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Abstract. Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN
Initiative focused on development of technologies for advancement of neuroscience. For
the last seven years, Neurophotonics’ agenda has been well aligned with this focus on neuro-
technologies featuring new optical methods and tools applicable to brain studies. While the
BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to under-
stand the brain, this status report reviews an extensive and diverse toolkit of novel methods
to explore brain function that have emerged from the BRAIN Initiative and related large-scale
efforts for measurement and manipulation of brain structure and function. Here, we focus on
neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to
appear later this year, will cover diffuse optical imaging methods applicable to noninvasive
human studies. For each domain, we outline the current state-of-the-art of the respective tech-
nologies, identify the areas where innovation is needed, and provide an outlook for the future
directions. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International
License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.NPh.9.S1.013001]

Keywords: optical imaging; molecular sensors; optogenetics; fluorescence; label free; blood
flow; multimodal.; published online Apr. 27, 2022.
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1 Introduction

The Neuron Doctrine formulated by Ramón y Cajal at the turn of the 19th century is an embodi-
ment of neuroscience discovery empowered by optics. Cajal used Camillo Golgi’s “black reac-
tion” to sparsely impregnate neurons with light-absorbing silver nitrate in histological brain
sections. Inspecting these sections with a light microscope, Cajal concluded that information
was flowing in one specific direction—from dendrites to axons—within a network of discrete
nerve cells connected by synapses. This conceptual advance, enabled through utilization of a
light-absorbing probe in combination with widefield microscopy, laid the foundation for modern
neuroscience. Fast-forward to the present day, and optical tools for measurement and manipu-
lation of neuronal activity are so ubiquitous and versatile that “neurophotonics” has become
a common word in the scientific vocabulary: we talk about neurophotonic technologies and
research centers, we have the Neurophotonics journal, and recognize neurophotonics as its own
field of research.

While optical methods have occupied center stage in neuroscience from the times of Cajal
and Golgi, the last decade has seen a rapid advance of neurophotonic technologies, in large part
thanks to the BRAIN Initiative1,2 as well as other large-scale neuroscience projects in the US and
around the world.3 At the dawn of the BRAIN Initiative, the research community was deeply
engaged in discussion about what kinds of tools were needed to accelerate neuroscience dis-
covery. Questions were asked about the technological goals to maximize the progress in under-
standing the brain: Should we measure each spike in every neuron? Should we prioritize one
model species over another? Should we pick one specific neuronal circuit and summon all forces
to understand it as completely as we can? After intense debates in the media, townhall meetings
and deliberations at the National Institutes of Health and beyond, the final answer was: We need
it all! We need to understand the brain across scales, from its molecular composition to large-
scale architecture, from single-cell gene expression to whole-brain activity patterns, and for each
aspect of the brain’s organization, we need to use those model species that make the most sense.
Thus, we also need a variety of tools with which to tackle these different biological parameters
and phenomena. Halfway through the BRAIN Initiative, we can safely say that this inclusive
scope is paying off. We now have a large array of diverse experimental and computational tools
to study the brain across species, scales, levels of description, in animals and humans. Notably,
the lion’s share of these technologies falls under the general umbrella of neurophotonics.

Here, we review the current state-of-the-art tools that are, in general, applicable to animal
models and usually considered under the umbrella of microscopy. We start with an overview of
high-resolution structural imaging tools that have emerged and/or matured within the last
decade. Then, we highlight several newly developed optical sensors and modulators of brain
activity followed by discussion of a suite of one-photon (1P) and multiphoton fluorescence
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microscopy methods aimed at large-scale imaging of brain activity with high temporal resolu-
tion. We include a number of technologies for imaging cerebral blood flow and metabolism and
feature several imaging approaches that integrate optical tools with other measurement modal-
ities providing complementary information and/or helping to overcome fundamental limitations
of purely optical methods. Finally, we highlight the importance of computational tools that
complement optical technologies extending their capabilities.

Given the vast and rapidly expanding landscape of neurophotonic tools, the current scope
is not exhaustive but rather biased on the collective scientific interest of this group of authors.
Most often, these tools entail some level of invasiveness and in general are not applicable to
live brain imaging in humans. A companion paper is focused on noninvasive (diffuse) optical
imaging technologies targeted for humans.

2 Imaging of Microscopic Brain Structure

A singular advance that underlies the modern high-resolution, high-throughput imaging of
labeled brain structures in animal species is the development of a diverse palette of bright, photo-
stable fluorescent proteins.4 These proteins are genetically encoded, which allows targeting of
fluorescent labeling to specific cells, subcellular compartments, and biochemical events (e.g.,
gene transcription). In parallel, advancement of new biochemical methods of tissue index match-
ing, building upon the original CLARITY protocol,5 have enabled volumetric acquisition of
samples as thick as the whole mouse brain. On the imaging side, light-sheet microscopy6 has
emerged as a method of choice for high-throughput acquisition of cleared brain samples.7

Beyond the diffraction-limited resolution of light microscopy, a suite of super-resolution tech-
nologies has leveraged the principle of manipulating the ‘on’ and ‘off’ state of the fluorescent
labels.8,9 Expansion microscopy10 provides an alternative solution for overcoming the diffraction
limit by physically expanding the sample. Expansion microscopy can be used to view small
structures, such as synaptic vesicles, with no need for complex super-resolution instrumentation,
but, in contrast to the “classical” super-resolution methods, is not compatible with live imaging.

Complementary to fluorescent labeling, label-free imaging relies on intrinsic properties of
brain tissue.11–16 High-resolution label-free structural imaging is of particular relevance for
human brain tissue, where expression of fluorescent proteins does not apply for neuroethics
reasons. Label-free imaging techniques leverage optical phenomena of interaction of light with
live and fixed brain tissue including autofluorescence, reflectance, birefringence (polarization
and direction dependence of refractive index) that yields retardance and changes in light polari-
zation and scattering.

