϕ = 45◦], or in other words the point at 45◦ to the left and
above in front of the head.

The LSD plots suggest that the reconstruction is better in
the area above the head (the upper half of the lateral plane)
and on the ipsilateral side of the HRTFs (in this case the
left side for left HRTFs). There is a significant drop in
the performance for points on the extreme bottom behind
the head and also at some points on the extreme right side.
We suspect this error to be related to either the 0 padding
schemes in our convolutional layers, or bad points in the
dataset itself, and further investigation on this anomaly is
left for future work.

80 0 -80
Azimuth (deg)

230

180

90

0

-45

El
ev

at
io

n 
(d

eg
)

0

2

4

6

8

10

LS
D 

(d
B)

(a) Subject 0

80 0 -80
Azimuth (deg)

230

180

90

0

-45

El
ev

at
io

n 
(d

eg
)

0

2

4

6

8

10

LS
D 

(d
B)

(b) Subject 1

Figure 4. LSD plots for the AutoEncoder predictions for a
model depth of 3 for 2 test subjects (left ear)
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Figure 5. HRTF plots for the AutoEncoder predictions for
a model depth of 3 for 2 test subjects at an azimuth and
elevation of 45◦ on the ipsilateral side of the left ear

The HRTF plots reveal that although the HRTFs for the
two subjects at the same location differ significantly from
one another, the model was able to reconstruct these to a
great degree, hence indicating that it successfully encodes
individuality in the HRTFs.

Fig. 6 shows the LSD plot and the HRTF plot for 1 sub-
ject for a model depth of 4. As expected, the reconstruc-
tion errors are higher in this case as a result of encoding
the HRTF-tensor to an even smaller space. The HRTF
plot suggests that this results in a rather more smoothed
HRTF reconstruction. Although, whether this difference
in the reconstruction is audible could only be answered
through perceptual listening tests, which is left for future
work. Table 1 compares the mean LSD values and their
standard deviations across all 3 test subjects and for all
points in space for the two cases. Interestingly, the stan-
dard deviations for both models are exactly the same. This
suggests that the correlations between certain points in
space are being better learned than at other points, irre-
spective of the model depth. Given that CNNs assume an
equivalent correlation across all points in space, splitting
the HRTF-tensors into multiple regions spatially and ap-
plying a different network to each region might provide
better results and is left for future work. Furthermore, it
might also be worthwhile to obtain results on some other
HRTF databases where the points are sampled at spheri-
cally equidistant locations such as the ARI database [34].
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Figure 6. LSD and HRTF plots for AutoEncoder with a
model depth of 4 (left ear)

Depth Level Mean ± Std LSD (dB)
3 2.38 ± 1.52
4 3.24 ± 1.52

Table 1. Comparing mean and std LSD values for AutoEn-
coder with model depths 3 v/s 4. Note that the standard
deviations are calculated across HRTFs at all positions in
space and for all the test subjects

4.3 Experiment 2 - Interpolation

To obtain the sparse HRTF-tensor, we sampled the com-
plete HRTF-tensor uniformly. We obtained 2 such sparse
HRTF-tensors. For the first one, we sampled at every 4
points in both the azimuth and elevation dimensions, start-
ing from index 1 for azimuth ([1, 5, 9...]) and starting from
index 2 for the elevations ([2, 6, 10, ...]), thereby obtain-
ing a sparse HRTF-tensor having a size of 6x12. For the
second one, we sampled at every 8th point starting at in-
dex 4 in both dimensions ([4, 12, ...]), thereby obtaining a
sparse HRTF-tensor with size 3x6. We will refer to these
sparse HRTF-tensors as sparse-tensor-1 and sparse-tensor-
2 respectively for the discussion to follow. After obtaining
our predicted complete HRTF-tensors, we re-inserted the
corresponding sparse HRTF-tensors in the predictions at
the appropriate positions.

