

INTELCOMP PROJECT

A COMPETITIVE INTELLIGENCE CLOUD/HPC PLATFORM FOR AI-BASED STI

POLICY MAKING

(GRANT AGREEMENT NUMBER 101004870)

D3.3. System for Subcorpus Generation

Deliverable information

Deliverable number and name D3.3. System for Subcorpus Generation

Work Package WP3

Lead Partner for deliverable Universidad Carlos III de Madrid

Author
Jesús Cid-Sueiro, UC3M
Lorena Calvo-Bartolomé, UC3M

Reviewers
Dietmar Lampert, ZSI
Ioanna Grypari, ARC

Version 1.1

2

D3.3 System for Subcorpus Generation

DISCLAIMER

This document contains a description of the IntelComp project findings, work and products.

Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to using

its content please contact the consortium coordinator for approval.

In case you believe that this document harms in any way IPR held by you as a person or as a

representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to be

accurate, consistent and lawful. However, neither the project consortium as a whole nor the

individual partners that implicitly or explicitly participated in the creation and publication of this

document hold any sort of responsibility that might occur as a result of using its content.

The content of this publication is the sole responsibility of IntelComp consortium and can in no

way be taken to reflect the views of the European Union.

The European Union is established in accordance with the Treaty on European Union

(Maastricht). There are currently 27 Member States

of the Union. It is based on the European

Communities and the member states cooperation in

the fields of Common Foreign and Security Policy and

Justice and Home Affairs. The five main institutions of

the European Union are the European Parliament,

the Council of Ministers, the European Commission,

the Court of Justice and the Court of Auditors.

(http://europa.eu.int/)

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 101004870.

http://europa.eu.int/

3

D3.3 System for Subcorpus Generation

CONTENTS

Disclaimer 2

Acronyms 5

Glossary 6

executive Summary 7

1. Introduction 8

2. Domain Classification 8

3. Processing Pipeline 10

3.1. Source data 11

3.2. Output 11

3.3. Document selection 12

3.4. PU learning 13

3.5. Active learning 14

3.6. Mixed label learning 14

4. Software 15

4.1. Software architecture 15

4.2. Software requirements 20

4.2.1. Python packages requirements 20

4.2.2. Data source requirements 20

4.3. Execution commands 21

4.4. Project folder structure 22

4.4.1. Configuration file 23

4.5. Application structure 23

4.5.1. Command line application 24

4.5.2. Graphical user interface 24

4.6. Dataset and metadata files 31

4.6.1. Datasets 31

4.6.2. Metadata file 32

5. Conclusions 33

4.5.2.4. References 34

4.5.2.5. Annexes 34

A. Default Configuration File. 34

4

D3.3 System for Subcorpus Generation

5

D3.3 System for Subcorpus Generation

ACRONYMS

BERT Bidirectional Encoder Representation from Transformer

GUI Graphical User Interface

I/O Input/Output

LDA Latent Dirichlet Allocation

NLP Natural Language Processing

SBERT Sentence BERT

PU Positive-unlabeled

6

D3.3 System for Subcorpus Generation

GLOSSARY

CLASS / CATEGORY In the context of machine learning, each of the possible choices of a

classifier. A classifier for a specific TARGET DOMAIN has two CLASSES

only: CLASS 1 (for documents that belong to the TARGET DOMAIN)

and CLASS 0 (for those that do not). Class 1 and 0 are also named the

positive and negative CLASSES, respectively.

CORPUS A collection of text documents

DOMAIN A field or subfield of knowledge.

DOMAIN CLASSIFIER A computational system that, given any input document, determines

if it belongs to the TARGET DOMAIN or not.

LABEL An indicator of CLASS membership. It is used as a reference to train

or evaluate a classifier. In classification with two CLASSES only, the

possible LABEL values are 1 and 0, which are named the positive and

negative LABELS, respectively. Ideally, the LABEL is equal to the true

CLASS of the document, but if the labeling process is imperfect, some

LABELS in the CORPUS can indicate the wrong CLASS.

SUBCORPUS A subset of documents from a CORPUS.

TARGET DOMAIN The DOMAIN of interest to a user.

UNLABELED DOCUMENT A document that has no LABEL. The CLASS of the document is, thus,

unknown.

CLASS PREDICTION The CLASS assigned by a DOMAIN CLASSIFIER to a document.

7

D3.3 System for Subcorpus Generation

EXECUTIVE SUMMARY

The system for subcorpus generation (domain classifier) is aimed at facilitating the classification

of all documents from a given corpus according to a category that is specified by the user (an

expert in the domain). Therefore, the software includes not only methods implementing

algorithms for the classification of documents, but also all the necessary tools to facilitate the

interaction with the users of the system.

The system provides facilities for the expert to (1) Specify the target category (the “domain”) for

classification, and (2) revise and correct the machine classifications through a tool for the

annotation of specific documents.

The software has been structured in a series of classes and methods to be integrated in the

Interactive Model Trainer from IntelComp. In addition, we have implemented a standalone

python application that can be used to test the behavior of the classifiers, the data flow and the

user interaction before the definite integration in the model trainer.