2.1 Fluorescent Proteins

Naturally occurring fluorescent proteins (FPs) from various marine organisms, including the
archetypical Aequorea victoria green FP (avGFP),17 provide the foundation for all genetically
encoded molecular probes for fluorescence imaging of brain structure and function used today.
The gene for an FP is introduced into the tissues of a model organism and then transcribed and
translated by the normal cellular machinery. Expression in specific neuronal cell types or brain
regions can be achieved with appropriate combinations of gene enhancers and promoters, adeno-
associated virus (AAV) serotypes and injection site, and recombinase-dependent expression
strategies. Having inspired countless genetic manipulation strategies, numerous advances in
microscopy, and the development of powerful functional imaging probes, FPs are the substrate
upon which a vast ecosystem of neurophotonic technologies now flourish.

Essentially all FPs in use today have been engineered using their wild-type progenitors as a
starting point (Fig. 1). Nature and natural evolution have played the biggest role in providing
researchers with a diversity of FP-based tools, and undoubtedly there are many secrets yet to be
revealed.18 However, for adapting natural FPs to the unnatural demands of neurophotonic appli-
cations, laboratory engineering and directed evolution play essential roles. Such approaches
have been overwhelmingly successful at providing a color palette of bright FPs for multi-color,
multi-parameter imaging,19 and monomeric FPs for use as minimally-perturbing fusion protein
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labels.20 However, these efforts have been only partially successful at providing high-performance
far-red FPs,21 brightly fluorescent near-infrared FPs,22 or substantial improvements in photo-
stability.

Looking to the future, new protein engineering methods, or more intensive application of
established methods, will be critical for overcoming these and other limitations. It is impossible
to predict exactly which approaches are most likely to provide the next generation of FPs but,
based on precedent, progress is certain to be achieved in a piecemeal fashion. For example,
complementary approaches of particular promise include innovative library screening schemes23

and rational computational design.24 For some applications, alternative approaches such as semi-
synthetic fluorogenic proteins,25,26 and bright luciferase plus luciferin pairs,27,28 may supplant
FPs. In one form or another, FPs, or their functional equivalents, will remain at the forefront of
neurophotonic research for the foreseeable future.

2.2 Tissue Clearing for High-Throughput, High-Resolution Imaging of
Macrobiomolecules

Classic histological protocols for labeling of fixed tissue sections often include a step of dehy-
dration followed by “clearance.” In the process of dehydration, the water is removed and
replaced by the alcohol (ethanol). In the process of clearance, a clearing agent (often methyl
salicylate) is used to displace the ethanol while also removing fat molecules rendering the tissue
optically transparent. In neuroscience, these protocols have been widely used in combination
with bright field and epi-fluorescence microscopy for morphological analyses, i.e., for recon-
struction of dendritic and axonal arbors across different neuronal cell types.29 While useful, these
methods were limited to relatively thin brain sections to allow the chemicals to penetrate
throughout. In addition, uneven shrinkage of serial sections prevented stitching sections into
volumes. More recently, transition to organic solvents has been proposed as a way to increase
sample thickness enabling volumetric reconstruction.30 However, the problem of uneven shrink-
age remained. In addition, these solvents produced bleaching of endogenous fluorescence, and
their toxic and corrosive nature required specialized equipment and handling. As an alternative,
aqueous solutions with high refractive index were employed preventing bleaching but not
achieving sufficient transparency for thick samples (reviewed in Ref. 31).

Fig. 1 Fluorescent protein engineering.
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In 2013, development of CLARITY,5 a method of making large volumes of tissue optically
transparent and macromolecule-permeable using a hydrogel built from within, revolutionized
brain histology. This method has broken ground for the development of a growing family of
tissue clearing tools with varying hydrogel composition, including those that can repeatedly
expand and shrink brain tissue32 while preserving target macrobiomolecules.33 In combination
with light-sheet microscopy (Sec. 4.3), these methods allow high-throughput analysis of large-
scale FP expression and also support multiplexed immunostaining with many rounds of fluo-
rescent antibody labeling and stripping34 (Fig. 2).

2.3 Super-Resolution Microscopy

Super-resolution microscopy refers to a new class of fluorescence imaging techniques that have
shattered the diffraction barrier of light microscopy, offering spatial resolutions down to the
single-digit nanometer range close to the ultimate limit, i.e. the size of the fluorescent molecules.
Since their invention some 20 years ago (recognized by the Nobel Prize in 2014), a diversifying
family of super-resolution methods has been developed and deployed in neuroscience research,
including STED, RESOLFT, PALM, STORM, u-PAINT, and SIM, encompassing laser-scan-
ning and widefield imaging modalities35 (Fig. 3). While these techniques are quite distinct
in design and use (concerning hardware, labeling, image analysis), they are all based on the
principle of manipulating the ‘on’ and ‘off’ state of the fluorescent labels, whose spatial dis-
tribution can be read out in a diffraction-unlimited way.

In STED microscopy,39 dye molecules are switched off by stimulated emission in a donut-
shaped region around the excitation spot that scans the sample, shrinking its size. In PALM,

Fig. 3 Super-resolution imaging of fine neuronal structures. (a) Comparison of 2P versus 2P-
STED image of dendritic spines imaged in the mouse hippocampus in vivo (adapted from
Ref. 36). (b) Correlative STED and SMLM image of dendritic spine morphology and dynamic spa-
tial arrangement of synaptic proteins (blue, neuronal morphology; green, PSD-95 scaffold protein;
colored tracks, GluA1 receptor subunit), scale bar 500 nm (adapted from Ref. 37). (c) Super-
resolution shadow imaging (SUSHI) of brain tissue, revealing anatomical context of a YFP-labeled
neuron (adapted from Ref. 38).