To report our results, we compare our proposed interpo-
lation strategy with that obtained using bilinear interpola-
tion. Bilinear interpolation only allows for interpolation
between points inside the boundaries of the sparse-tensor
and is incapable of extrapolating points outside the bound-
aries. However, the CNN model provides both interpola-
tion as well as extrapolation. For visualization purposes,
in the bilinear interpolation scheme, we copied the HRTFs
at the boundary to substitute for the unavailable points out-
side the boundaries.

Figs. 7 and 8 show the LSD plots for the interpolations
of sparse-tensor-1 and sparse-tensor-2 respectively. We
can see some improvement in our proposed model with
respect to the bilinear interpolation scheme, especially in
the region above the head and on the ipsilateral side. The
improvement is more apparent for sparse-tensor-2. We
can also see that the method does a fair job in extrapo-
lating points outside the selected region in the front of the
head and on the ipsilateral side. We achieved a mean LSD
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Figure 7. LSD plots for the interpolation of sparse-tensor-
1 (left ear)
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Figure 8. LSD plots for the interpolation of sparse-tensor-
2 (left ear)

of 3.34dB and 4.12dB for the interpolation and extrapo-
lation of sparse-tensor-1 and sparse-tensor-2 respectively.
Table 2 provides the LSD comparisons for all test subjects
over all the locations between the proposed model and the
bilinear interpolation scheme. To allow for a fair compari-
son, we only report the LSDs for the interpolation of points
inside the boundary in this table. The LSD results show
that the proposed model provides about 10% improvement
over the bilinear interpolation scheme.

Model Sparse-tensor-1
Mean ± Std LSD

Sparse-tensor-2
Mean ± Std LSD

CNN 2.82 ± 1.29 3.61 ± 1.32
Bilinear 2.99 ± 1.37 3.95 ± 1.39

Table 2. Comparing the mean and std LSD values for in-
terpolation by the proposed CNN model v/s bilinear inter-
polation

5. CONCLUSION

In this work, we presented an alternate strategy for the en-
coding of HRTFs using a CNN-based auto-encoder. We
showed that an HRTF-set consisting of 1250 locations
could be encoded to a latent space having a spatial size
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of 6x12 with a mean LSD of 2.38dB and to a space hav-
ing a size of 3x6 with a mean LSD of 3.24dB. We further
showed that such an encoded space could be used towards
learning interpolations from an HRTF-set sparsely sam-
pled in space. In doing so, we showed that a sparse HRTF-
set sampled at 72 locations results in a mean reconstruction
error of 3.34dB LSD and that sampled at 18 locations re-
sults in a mean reconstruction error of 4.12dB LSD, both
cases also supported by the LSD plots providing more in-
sight into the LSD errors per location. The results also
suggested that such an interpolation scheme allows for not
only interpolation, but also extrapolation to some extent.

Some immediate next steps in this work remain to be try-
ing this algorithm on other available datasets to obtain a
more generalized result, while also using more sophisti-
cated cross-validation strategies such as the leave-one-out
strategy. Finally, it would be crucial to conduct perceptual
listening tests to understand the perceptual effects of the
proposed approach.

Having said that, the above presented results provide
plenty insights into suggesting that it is indeed possible to
encode HRTFs using convolutional neural networks using
only 42 datapoints while allowing the encoding of features
essential for the individuality of the HRTFs. This leads
way to finding mappings between other features that define
the HRTFs and the learned encoded space, for example,
using using sparsely sampled HRTFs in space as shown
in this work. We showed that the encoded space could
be leveraged to interpolate HRTFs to an acceptable degree
with only 18 locations. With the extent of surround sound
systems that are available today such as the 11.1.8 system
which consists of 19 speakers, we believe as a rather futur-
istic goal, that this work might be the first step into finding
mappings between the latent representations of the HRTFs
measured using these speakers (although corrupted with
room reflections) to the latent space of the user’s clean
and complete HRTFs, allowing for the prediction of the
complete clean HRTF set using the corrupted sparse HRTF
measurements obtained using the surround sound speakers
for example. We hope that such mappings between latent
features of similar acoustic systems might open up inter-
esting avenues.
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