The core of the software consists of python modules structured as a collection of python classes

in charge of the main processing steps:

1. Pre-classification (document selection): The user can specify the target domain, by
means of one of the three methods provided by the system: (a) the name of the domain,
(b) A list of characteristic keywords from the domain or (c) a weighted list of topics from
a topic model previously computed from the corpus. The document selectors for (a) and
(b) apply pretrained models based on Transformers, a state-of-the-art Deep Learning
technology that has been successful in many NLP tasks.

2. Positive-unlabeled (PU) learning: the system trains a classifier applying a supervised
machine learning algorithm, trying to discriminate between the documents selected in
the first step and the rest of documents in the corpus.

3. Retraining: Since some of the non-selected documents may belong to the target domain
(because the pre-classifier system has been designed with limited supervision
information), the system needs some user interaction to improve the classification
performance. To do so, an active learning loop has been implemented: the system
selects a reduced set of documents and requests labels from the user through the
annotation interface. These labels are used to retrain the classification module based
on transformers..

8

D3.3 System for Subcorpus Generation

1. INTRODUCTION

Some of the tools from the IntelComp project will facilitate the analysis of data sets from any

field. However, the machine learning models used, and specifically the topic-modeling-based

analysis, obtain more intuitive and potentially more useful results when their training is

restricted to documents belonging to a well-defined domain. For this reason, Task 3.3 proposes

to design a system that allows identifying the documents belonging to a target domain through

an expert-in-the-loop approach that allows integrating expert knowledge in the classification

model.

The aim of this document is to present the System for Subcorpus Generation, that is, the

software that will include the intelligence for the selection of the relevant documents for a

selected field, and a Graphic User Interface (GUI) tool to facilitate expert annotation.

2. DOMAIN CLASSIFICATION

The system for subcorpus generation is aimed at facilitating the classification of all documents

from a given corpus according to a category that is specified by the user (an expert in the

domain). The software includes not only methods implementing algorithms for the classification

of documents, but also all the necessary tools to facilitate the interaction with the users of the

system.

Since the categories are expected to represent specific domains of knowledge in a research field,

the subcorpus generator will also be denominated as a domain classifier. In this document,

“domain classification” and “subcorpus generation” will be used indistinctly.

The system provides facilities for the expert to:

● Specify the target domain for classification

● Revise and correct the machine classifications through a tool for the annotation of
specific documents.

All the software has been structured in a series of classes and methods aimed at facilitating the

integration in the IntelComp platform. The core of the software is a python library of classes and

methods for domain classification, but it is also a fully functional standalone python application

that can be executed to test the user interaction, the data flow and the system performance.

During the integration phase of the IntelComp project, a dockerized version will be created to

be used as part of the Interactive Model Trainer.

The sequence of steps involved in the process of classifying the documents of a given corpus can

be summarized as follows (see Figure 1):

9

D3.3 System for Subcorpus Generation

Figure 1: The process of domain classification. It involves a sequence of human (in orange)
and machine (in green) steps. The retraining step is carried out every time the expert user

annotates new documents.

1. Corpus selection: The user selects the input corpus

2. Category specification: The user specifies the target categories, by means of one of the
three methods currently provided by the system:

a. The name of the category: e.g., “Biotechnology”, “Artificial Intelligence”,
“Photonics”.

b. A list of characteristic keywords from the target category.

c. A weighted list of topics. This option requires that a topic model had been
previously computed from the corpus. The user selects one or several topics of
interest, assigning a weight to each one of them that indicates the relevance of
the topic for the target domain.

3. Pre-classification (document selection): The system pre-classifies the documents in the
corpus according to the information provided by the user in step 2. To do so, the system
selects a portion of the corpus containing the documents that are the most relevant for
the target domain.

4. PU learning: the system trains a classifier applying a supervised machine learning
algorithm. To do so, a positive label is assigned to the pre-classified documents, and a
negative label to the rest of the documents for the negative, and these labels are used
to train the classifier.

Note that, ideally, the learning algorithm would be more efficient if all documents with
a positive label belong to the target domain, and all documents with a negative label do
not belong to the target domain. Unfortunately, the step 3 (document selection) will
provide a reduced subset of documents from the target domain only and many
documents from the target domain might have a negative label. Thus, the true class of
the documents with negative labels is uncertain. For this reason, this is usually called a
Positive-Unlabeled (PU) learning problem.

5. Sample selection: Since documents from the target domain may have negative labels,
the system needs some interaction with the user to improve the classification

10

D3.3 System for Subcorpus Generation

performance. To do so, it enters into an active learning loop that could be repeated for
several interactions

In the first step of the loop, the system selects a reduced subset of documents to request
the user feedback.

6. Annotation (user feedback): the user examines the documents provided by the system
and reviews the category labels that had been incorrectly assigned by the classification
algorithm

7. Retraining: the system uses the labels provided by the user to update the classifier
model and improve the classification accuracy.

The retraining step will be repeated every time the user provides new labels through the

annotation interface.

3. PROCESSING PIPELINE

Figure 2 details the processing pipeline of the system. The input and outputs, and the

components of the system are described below.