Fig. 2 Visualization of biomolecules in cleared tissue. (a) Imaging of neurofilament medium unit
(NF-M) and GABAB receptor subunit-1 antibodies in cleared, expanded tissue. Scale bars,
50 μm. (b)–(c) Overlay of multi-round immunostained images. Scale bar, 100 μm. Panel (a) is
adapted from Ref. 32; panels (b) and (c) are adapted from Ref. 33.
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STORM and u-PAINT, collectively referred to as SMLM (single-molecule localization micros-
copy), the fluorophores are imaged onto a camera, but not all at the same time. They are turned
on so sparsely that each of them can be precisely localized. By acquiring thousands of images of
different sets of activated fluorophores, a super-resolved image is constructed.40

These ground-breaking methods have enabled unprecedented optical access to subcellular
organelles and protein arrangements in living brain cells and tissue preparations, unlocking
a wealth of new and exciting biological information. For instance, they have revealed the
ring-like organization of the cytoskeleton in axons,41 the columnar arrangement of pre- and post-
synaptic signaling proteins,42 the structural plasticity of dendritic spines in the hippocampus,36 as
well as basic physical properties of the extracellular space of brain tissue.43

In the future, this technology will still develop rapidly in many key respects, allowing for
more sophisticated experiments on more complex and biologically relevant samples, while also
becoming less cumbersome and expensive. An important task is to make in vivo super-resolution
imaging more of a reality, which faces special challenges in terms of depth penetration and brain
motion. We can expect that recent technological advances, including those in adaptive optics and
computational tools, will substantially potentiate the power of super-resolution microscopy and
the biological insights that it will unearth.

2.4 Expansion Microscopy

The fundamental optical diffraction limit precludes the use of conventional light microscopy for
imaging of nanoscopic structures such as the post-synaptic density. Expansion Microscopy
(ExM)44 overcomes this limitation by physically magnifying tissues while reserving or highlight-
ing biomolecules such as proteins, nucleic acids, lipids, etc.45,46

The general workflow of ExM involves the following steps: (1) infusion and synthesis of a
water-swellable hydrogel throughout the specimen; (2) chemically linking biomolecules of inter-
est to the hydrogel; (3) homogenization of the specimen enzymatically or via heat denaturation,
and (4) physical expansion of the specimen in pure water.47 The workflow is designed to facili-
tate isotropic expansion.10,44,48–51 Most ExMmethods expand the specimen by up to ∼4.5× in the
linear dimension. Using a conventional light microscope, such expansion provides ∼60 nm

image resolution for an objective lens with 270 nm diffraction limit (270∕ ∼ 4.5 ¼ ∼60 nm).
If protocols for 10× expansion52 or more53 are used, the effective imaging resolution can be
further improved to ∼25 − 30 nm.

This technology has been used to (1) study synapses in a number of model organisms includ-
ing mouse brains44,51 (Fig. 4), larval and adult Drosophila brains,54,55 C. elegans,56 planarian
glia,57 and larval zebrafish, revealing heterogeneity in synapse structure58 and age-associated
changes in active zones;54 (2) trace neurons in large volume;32,59 and (3) interrogate neurological
diseases, such as Parkinson’s disease,60 schizophrenia,61 and dementia,62 discovering disease-
related subtle structural changes61,63 and protein mislocalization.62

Fig. 4 Expansion microscopy imaging of synaptic proteins. (a) Volumetric image of an inhibitory
neuron genetically labelled with EYFP in a 4× expanded mouse brain section stained with anti-
bodies against EYFP (yellow), synaptophysin (magenta) and PSD95 (cyan). (b) Zoom-in view
from (a), as indicated by the dashed red box.
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In the future, we expect ExM will further advance (1) labeling strategies to overcome the
bottleneck in the signal strength that is diluted by expansion itself; (2) new gel chemistry that
lead to larger expansion and better resolution; (3) multiplexing strategies to address the limitation
of the 4–5 colors due to spectral overlap of fluorophores; (4) development of optical objectives
and microscopes and the associated imaging software specifically for imaging expanded brains
or other tissues. In the next decade, we envision researchers will be able to routinely acquire large
volume and highly multiplexed nanoscale images of expanded neuronal tissue to quantify
changes in synaptic components and other nanoscale structure in the brain, potentially providing
new insights into the molecular mechanisms of neuronal function and disease.

2.5 Label-Free Structural Imaging Based on Interaction of Light with Tissue

While fluorescent proteins offer selective genetic targeting and multiplexing, these approaches
are limited to animal studies where genetic manipulations and editing can be performed. Label-
free imaging relies on intrinsic properties of brain tissue and applies to human cerebral tissue,
freshly excised or fixed. Indeed, the biological structure autofluorescence produced by red blood
cells retained inside the vessels, and the lipofuscin pigments present inside the neuronal bodies,
can be detected by fluorescence microscopy techniques.64 In addition, it is possible to modify the
sample with specific preparations in order to increase the autofluorescence signals of particular
structures. Among them, a recent protocol called MAGIC (Myelin Autofluorescence imaging by
Glycerol Induced Contrast enhancement)11 enables to perform label-free fluorescence imaging
of myelinated fibers in various mammalian brains, including humans, with a glycerol-based
tissue treatment (Fig. 5) allowing three-dimensional (3D) connectomics analysis of the brain.

Furthermore, optical methods based on different physical phenomena are extensively used to
investigate both in vivo and ex vivo tissues. Raman scattering and its derivation as Coherent anti-
Stokes Raman scattering (CARS)65 permits to determine the molecular composition of every
tissue. Second-harmonic generation (SHG) allows to detect well organized structures like col-
lagen, myosin, or polysaccharides66,67 while third-harmonic generation (THG) distinguishes the
interface between different compartments like skin, neuron’s myelin, and adipocyte.68 Another
label free technique that enables the high-resolution analysis of myelinated fibers is 3D-PLI

Fig. 5 Reconstruction of brain sections treated with MAGIC: (a) mouse, (b) rat, (c) vervet monkey,
(d) and human. Scale bar = 1 mm. (e) 3D rendering (450 × 450 × 60 μm3) of the stack indicated
by the red box in d; green and red channels show the myelinated fibers enhanced by MAGIC
and the autofluorescence of the cell bodies produced by lipofuscin pigments. Adapted from
Costantini et al.11
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(Polarized Light Imaging),69 based on the detection of the birefringence of the myelin sheaths
surrounding axons. In particular, this technique allows the reconstruction of the 3D organization
of the whole brain fiber’s architecture in thin slices.70 Finally, reflectance microscopy12,14 can be
used to measure myelin contents and capillary blood flow in live preparations.

All these methodologies are usually linked together to obtain a multimodal mapping of the
different tissue components.65,71 We believe that in future some of the label-free techniques will
be combined with specific tissue preparation and labeling, such as clearing methods,31 as already
done with CARS on mouse brain,72 coupling the morpho-chemical label free analysis with
labeled 3D volumetric imaging on large samples.73,74 The combination of label-free methods
with specific labeling will allow a more comprehensive analysis of tissue composition offering
the possibility of molecular phenotyping at the cellular and subcellular level.

2.6 Optical Coherence Tomography

Optical coherence tomography (OCT)75 is another label-free imaging modality that uses intrinsic
contrast to generate cross-sectional or volumetric images of tissues at micrometer resolution.
OCT differs from the above-mentioned label-free tools in that it employs low-coherence inter-
ferometry to provide depth-resolved images, for which light backscattered and reflected from a
sample is mixed with a reference light. Not only the intensity, but also the phase and polarization
of the detected light carry physical information. Various OCT-based techniques have been devel-
oped for different fields, such as ophthalmology, most notably, but also in cardiology, and der-
matology, to visualize tissue structure and function.

OCT applications in the brain have been emerging in recent years.76 Like the retina, many
regions of the brain possess an internal organization which gives rise to natural differences in
optical properties. The simplest example of this principle is the fact that white matter has a higher
scattering coefficient than gray matter. On a finer scale, cellular composition, myelination, and
potentially, axonal/dendritic content can also modulate scattering coefficients of individual
layers in the cortical column.77 Within gray matter itself, high resolution Optical Coherence
Microscopy (OCM) imaging has revealed individual myelinated axons78 and neuronal cell
bodies,77 and potentially cell nuclei.79 Morphological changes can accompany cell death80,81

and therefore inform about neuronal viability, while Aβ plaques are distinguished as being
highly backscattering.82 Finally, OCT is unique in enabling optical microscopic imaging more
than 1 mm deep in vivo in scattering tissue, through minimally invasive preparations (Fig. 6), and
can capture deep pathology that is missed by more superficial imaging techniques.83 Functional
and hemodynamic extensions of OCT are discussed in Sec. 6.1.

Interestingly, much of the intrinsic contrast of in vivo neuronal tissue is also apparent ex vivo
in fresh84 and to some extent, even fixed85,86 tissues. This has enabled large-scale reconstructions
of animal and human brains by serial optical coherence scanning (SOCS) that combines an OCT
and a tissue slicer.15 The SOCS is a new tool for fundamental research into the anatomical and
connectional architecture of the brain without using exogenous contrast agents or expression of
foreign genes. It relies on conventional or polarization-sensitive OCTof a volumewithin the field
of view, translating the sample laterally to image neighboring volumes, removing a layer of
tissue using the slicer to expose deeper regions for imaging, and repeating these steps until the
entire block is imaged. Consequently, the SOCS provides large datasets for brain imaging and
mapping, and the data size is proportional to the sample volume and inversely proportional to the
volumetric spatial resolution. The latter can be enhanced by utilizing OCM. The technology has
been used to distinguish the gray matter and white matter,87 compared with Nissl staining86 and
diffusion MRI,88,89 and applied on the rat brain,15 mouse brain,13,90–92 and human medulla
oblongata.88 Figure 7 shows the power and promise of the ex vivo SOCS method, as it shows
axon fibers of mouse brainstem and cerebellum and delineates the cerebellar layers without
histological processing.

While ex vivo OCT provides intrinsic contrast, it is most powerful when complemented by
other, more specific histological or labelled imaging techniques. In the future, we can expect the
use of SOCS to complement other serial imaging modalities in creating unique and undistorted
datasets from rodent, nonhuman primate, and human brains. Development of image processing
and analysis tools will allow creation of new brain atlases and better understanding of the
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connectome. These could facilitate studying atrophies in brain diseases93 and finding new targets
for neuromodulation treatments. The necessity of serial imaging and analysis of big data would
require implementation of automated protocols to realize these highly significant goals.

3 Molecular Sensors and Actuators for Imaging and Manipulation
of Brain Activity

Recent advances in molecular engineering have led to several families of high-quality optical
sensors. We use the terms “sensor,” “indicator,” and “probe,” interchangeably, to broadly
describe molecules that provide a measurable signal in response to changes in brain activity.
Following the traditional definition of the term in the analytical sciences, we use “biosensor”

Fig. 7 Ex vivo serial optical coherence scanning (SOCS) of the mouse brain. (a)–(b) Composite
images with reflectivity (green) and retardance (red) contrasts for selected regions in mouse
brainstem (a) and cerebellum (b). WM, white matter; GL, granular layer; ML, molecular layer;
pcf, preculminate fissure. PC indicates a layer of Purkinje cell bodies whose dendrites reside
in ML. Scale bar: 320 μm (length of a square tile).

Fig. 6 In vivo 1700-nm optical coherence microscopy (OCM) of the mouse brain through a thinned
skull preparation. (a) Minimum intensity projection sagittal images, or “slices,” with different pro-
jection thicknesses in the coronal direction, show cortical cytoarchitecture and the corpus cal-
losum (CC), without physical tissue slicing. (b) OCM signal decay (left panel) and averaged
coronal image (middle panel) show sub-cortical layers. CC, corpus callosum; Or, stratum oriens;
Rad, stratum radiatum; DG, dentate gyrus. Adapted from Zhu et al.83
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to refer to only those sensors in which a protein component is detecting the biological change of
interest. Combined with advanced microscopy, calcium ion (Ca2þ) imaging using GCaMPs94 is
now routinely employed to enable large-scale, single- or multiphoton imaging for readout of
neuronal circuit activity in awake, behaving animals.95,96 In parallel, voltage sensors have been
significantly improved in recent years in terms of intrinsic properties such as membrane locali-
zation, brightness, sensitivity and kinetics. These voltage sensors can be divided into three gen-
eral categories: synthetic sensors,97 hybrid biosensors that use a combination of synthetic dyes
and genetically encoded proteins,98 and fully genetically encoded biosensors.99–101 Synthetic
voltage sensors have a long history in neuroscience including the latest red-shifted photoinduced
electron transfer (PeT) highlighted below.102 Hybrid voltage biosensors combine molecular
specificity of genetically encoded proteins with unsurpassed photophysical properties of syn-
thetic fluorophores. Genetically encoded voltage biosensors are based on either opsins or voltage
sensing domains; the most recent of them approach the performance of their synthetic
counterparts.103 The choice of voltage sensor is driven by applications, and no single solution
fits all.104