Figure 2: Processing pipeline of the system for subcorpus generation.

The software has a modular structure and the main functionality of each component in the

pipeline has been encapsulated in specific python classes or methods. Thus, the design is flexible

enough to allow further improvements of specific comments. The system uses some specific

pretrained models based on transformers, but they are chosen through a configuration file, so

that different pretrained models can be easily tested.

11

D3.3 System for Subcorpus Generation

3.1. Source data

Input corpus

The main input to the system is a database containing one or several corpora of text documents

and their associated information (metadata, topic models or pre-trained transformer models).

In the current version of the software, a data manager module contains methods to load two

specific corpora that have been used to test the system. After the integration in the IntelComp

platform, the data manager will be adapted to use the corpus utilities available in the Data

Catalog and in the Interactive Model Trainer.

The classification modules assume all documents in the corpus contain English text only.

Therefore, classification of documents from the IntelComp platform will be based on original

documents in English, or in the English versions produced by the machine translation system

(Deliverable 3.2).

For most modules, classification will be based on transformer models [Vaswani, 2017]. They do

not require any specific text preprocessing, so the raw text (without word tokenization) can be

directly applied to them. However, some of the text preprocessing tools from the NLP modules

available at IntelComp could be useful to improve the quality of the text sources (e.g., text

cleaning).

For the topic selection module, a topic model representation of documents must be available.

During our test, we used topic models based on the Latent Dirichlet Allocation (LDA), which will

be one of the models integrated in the IntelComp platform. However, the software can be

applied to any other model providing a vector representation of all documents in a common

vector space.

User data

The other source of information is the expert user, who must interact with the system through

a graphic user interface (GUI), to specify the target category and, also, to fine-tune the behavior

of the domain classifiers through an active learning mechanism. A task manager module is in

charge of attending the user requests by launching the appropriate processing tasks.

3.2. Output

The output of the system consists of a class prediction for every document in the input corpus,

in relation to the category specified by the user.

The software allows the user to specify several target categories for the given corpus. The

system will produce a data frame containing the predictions for each document and each of the

target categories.

12

D3.3 System for Subcorpus Generation

3.3. Document selection

The first step in the process of domain classification is the pre-classification of documents

according to the category specified by the user. The system will select P documents with the

highest relevance score for the target category.

The number of selected documents, P, depends on two configurable parameters that control

the size and minimum relevance score of the set of selected documents.

There are three modules in the document selection system, which are described below:

Selection by Domain Name.

This module tries to classify the documents in the corpus using the name of the category only.

To do so, it runs a zero-shot classifier. A zero-shot is a classifier whose parameters are adjusted

without using any training data. Since the only information available is the name of the category,

such classifiers are the best suited for this type of document selection.

The module applies a specific type of zero-shot classifiers based on an entailment approach [Yin,

2019] using transformers [Vaswani, 2017]: for each input document, the classifier evaluates if it

entails a sentence (hypothesis) like “this document is about X”, where X is the domain name. If

so, the document is taken as relevant for the selected domain. Otherwise, it is considered

irrelevant. The top P documents with the highest entailment score are selected.

Using pre-trained transformer models, the zero-shot classifier does not need a specific training

for each domain name, which facilitates a quick system response. The selection of the

transformer model can be done through the configuration file.

Selection by Keywords.

When the selection is given by a list (of arbitrary size) of relevant keywords, the document

selection is based on the computation of a similarity measure between the input documents and

the comma-separated string of keywords.

Two similarity measures have been implemented:

● Cosine distance: a cosine distance between the embedding of both the input documents

and the keywords string using transformers. The current implementation uses

pretrained SBERT transformers [Reimers, 2019]. Our choice is based on the selection of

a computationally efficient model based on state-of-the-art transformer models like

BERT.

● Keyword count: the total number of occurrences of the keywords in the input

document.

The top P documents with the highest similarity scores are selected.

Selection by Topics.

Selection by topics is aimed at providing the user with the capability of defining a target category

using the topic descriptions of a topic model previously computed by the IntelComp platform.

13

D3.3 System for Subcorpus Generation

By inspecting the top relevant words of each topic, the user can define a target category as a

weighted list of topics, i. e. a list of tuples in the form

 (T0, w0), (T1, w1), …, (Tn, wn)

where Ti is a topic and wi, its weight. If w= (w0, w1, …, wn) is the weight vector and d is the topic

vector of the input document, the relevance score is computed as the weighted sum of topic

weights

 score = wT· d

The top P documents with the highest similarity scores are selected.

3.4. PU learning

As a result of pre-classification, the system obtains the set of P documents from the positive

class (the target category). Since the document selection process takes only the most relevant

documents for the target category, which may be a portion of the total number of documents

from the positive class only, the rest of the documents cannot be taken as documents from the

negative class. This states a PU (Positive vs Unlabeled) -learning problem, where the labeled

dataset contains documents from the positive class only.

Assuming that the target domain is sufficiently specific, we can assume that the classification

problem is unbalanced, and the prevalence of the positive class is small. Therefore, although the

unlabeled dataset is a mixture of the positive and negative class distributions, the weight of the

positive part in the mixture is small, and the marginal distribution approximates the negative

class distribution.