Beyond Ca2þ and voltage, more recent protein engineering efforts have now extended the
concept of single-FP based biosensors to the design of genetically encoded biosensors for neuro-
transmitters and neuromodulators, including glutamate, GABA, dopamine, norepinephrine,
serotonin and acetylcholine, based on either G-protein coupled receptors (GPCR) or bacterial
periplasmic binding proteins (PBP).105 These biosensors enable measurements of neurotransmit-
ter release with high spatiotemporal resolution and molecular specificity across the full course of
behavioral paradigms.106–117

With growing appreciation for the concepts of the neurovascular unit118 and tripartite syn-
apse,119 there has been a concerted effort for development of fluorescent biosensors for cellular
metabolism,120,121 and targeting these and other biosensors to not only neurons but also non-
neuronal cells including astrocytes (as well as immune and vascular mural cells).122

The sensors mentioned above, whether genetically encoded, hybrid or synthetic, employ
fluorescence to report activity. Another notable form of luminescence is phosphorescence that
has a longer lifetime and thus occurs on a slower time scale. Phosphorescence has been tradi-
tionally employed in sensing O2, a physiological parameter of key importance in the brain and
elsewhere.123 Development of new 2P-excitable, red-shifted probes has recently enabled deep
intravascular and tissue imaging of the partial pressure of O2 (pO2).

124,125

Fluorescence and phosphorescence require that photons are delivered to the chromophore/
phosphor molecule to induce emission. In bioluminescence, in contrast, emission of light occurs
in the process of a chemical reaction where an enzyme oxidizes a substrate.126 Bioluminescence
has been recently harnessed to generate biosensors though functional reconstitution in the pres-
ence of target molecules.127 It also has been explored for actuation by using emitted light to
stimulate light-sensing proteins.128 Although the concept of bioluminescent actuators is very
new, this work already has yielded promising results.129 Bioluminescent actuation joins opto-
genetics, a widely used tool for stimulation and inhibition of neuronal activity that has revolu-
tionized neuroscience since its invention in 2005.130,131

3.1 Calcium Sensors

Ca2þ measurements are central in neuroscience due to the importance of Ca2þ in cellular excita-
bility and intracellular signaling pathways.132 A correlation of Ca2þ signals with electrophysio-
logical measurements of membrane potentials across neuronal compartments (soma, proximal
dendrites, distal dendrites) has been demonstrated using simultaneous intracellular electro-
physiological recordings.133,134 This is due to abundant expression of numerous types of
voltage-gated Ca2þ channels.135–137

Imaging of neuronal activity using Ca2þ sensors was originally enabled by Roger Y. Tsien
and colleagues who developed the fura-2 synthetic Ca2þ indicator dye and the means to
deliver this dye to tissues in the form of an acetoxymethyl (AM) ester.138,139 Following these
initial breakthroughs, examples of Ca2þ imaging to record neuronal activity soon started to
appear.140,141 Ever since, the development of improved Ca2þ sensors has been a steadily evolving
area in neuroscience due to arrival of new indicators with improved signal to noise ratio
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(SNR) properties, low toxicity, and optimized delivery strategies. Of particular note was the
development of an exceptionally good Ca2þ indicator Oregon Green BAPTA-1 (OGB-1), and
a clever scheme of delivering its AM ester form into thick tissues.142 Thanks to large 2P absorp-
tion cross-section of OGB-1 and other synthetic Ca2þ sensors, in vivo 2P Ca2þ imaging has been
widely adopted within the neuroscience community and used for studying of neuronal circuits
in healthy cerebral143–147 and cerebellar cortex,148 spinal cord,149 olfactory bulb,150,151 in glial
cells,152–154 and in diseased brain.155,156

Relative to synthetic indicator dyes, genetically encoded Ca2þ indicators (GECIs; a.k.a. Ca2þ

biosensors) offer a number of advantages including genetic targeting to specific cell types, virus-
mediated delivery, and the possibility of creating transgenic organisms that stably express the
GECI. Just as with the field of synthetic Ca2þ indicator dyes, the field of GECIs was enabled by
the work of Roger Y. Tsien and colleagues. Specifically, they reported the Förster resonance
energy transfer (FRET)-based cameleon Ca2þ biosensor in 1997157 and the single GFP-based
camgaroo Ca2þ biosensor in 1999.158 These were soon followed by the improved single FP-
based pericam159 and GCaMP160 biosensors which were composed of a circularly permuted
GFP fused to calmodulin (CaM) and a CaM-interacting peptide.161 The first GECI that was
widely used to image neuronal activity in defined cell populations was GCaMP3,162 and seventh
generation GCaMP variants have been reported.163 As the toolbox of genetically encoded Ca2þ

biosensors continues to grow (Fig. 8), it is desirable to engineer biosensors with non-overlapping
spectra to simultaneously monitor multiple circuit elements. Towards this goal, there are now a
number of red FP-based167–169 and near-infrared FP-based170 Ca2þ biosensors available, though
they do not offer the same outstanding levels of performance achievable with the latest gener-
ation of the highly optimized GCaMPs. However, these red-shifted probes offer the advantage of
decreased scattering and absorption effects in tissue, thus allowing for deeper and more efficient
imaging in vivo.

GECIs remain the workhorse of circuits-to-behavior neuroscience studies. The development
and application of brighter and colorful Ca2þ biosensors along with other molecular tools will
push the boundaries of exploration in neuroscience beyond the current limits.

3.2 Synthetic Voltage Sensors

Traditionally, neuronal electrical properties have been evaluated using intracellular electro-
physiological recordings that are highly accurate but also terminal, invasive, low-throughput
and labor intensive, and particularly difficult to perform in the brains of behaving mammals.

Fig. 8 Overview of available intensiometric single FP-based GECIs. (a) Representative GFP-based
GECIs.159,163,164 (b) Representative mNeonGreen-based GECIs.165,166 (c) Representative RFP-
based GECIs.164,167–169 (d) Representative near infrared FP-based GECIs.170,171 (e) Qualitative
assessment of various GECIs in terms of brightness, sensitivity, localization and in vivo
performance.
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Synthetic sensors (dyes) provided an early impetus for probing transmembrane neuronal
potential with optical imaging as an alternative to electrophysiological recordings. Nearly 50 years
ago, experiments in squid axons revealed changes to the optical properties of dyes in response to
membrane potential changes.172 Since that time, efforts to design fluorescent dyes that respond to
biological membrane potential broadly fall into two different camps: slow-response dyes that
display voltage-dependent partitioning within the membrane, and fast-response dyes whose opti-
cal properties are modulated by changing electric fields.173 Voltage-sensitive dyes are especially
useful in model systems that lack ready tools for genetic manipulation and have been used exten-
sively for mapping brain function in mammals and non-human primates.174

More recently, voltage-sensitive fluorophores based on voltage-sensitive photoinduced elec-
tron transfer (PeT)175,176 have emerged as another avenue for synthetic voltage sensors177

(Fig. 9). Changes in membrane potential alter the rate of PeT within the donor-acceptor frame-
work of the dyes. At hyperpolarized potentials, PeT from an electron-rich aniline donor is accel-
erated by the hyperpolarized potential, preventing emission of a photon from the fluorophore
excited state, and quenching fluorescence [Fig. 9(a)]. At depolarized potentials, the inverted
membrane potential inhibits PeT and the dye brightens [Fig. 9(b)].179 The newest PeT-based
indicators compare favorably to genetically encoded indicators, in terms of speed, sensitivity,
and brightness.180 Additionally, the positive-going, turn-on response to action potentials,
coupled with compatibility with multiphoton excitation,102,181,182 make PeT-based synthetic volt-
age indicators an attractive method for imaging rapid membrane potential changes in intact
brains. However, an outstanding problem is delivery of fluorescent dyes to specific cells.

In the future, a number of innovations could improve the utility of chemically-synthesized
voltage indicators: improved or universal methods of delivery into intact brains; enhanced photo-
stability for long-term imaging; larger multiphoton excitation cross-sections for use with 2P and 3P
imaging; chemical-only cell targeting, without the requirement for genetic encoding, for example,
by targeting native receptors;183,184 longer wavelength indicators for in vivo imaging;185,186 and,
possibly, indicators that harness modalities other than light for noninvasive imaging.

3.3 Hybrid Voltage Sensors

Hybrid voltage sensors address the challenge of targeting fluorescent dyes to specific cell types.
Multiple hybrid strategies have been explored. One attempt was using a “pro-drug” strategy in

Fig. 9 Voltage imaging with PeT sensors. (a)–(b) Mechanism of voltage sensing in PeT-based
voltage-sensitive fluorophores. (c) Structure of a prototypical voltage-sensitive fluorophore,
Berkeley Red Sensor of Transmembrane potential, BeRST 1. (d) Fluorescence image of cultured
hippocampal neurons loaded with BeRST 1. Scale bar is 20 μm. (e)–(f) Example traces from
simultaneous electrophysiological (black) and optical recording (magenta) of spontaneous voltage
fluctuations from neuron 1 (e) and spontaneous activity from neurons 2 to 5 (f); the corresponding
neurons are labeled in (d). Adapted from Walker et al.178 and Liu and Miller,179 © 2020 American
Chemical Society.
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which a genetically encoded enzyme on the cell surface uncages a modified fluorescent volt-
age indicator.187,188 Fluorescein-based voltage-sensitive fluorophores can be adapted to this
strategy,189,190 but the method has yet to be applied beyond cultured neurons. Alternatively,
voltage-sensitive fluorophores can be tethered to neuronal surfaces with genetically-encoded,
self-labeling enzymes to enable fast voltage imaging from defined cells and sub-cellular struc-
tures as was demonstrated in cultured hippocampal neurons191–193 or brain slice.193 Voltage
indicators based on rhodamines can also be targeted in a similar fashion, allowing single-trial
detection of action potentials in mouse brain slices.193

Recent efforts have introduced another solution to the problem of cell-type-specific targeting
through engineering “chemigenetic” probes that couple simple synthetic fluorophores acting as
the reporter molecule with a sensor protein domain partner. In chemigenetic probes, a sensor
protein domain is appended to a self-labeling protein domain98,194,195 such as HaloTag196,197 that
irreversibly binds a synthetic fluorophore ligand (Fig. 10). This allows genetic encoding of the
protein portion and uses simple and cell-permeable small-molecules, such as Janelia Fluor (JF)
dyes,25,198 as reporter fluorophores.

Chemigenetic probes are engineered so that a change in the sensor protein domain alters
the local environment around the dye and changes its fluorescence properties (Fig. 10). This
approach yielded bright and photostable voltage and Ca2þ probes with highly tunable photo-
physical and chemical properties.98,194,195 Chemigenetic voltage probe Voltron98 increased pho-
ton yield from voltage imaging experiments to enable recording from many cells simultaneously.
HaloCaMP and HASAP195 are bright far-red Ca2þ and voltage probes that push the useful im-
aging spectrum to longer wavelengths. These recent developments provide a template for the
design of new fluorescent probes for different analytes and biochemical processes.

Further advances in synthesizing tunable far-red dyes, alongside innovative protein engineer-
ing for building protein scaffolds able to modulate dye fluorescence, promise to enable func-
tional imaging deeper in tissue. Moreover, improved bioavailability of dyes will allow routine
imaging in live animals. Another equally exciting avenue is to develop orthogonal self-labeling
proteins like HaloTag that work well in vivo with corresponding bioavailable ligands for multi-
color imaging.