Thus, in a preliminary step, a binary classification is trained taking the documents in the

unlabeled dataset as from the negative class.

The PU classifier is based on the addition of an additional output layer to a transformer model:

documents are embedded into a vector space using BERT transformers [Devlin, 2018], and a

logistic regression model is adjusted using the embeddings as inputs (see Figure 4). More

complex models have been considered, but a single-layer model seems more adequate, due to

the high dimensionality of the embedding (typically, 768 dimensions) and the number of clean

labels, which can be expected to be small.

Figure 3: Pre-classification system. Documents are mapped to a vector space using a
(pretrained) BERT transformer model. A single-layer classifier is added to the last layer of the
embedding model. The preliminary labels obtained from the document selection process are

used to pre-train the model through a supervised learning mechanism.

14

D3.3 System for Subcorpus Generation

3.5. Active learning

The active learning module selects a pre-defined number of documents at random and shows

them to the expert user for labeling. The sample of documents can be taken at random, but this

is not usually a good choice for several reasons:

1. If the target domain is a minority class, random sampling will provide documents from

the majority class with higher probability.

2. The user is mainly interested in documents from the target domain and, thus, the

sample should contain most documents from the target domain. By showing most

documents from the target domain, the annotation process can be integrated in a more

transparent way into the natural navigation of the user through the documents in the

domain.

3. From the point of view of the efficiency of the active learning process, the selection of

documents must depend on the scores of the classifier. During the initial learning

rounds, the quality of the classifier model is unknown and, thus, testing the validity of

the classification of documents with the highest or the lowest scores (which correspond

to documents classified into the positive or the negative class, respectively, with the

highest confidence values) should be prioritized. In later annotation rounds, other

documents with lower classification confidence will be more useful for model

refinement.

Given the above considerations, an active learning algorithm has been implemented that takes

as input the scores of all documents that have not been annotated before, and proceeds as

follows:

1. Documents are sorted from highest to lowest score.

2. Select M+ documents (without replacement), taking n-th document with probability

proportional to qn.

3. Select M- documents (without replacement) from the positive class, taking n-th

document with probability proportional to (1-q)n.

Parameters M+ and M- control the number of samples taken from the highest and the lowest

scores, respectively. Typically, M+ > M- , in such a way that the annotator will likely receive more

samples from the target domain for annotation. Parameter 𝑞 ∈ [0, 1] controls the randomness

of the document selection, ranging from 𝑞 = 0 (purely random sampling) to 𝑞 = 1

(deterministic sampling, taking the top M+ scores and the bottom M- scores).

3.6. Mixed label learning

The clean labels provided by the user must be combined with the PU labels (i.e. the labels

provided by the document selection system) in order to fine-tune the classifier model. Since the

number of clean labels after a few user interactions will be, in general, a small fraction of the

total number of PU labels, the mixed label learning module retrains the classifier module in

15

D3.3 System for Subcorpus Generation

Figure 4 using a sample weighting mechanism. The weight assigned to the clean labels is a

configurable parameter of the application.

4. SOFTWARE

4.1. Software architecture

The software package can be downloaded from the IntelComp repository in GitHub1. It contains

all software modules and its documentation. The documentation has been generated using

Sphinx in ReadTheDocs format and it has been published in the GitHub page2. Fig. 4 shows a

snapshot of the main page of the documentation, and the page describing one of the main

classes.

Figure 4: Snapshots of the software documentation. (Left): Main page. (Right) Sample page
of the documentation of one of the main classes.

1 https://github.com/IntelCompH2020/domain_classification
2 https://intelcomph2020.github.io/domain_classification/index.html

https://github.com/IntelCompH2020/domain_classification
https://intelcomph2020.github.io/domain_classification/index.html

16

D3.3 System for Subcorpus Generation

The main components of the folder structure in the software repository are:

● docs/: Documentation folder.

● src/: The python software package. Contains all classes and methods.

● Main scripts: two executable python scripts that can be used to test all software

modules through a terminal/command window (main_domain_classifier.py) or through

a PyQT5 GUI (main_gui.py).

The classes and methods in folder src/ are structured in several modules:

● domain_classifier/: It contains the main classes in charge of text processing and

classification. These are the classes that should be integrated in the IntelComp platform.

The diagram of these classes is shown in Figure 5. It contains the following classes:

○ CorpusProcessor: contains all methods related to the document selection

process

○ CorpusDFProcessor: extends CorpusProcessor methods to process data from

Pandas dataframes.

○ CorpusClassifier: contains all methods related to the pre-classification, active

learning, and retraining using machine learning models.

○ Finally, four custom classes have been used, that are adaptations of the code

for Roberta transformer model for sentence-level classification tasks

■ CustomEncoderLayer: Custom encoder layer of transformer for

classification

■ CustomModel.

■ CustomClassificationHead .

■ CustomDataset:

17

D3.3 System for Subcorpus Generation

Figure 5: Diagram of classes related to text processing and classification.

18

D3.3 System for Subcorpus Generation

● menu_navigator/: Contains class MenuNavigator, which reads and interprets the menu

structure (defined in a configuration file) that will be used by the main scripts. See Figure

6.

Figure 6: Attributes and methods of MenuNavigator class.

● graphical_user_interface/: contains all classes and methods related to the GUI. See

Figure 7

Figure 7: Classes, attributes and methods for the GUI

19

D3.3 System for Subcorpus Generation

● utils/: contains some useful auxiliary methods.

● Control and I/O classes: in charge of read/write operations, user interaction and task

execution, organized in different files:

○ TaskManager. A class inherited from BaseTaskManager. It is in charge of

creating the objects and calling the methods required to carry out all of the

processing tasks. There are two subclasses inherited from it: TaskManagerCMD

(which includes methods required for user interaction through a terminal

window) and TaskManagerGUI (which includes methods required for user

interaction through the GUI.

○ DataManager. Contains all read/write methods. It provides support to the task

managers to read the corpus data (texts and labels) and write the results. This

is a provisional method that can be used to test the software using a particular

test datasets. It should be replaced by the appropriate class to carry out all read

and write operations according to the IntelComp data structure in the

integration phase of the project.

○ QueryManager: Contains all methods required to interact with the user through

a terminal window.

Figure 8: Classes, attributes and methods for the task and data and user query management

20

D3.3 System for Subcorpus Generation

4.2. Software requirements

4.2.1. Python packages requirements

The main libraries required to run the python application are listed below. The table also shows

the library versions integrated in the latest code version.

Table 1: Python package requirements.

Package Version

matplotlib 3.3.4

numpy 1.20.1

pandas 1.2.4

PyQT5 5.15.4

PyYAML 6.0

scikit_learn 1.0.1

scipy 1.6.2

simpletransformers 0.63.3

openpyxl 3.0.9

torch 1.10.2

torchaudio 0.10.2

torchvision 0.11.3

4.2.2. Data source requirements

All the corpora that can be utilized as a training corpus for the Domain classifier, together with

its associated keywords, labels, topic models and other additional metadata, must be provided

within a folder as one of the application’s inputs. With this purpose, such a folder must be

composed by one subfolder per corpus, each of them being organized into all or some of the

following directories:

1. corpus: A directory containing the actual corpora and additional data related to them.

2. labels: Directory containing the xlsx files which are composed of the IDs associated with

the documents that have been manually classified and that will be utilized for supervised

training. These labels define the category “imported”, i.e., the category acquired

through the importing of labels from a source file.

3. lemmatized_corpus: Directory holding the files which contain each of the lemmatized

corpora that are included in the corpus folder. For the time being, this folder is not

utilized, but it may be useful for a later deployment.

21

D3.3 System for Subcorpus Generation

4. queries: Directory containing the files with the keywords that are going to be used as

suggestion for the selection of a subcorpus based on keywords.

5. topic_model: Directory containing the representation of the topic models that will be

used for the selection of a subcorpus based on a topic selection function.

6. zips: Original compressed files. They are not used in the application.

These folders are relevant when using this software as a standalone application. During the

integration phase, when the software will be embedded in the Interactive Model Trainer tool, it

will be necessary to reconsider this folder structure in the context of such application.

4.3. Execution commands

For the user to start any version of the application, the following command needs to be

executed:

$ python main_script

--p project_folder

--source datasets_folder

—-zeroshot zero_shot_folder

where:

- main_script refers to the script that relates to the version of the application to be

executed. Use

- main_domain_classifier.py for the command line application,

- main_gui.py, for the GUI.

- project_folder is the path to a new or an existing project in which the application’s

output will be saved.

- datasets_folder is the path to the source data folder.

- zero_shot_folder is the path to a folder containing a pre-trained zero-shot model

utilized for the selection of a subcorpus from a category name.

Note that for the case of the graphical user interface, the application can also be invoked without

parameters, being possible to select them from the application’s front page as follows:

$ python main_gui.py

This command will open the start-up page from the GUI that is shown in Figure 9.

22

D3.3 System for Subcorpus Generation

Figure 9: Graphical user interface start-up page.

If the application is invoked with parameters, the project folder, dataset folder and zero-shot

model paths are written on their respective text boxes (i.e. white spaces located at the left of

each selection button), as shown in Figure 9, being then possible to change the selection by

clicking on their respective associated button. In case the application is invoked without

parameters, the text boxes are shown empty, but the selection is approached in the same way,

as it can be seen in Figure 10. In each of the three cases, the user’s file system is popped-up so

it is possible to easily search for the project/dataset/zero-shot folder.

For the case of the command-line application, its main menu is shown immediately after the

invocation of the execution command. As for the graphical user interface, the user must first

click on the “Start” button in order to proceed to the application’s main window.

4.4. Project folder structure

If the project_folder does not exist, the application creates it, along with the file and folder

structure required to store the output files: the default structure consists of the following:

● datasets/: It will store a csv file for each dataset used by the application with the

selected corpus. Each csv file will contain all information that is relevant for the

processing, classification, labeling or evaluation of the classifier models.

● embeddings/: Contains the transformer-based embeddings of the selected documents

from the corpus.