3.4 Genetically Encoded Voltage Biosensors

Recent advances in the development of genetically encoded voltage indicators (GEVIs, a.k.a.
voltage biosensors) have led to significant improvement in their optical properties offering
recording of transmembrane voltage via fluorescence imaging without the need to deliver extrin-
sic (synthetic) sensors or fluorophores. In particular, a few recent GEVIs, including SomArchon,
QuasAr3, ASAP3 and Ace2N have achieved sufficient sensitivity to capture individual action
potentials in behaving mice.99,100,199–201 Figure 11 shows an example of voltage imaging of
multiple cells simultaneously using SomArchon, which allows for the detection of individual
action potentials and subthreshold membrane voltage fluctuations in behaving mice.99

Additionally, since SomArchon operates at the near-infrared wavelength, it can be used in con-
junction with blue-light-activated optogenetic actuators for simultaneous voltage imaging and
optogenetic control.

Fig. 10 Schematic of chemigenetic probes. A biosensor domain is attached to a self-labeling
domain that irreversibly binds a fluorophore ligand. A change in the biosensor domain alters the
bound fluorophore properties allowing functional recording of biochemical signals.
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Several different types of GEVIs exist (for a recent comprehensive review, see Ref. 202).
SomArchon and QuasAr3 are opsin-type GEVIs that use the voltage-dependent protonation
of opsins as an optical readout. Indicators like Ace2N use an opsin to sense transmembrane
potential, and changes in the protonation state of the opsin change the efficiency of energy trans-
fer to a bright fluorescent protein (FP). ASAP3 is an FP fusion with a voltage sensitive protein
domain which undergo conformational transitions upon transmembrane voltage fluctuations.
These conformational changes are translated to the FP and change the fluorescence intensity
of the FP.203–209 GEVIs have been used to tackle intriguing scientific questions, such as how
spiking activity of specific neuron types is modulated during different behavioral processes and
relate to subthreshold membrane voltage fluctuations and extracellularly measured local field
potential dynamics.

With continued improvement in both voltage sensors’ molecular designs and optical instru-
mentation in the coming years, we expect that voltage imaging will be increasingly accessible to
neuroscientists for high-speed kilohertz analysis of many individual neurons during behavior.
Such capability will enable time-resolved analysis of transmembrane voltage, both action poten-
tials and subthreshold membrane fluctuations, of distinct cell types and cell compartments in
behavior and pathology. Finally, combining voltage imaging with other precision analysis tech-
nologies, such as cellular Ca2þ imaging and cell-specific proteomic and transcriptomic analysis,
neuroscientists will be able to link the voltage dynamics of specific neurons and brain circuits to
their cellular and biochemical states and tissue environment.

3.5 Genetically Encoded Biosensors for Neurotransmitters

The development and refinement of genetically encoded Ca2þ and voltage indicators have
paved the way for the development of genetically encoded biosensors for neurotransmitters,

Fig. 11 Single cell voltage imaging in awake mice using a wide-field imaging setup. (a) Experi-
mental setup: awake mice were head-fixed under a wide-field microscope. (b) Representative
SomArchon-expressing neurons visualized via EGFP fluorescence in cerebral cortex. (c) Voltage
imaging time-courses from three representative neurons in hippocampus; horizontal bars denote
optogenetic stimulation. Reproduced with permission from Piatkevich et al.99
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neuromodulators, and neuropeptides. Such biosensors are categorized by two scaffolds:
microbial periplasmic binding protein (PBP) and G-protein coupled receptors (GPCR)
[Figs. 12(a)–12(b)].

Microbial PBPs form a large protein superfamily that bind numerous classes of small mol-
ecules and peptides. Ligand binding in PBPs induces a large Venus flytrap-like conformational
change, which is highly conserved [Fig. 12(a)]. These unique features have been used to develop
a toolkit of highly sensitive sensors for other neurochemicals, including GABA (iGABASnFr),
ATP (iATPSnFR), acetylcholine (iAchSnFR) and nicotine (iNicSnFr).211–214 However, there
are several analytes for which bacterial PBPs do not exist. Recently, a PBP-based biosensor
iSeroSnFr for serotonin has been engineered using machine-learning-guided evolution of an
existing PBP-based biosensor, iAchSnFr,211 to redesign its binding pocket to report serotonin
release at physiological concentrations.215

As an alternative to PBP-based biosensors, biosensors for neuromodulators have been devel-
oped by fusing GPCRs with fluorescent proteins, leveraging on ligand specificity, affinity, and
binding kinetics that has evolved in the GPCRs. The first generation of GPCR-sensors were
FRET-based.216–219 However, use of these biosensors in vivo has been limited due to low
dynamic range and sensitivity. GPCRs have seven transmembrane (TM) alpha helices, where
the largest conformational change upon activation is thought to occur for TM domains 5 to 7.220

Thus far, circularly permuted FPs (cpFPs) have been inserted in the intracellular loop 3 (IL3)
domain of GPCRs, which bridges TM5 and TM6, to detect this conformational change upon
ligand binding [Fig. 12(b)]. Using this versatile strategy, the Light and GRAB sensor family,
consisting of dopamine, norepinephrine, and serotonin biosensors, has been developed and
applied for in vivo recording of neuromodulator dynamics210,221–226 [Fig. 12(c)]. In addition,
red-shifted color variants of dLight1 was engineered for multiplexed neurochemical detection
(Patriarchi et al., 2020). GRAB biosensors have also been expanded to acetylcholine, adenosine
and more recently endocannabinoid.224–226

The intrinsic properties of these neurotransmitter biosensors demand further iterative optimi-
zation to be broadly applied to study spatial and temporal patterns of activity in synaptically
connected neuronal circuits. Computational modeling would provide theoretic guidance for future
optimization. In addition, a high-throughput screening system using fluorescence-activating cell
sorting (FACS) combined with image-based screening or the well-known CRISPR/Cas9 system is
a pressing need to speed up the process of optimization. Extending the sensitivity, specificity, and
color palette of these biosensors will continue to create rich opportunities for studies aimed at
understanding the role of specific neurotransmitters in calculations performed by neuronal
networks.