● labels/: For each target category, a file containing the documents preclassified by the

document selection subsystem. The data from these files will be integrated into the

dataset files after training.

23

D3.3 System for Subcorpus Generation

● models/: it will contain one output subfolder per target category. Each subfolder will

contain the updated classifier model.

Figure 10: Graphical user interface start-up page with file system open after the clicking

of the “Select source data folder” button.

● output/: other output file (not used)

● metadata.yaml: a file with metadata that stores the status of the project and some

metadata related to each of the target categories.

● msgs.log: log file of the latest code execution with this project.

● parameters.yaml: the configuration file of the project.

These folders are relevant when using this software as a standalone application. During the

integration phase, when the software will be embedded in the Interactive Model Trainer tool, it

will be necessary to reconsider this folder structure in the context of such application.

4.4.1. Configuration file

The first time the application is run, a copy of the configuration file is stored in the project folder

with name parameters.yaml. The list of parameters, its function, and the default values used for

application testing are shown in Annex A.

4.5. Application structure

The functionalities of both application’s versions are equivalent, the only difference between

them being the way in which the information is presented to and input is taken from the user.

24

D3.3 System for Subcorpus Generation

4.5.1. Command line application

The application version is based on a menu, as shown in Figure 11. The user can navigate through

the application by writing the number associated with each functionality. When necessary, the

application will request input from the user.

Figure 11: Command-line application.

4.5.2. Graphical user interface

The GUI main window is composed of three main views, as depicted in Figures 12, 13 and 14. In

all of them, we can find informative tooltip buttons orienting the user through the actions to be

carried out at each view.

4.5.2.1. View for the corpus selection, the target domain specification, or the selection

of a subset of labels to be used for the training of a PU model.

The top part of this view refers to the corpus selected for the current working project.

Note that once a corpus has been selected for a project folder, such a corpus will be

shown directly as selected corpus in posterior executions of the application, and it will

not be possible to modify it. Therefore, to run the application with several corpora, the

application must be called once per corpus, specifying a different project folder.

The bottom part is divided into two subsections. The left one allows the user to select

one out of the four different available alternatives for the classification of documents,

thus defining a new category, which is immediately depicted on the bottom right box

once the pre-classification has been completed. From such a box the user can select

which is the category to be used for the training of a new PU model in the next view.

25

D3.3 System for Subcorpus Generation

Figure 12: Graphical user interface main window - Load corpus / labels view

Regarding the different alternatives for the selection of a preliminary subcorpus from

the positive class, except for the importing of labels from a source file, a pop-up window

appears at the time the user clicks on the corresponding radio button. In all cases, after

the selection of one of the options, and when it applies, the specification of the inputs

asked in each case, the user must click the “Get labels” button for the pre-classification

to start.

a. Keywords based selection subwindow.

On the top, a list of suggested keywords is shown, from which the user can

select which one he wants to use for the selection of documents by writing them

on the middle white box.

By default, the selection based on the cosine distance between transformer

embeddings (see Sec. 3.3) is applied, but the keyword count similarity metric is

available through the configuration file… In addition, the user can decide which

tag is to be used for the naming of the category to which the documents to be

selected belong and can configure the three parameters that intervene in the

keywords-based selection, namely:

- wt: Weight of the title. A word in the title (if available) is equivalent to

the wt repetitions of the word in the description. This is used by the

keyword count measure only.

26

D3.3 System for Subcorpus Generation

- n_max: Maximum number of elements in the output list.

- s_min: Minimum score. Only elements strictly above s_min are

selected.

 Figure 13: GUI main window - Keywords based selection

b. Topic based selection subwindow.

The top tables shown in this view are interrelated, that is, while the right one is

unmodifiable and shows the id and chemical description of each of the topics

associated with the topic model provided for the selected corpus, the left table

is editable, and its purpose is the insertion by the user of the weights to be

assigned to each of the topics for topic based selection of documents.

As in the keywords-based selection, the user can specify here the tag to be used

for the naming of the category associated with the topic-based selection and

configure the parameters in it implied, namely:

- n_max: Maximum number of elements in the output list.

- s_min: Minimum score. Only elements strictly above s_min are

selected.

27

D3.3 System for Subcorpus Generation

 Figure 14: Graphical user interface main window - Topic based selection

c. Domain name selection subwindow.

Like the keywords-based selection, the user can insert here the keywords to be

used for domain name selection, with the only difference that in this case no

suggested list of keywords is provided.

Again, both a tag to name the category and parameters configuration is

permitted, the parameters being in this case:

- n_max: Maximum number of documents to be selected.

- s_min: Minimum score. Only elements strictly above s_min are

selected.

28

D3.3 System for Subcorpus Generation

 Figure 15: Graphical user interface main window - Domain name selection

In addition, there exists a fourth pop-up window, in which the user can analyze

the presence of the selected keywords in the corpus. In case the user has not

selected keywords (i.e. the keywords based selection has not been carried out),

the application forces the user to select first such keywords by displaying the

keywords based selection window.

Figure 16: Some keyword statistics

During the time the pre-classification is being performed, a loading bar is shown

in the middle of the view. Once any of the actions carried in this view are

completed, a pop-up window message is displayed informing the user about the

completion of the task and showing some additional information. Up to this

point, the GUI accepts further user selections.

29

D3.3 System for Subcorpus Generation

4.5.2.2. View for the training and evaluation of a PU model for the selected category.

From this view, the user can train and evaluate a PU model for the set of documents

from the positive class associated with the target category selected in the previous view

by clicking the “Train PU model” button. While the model is being trained both a loading

bar and the logs associated with the training are shown to the user.

Once the model has been trained, a pop-up window informs the user about the training

completion, immediately after which the user can continue with its evaluation by

clicking the “Evaluate PU model” button. Again, a loading bar and the logs associated

with the evaluation are displayed while it is being performed and once completed its

results are displayed on the bottom right table of the view.

The parameters related with the classifier can be modified by means of the top left table,

these parameters being:

- max_imbalance: Maximum ratio of negative vs positive samples in the training

set.

- nmax: Maximum number of documents in the training set.

The values shown are the default parameters; by inserting a new value and clicking the

“Update parameters” button, the parameters are updated; they can also be restored to

their default value by clicking the “Reset parameters” button.

Figure 17: Graphical user interface main window - Train / evaluate PU model view.

At the time the picture was taken, the model was being evaluated.

30

D3.3 System for Subcorpus Generation

4.5.2.3. View for the annotation of documents and the retraining and reevaluation of

the associated PU model based on the user’s feedback.

This view relates to the active learning loop. The user can select the number of

documents according to which a reduced subset of the documents will be sampled

documents belonging to the previously selected category will be sampled. The title (iv

available), content and predicted class from the resulting documents are displayed

within different boxes, the border of such a box being highlighted by the color that

defines each predicted class (purple when the predicted class is 1, and red when it is 0).

The user can change the category of each of the documents by just checking (predicted

class = 1) or unchecking (predicted class =0) the corresponding checkboxes located

under each of the documents.

Once the user has manually labeled the documents, the user must click the “Give

feedback” button for the feedback process to be completed. Then, the next step is to

retrain and reevaluate the model by clicking the buttons “Retrain model” and

“Reevaluate model”, respectively. Again, a loading bar where the associated logs are

displayed while the former tasks are being performed, pop-up windows are displayed

to notify each task’s completion, and once the reevaluation is completed, the results are

displayed on the bottom-right table.

Figure 18: Graphical user interface main window - Annotation, retraining and

reevaluation view. At the time the picture was taken, the model was being re-

evaluated.

31

D3.3 System for Subcorpus Generation

4.6. Dataset and metadata files

4.6.1. Datasets

The dataset files are stored files stored in datasets/ folder. Each dataset will contain all relevant

information for the subcorpus used for classification, organized in the following columns:

● Information about the input documents:

○ Id: document identifier

○ Text: text of the source documents. Typically, it is a string joining title and

abstract from the original documents

● Information about labels:

○ PUlabels: Labels returned by the selection model

○ labels: last set of labels used by the learning models.

○ annotations: manual labels introduced by users through the annotation tool

○ date: date of each annotation

○ learned: a flag that shows if the label has been already used to update the model

(1) or not (0).

● Information from the classifiers:

○ train_test: shows if the document has been used for training (1), test (0) or not

used (-99).

○ PUscore_0: score of the PU learning model for class 0.

○ PUscore_1: score of the PU learning model for class 1.

○ PNscore_0: score of the retrained model for class 0.

○ PNscore_1: score of the retrained model for class 1.

○ prediction: class prediction of the last model

○ prob_pred: probabilistic prediction of the las model

A screenshot of the information in a dataset is shown in Fig. 19

Figure 19: A dataset dataframe for domain “biomedicine” specified by the user

through a zero-shot classifier. It encompasses information about the source

documents, the labels obtained by the zero-shot classifier, data and metadata from

human annotations and information from the classifiers.

32

D3.3 System for Subcorpus Generation

4.6.2. Metadata file

The metadata file in project_folder/metadata.yaml records hierarchically structured

information about the project status. It is also a record of the main task carried out for the

current project, and the parameters used in the process. For instance, it registers information

about the method and parameters used to obtain a specific set of labels. At the top level of the

tree, the following entries can be found:

● corpus_name: Identifier of the corpus used by the current project.

● state:

○ configReady: true if the configuration file (parameters.yaml) has been loaded

○ isProject: true if the input project_folder has the required folder structure

○ selected_corpus: true if a corpus has been selected by the user

○ trained_model: true if at least one document selection has been done, so that

a set of labels is available for the supervised classification algorithms.

● keyword_based_label_parameters: a dictionary containing the parameters used during

each execution of the keyword based selection mechanism. It contains one tree per

keyword, with the following schema

○ tag: name assigned to the keyword set.

■ List of keywords

■ List of parameters used by the document selector.

● zeroshot_parameters: a dictionary containing the parameters used during each

execution of the zero-shot classifier. It contains one tree per keyword, with the

following schema

○ tag: name assigned to the keyword set.

■ List of keywords

■ List of parameters used by the zero-shot classifier

● topic_based_label_parameters: a dictionary containing the parameters used during

each execution of the zero-shot classifier. It contains one tree per keyword, with the

following schema

○ tag: name assigned to the keyword set.

■ List of keywords

■ List of parameters used by the zero-shot classifier

A sample of a metadata file can be shown in Fig. 20.

33

D3.3 System for Subcorpus Generation

Figure 20: A sample metadata file. It records information about a project related to

the classification of a corpus related to EU projects. The “states” shows that at least

one model has been trained with this corpus. Also, three domains have been

already specified: one through a list of keywords, and two using the domain name

(“biomedicine” and “deep learning”). The parameter values used for each

document selection are also shown.

5. CONCLUSIONS

We developed a python module for subcorpus generation based on a user-driven

selection of documents based on categories specified through different mechanisms:

zero-shot classification, keywords, or weighted topics. Besides the required text

processing and classification modules, a complete python application has been

developed to facilitate the testing of the software functionality before its final

integration into the IntelComp platform. The application allows user interaction through

a command window or a graphical user interface. As part of the integration process, the

algorithms and models will be tested using data from the DataLake. Also, the usability

of the classification process will be tested based on user experience during the living

labs.

34

D3.3 System for Subcorpus Generation

REFERENCES

[Yin, 2019] Yin, W., Hay, J., & Roth, D. (2019, November). Benchmarking Zero-shot Text

Classification: Datasets, Evaluation and Entailment Approach. In Procs of the 2019 Conf.e

on Empirical Methods in Natural Language Processing and the 9th Int. Joint Conf. on

Natural Language Processing (EMNLP-IJCNLP) (pp. 3914-3923).

[Vaswani, 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaise,

L. & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information

Processing Systems, 30.

[Devlin, 2018] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[Reimers, 2019] Reimers, N., & Gurevych, I. (2019, November). Sentence-BERT: Sentence

Embeddings using Siamese BERT-Networks. In Procs of the 2019 Conf. on Empirical

Methods in Natural Language Processing and the 9th Int. Joint Conf. on Natural Language

Processing (EMNLP-IJCNLP) (pp. 3982-3992).

ANNEXES

A. Default Configuration File.

The first time the application is run, a copy of the configuration file is stored in the project folder

with name parameters.yaml. Table 2 shows the list of parameters, their function, and the default

values used for application testing.

Table 2: Default configuration file. Comments explain the meaning of each parameter

Parameters for the dataset selection

dataset:

 # Source file name

 path2source: '../datasets'

Parameter for the keyword-based document selector

keywords:

 # Weight of the title. A word in the title is equivalent to wt

 # repetitions of the word in the description.

 wt: 2

 # Maximum number of documents to be selected.

 n_max: 2000

 # Minimum score. Only docs scored strictly above s_min are selected

 s_min: 1

Parameter for the zero-shot document selector

zeroshot:

 # Maximum number of documents to be selected.

 n_max: 2000

35

D3.3 System for Subcorpus Generation

 # Minimum score. Only docs scored strictly above s_min are selected

 s_min: 0.6

Parameter for the keyword-based document selector

topics:

 # Selection method: 'embedding' or 'count'

 method: 'embedding'

 # Weight of the title. A word in the title is equivalent to wt

 # repetitions of the word in the description. (For method='count' only)

 wt: 1

 # Maximum number of documents to be selected.

 n_max: 2000

 # Minimum score. Only docs scored strictly above s_min are

 # selected

 s_min: 0.2

 # Name of the SBERT model. Available pretrained models can be

 # found in https://www.sbert.net/docs/pretrained_models.html

 model_name: all-MiniLM-L6-v2

 # Maximum number of documents to be selected.

 n_max: 2000

 # Minimum score. Only docs scored strictly above s_min are selected

 s_min: 0.6

 # Name of the SBERT model. Available pretrained models can be found in

 # https://www.sbert.net/docs/pretrained_models.html

 model_name: all-MiniLM-L6-v2

Parameters for the classifier

classifier:

 # Maximum ratio neg vs positive samples in the training set

 max_imbalance: 3

 # Maximum number of documents in the training set.

 nmax: 400

Parameters for the active learning (AL)

active_learning:

 # Number of docs to show each AL round

 n_docs: 5

 # Sample selection algorithm: 'random' or 'extremes'

 sampler: 'extremes'

 # Ratio of high-score samples. The rest will be low-score

 # samples. (Used for sampler='extremes' only)

 p_ratio: 0.8

 # (Approximate) probability of selecting the doc with the

 # highest score in a single sampling. This parameter is used

 # to control the randomness of the randomness of the

 # stochastic sampling: if top_prob=1, the highest score

 # samples are taken deterministically. top_prob=0 is

 # equivalent to random sampling. (Used for sampler='extremes'

 # only)

 top_prob: 0.1

Specify format for the log outputs

logformat:

 filename: msgs.log

 datefmt: '%m-%d %H:%M:%S'

 file_format: '%(asctime)s %(levelname)-8s %(message)s'

 file_level: INFO

 cons_level: DEBUG

 cons_format: '%(levelname)-8s %(message)s'