Fig. 12 Genetically encoded sensors for neurotransmitters. (a)–(b) Design scaffolds for sensors
based on cognate GPCR (a) or E. coli PBP (b). (c) 2P imaging of dopamine dynamics in the mouse
cortex using dLight1.2 when mouse performs a visual-motor learning task. Heat map of dLight1.2
expression pattern in layer 2/3 of M1 cortex is overlaid with computationally defined regions of
interest colored by the type of responses observed during the task. (d) Average task-induced
dLight1.2 transients (bottom) and mouse running velocity (top) aligned to trial onset (0 s). For
details see Ref. 210.
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3.6 Molecular Probes for Cell Metabolism

Brain metabolism is highly dynamic, fluctuating with the local level of neuronal activity and
with consequent energy demands. Substantial amounts of ATP are required to support the ion
gradients that serve as the batteries for electrical activity, and energy is also needed to support
neurotransmitter release and recycling. This energy is provided mainly by the metabolism of
glucose, although other fuel molecules can also contribute. Individual brain cells also can differ
substantially in their metabolic demands and responses: not only may there be differences
between different classes of neurons, but various glial cells—astrocytes (the focus of Sec. 3.7)
and oligodendrocytes—may play specific roles in energy metabolism.

Because the metabolic responses are rapid (a few seconds to a few minutes) and can be
localized to individual cells and subcellular compartments, imaging of fluorescent biosensors
can be the ideal approach to investigating how cellular brain metabolism works. Genetically
encoded biosensors have been developed for glucose227–230 and ATP;231–233 for the key elec-
tron-carrying cofactors NADH∕NADþ (Fig. 13) and NADPH/NADP234–237 and for the meta-
bolic intermediates pyruvate238 and lactate.239 These have been imaged both in vitro and
in vivo to elucidate metabolic responses in neurons and astrocytes,240,241 though some features
remain quite controversial.

A particular challenge for using metabolic biosensors is that quantitative readouts are essen-
tial for interpretation; unlike the ubiquitous Ca2þ biosensors used to monitor neuronal activity,
for which the temporal pattern itself is informative, metabolite levels must be compared between
different cells and different conditions, even when biosensor expression levels vary. Ratiometric
imaging can be used to normalize for expression levels, but ratio imaging requires more spectral
bandwidth and reduces the opportunity for multiplexing several biosensors; excitation-ratiomet-
ric measurements can be challenging for scanning microscopes; and single-FP ratiometric bio-
sensors also tend to be quite pH sensitive.120 Avaluable alternative is to use fluorescence lifetime
imaging: the lifetime readout is independent of biosensor concentration, and rapid lifetime im-
aging is increasingly practical.120,241,242 Lifetime-based biosensors are slightly harder to develop,

Fig. 13 Metabolic imaging of the Peredox biosensor of NADH∕NADþ redox, expressed in neurons
and astrocytes of acute hippocampal slice. Left: pseudocolor images of the biosensor, which
reports high NADH∕NADþ ratio as increased fluorescence lifetime. Right: counterstain with sulfo-
rhodamine 101 marks astrocytes specifically and shows that they are the cells with elevated
NADH∕NADþ levels in the left-hand images, while neurons have lower levels. Not all cells in
the slice express the genetically encoded biosensor, which was introduced with a viral vector.
See further discussion of astrocytes in Sec. 3.7.
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but the ability to multiplex and to get instrument-independent quantitation makes them a valu-
able target for biosensor development in the coming years.

3.7 Sensors for Astrocytes

Astrocytes are one of the major non-neuronal cell types in the mammalian central nervous sys-
tem (CNS), comprising up to 20% of the human brain.243 Astrocytes are found throughout the
CNS in non-overlapping domains.244 These cells possess a characteristic morphology, with a
central cell body radiating numerous membranous processes, which extend out into the neuropil
interacting with neurons, other glia, and blood vessels.243 Astrocytes are electrically silent, which
meant that for many years they were dismissed as being merely parenchymal support cells – or
“brain glue.” The development of new optical imaging tools and their application to astrocytes
has forced a dramatic rethink of this preconception.122 Indeed, in situ imaging experiments, per-
formed largely in acute tissue slices from rodents, have provided compelling evidence that astro-
cytes are key components and regulators of neuronal circuits.

Use of small organic ion-sensitive dyes and genetically encoded biosensors has demonstrated
that astrocytes contribute to local synaptic homeostasis, through active buffering of Naþ245 and
Kþ.246 Meanwhile, use of metabolic biosensors suggests that astrocytes also act as “power
plants,” supplying lactate (a key energy substrate) to neurons.240 Astrocyte-specific expression
of genetically encoded neurotransmitter biosensors has shown that these cells are well placed to
sense local neuronal activity and neurotransmitter release;247 crucially, structural imaging of
membrane-associated fluorescent proteins,248 and tagged glutamate transporters,249 suggests this
activity can also trigger dynamic changes in astrocyte processes, which reciprocally modulate
synaptic transmission. Such modifications may well be linked to transient increases in cytosolic
Ca2þ, which are also evoked by local neuronal activity, and which, under certain circumstances,
are thought to trigger the release of neuroactive substances (gliotransmitters) from astrocytes that
act to modify neuronal activity.250

This multifaceted modulation of neurons and synapses by astrocytes suggests these cells
provide an additional layer of information processing to that occurring in neurons, one which
appears crucial to the modulation of animal behavior.251 However, the role of astrocytes is com-
plicated by the recent discovery of astrocyte subtypes, which exist both between and within brain
regions.252 These subtypes show differences at the molecular, anatomical and physiological lev-
els, and are likely specialized to match and regulate local neuronal circuits253 (and see Fig. 14).

Future work will benefit greatly from genetic tools (e.g. new Cre- mouse lines or viral vector
systems) that allow precise targeting of these astrocyte subtypes,255 including in gene knockout
models. These will allow the contribution of astrocyte subtypes to local circuit function to be
studied in great depth. Such work will also benefit from more specific methods for the acute and
chronic manipulation of astrocyte activity,256–258 as well as an expanded/comprehensive palette
of sensors, allowing the mechanistic basis of astrocyte function to be elucidated. Such a toolbox
will, of necessity, include sensors for ions, receptor activation (particularly G protein-coupled
receptors), metabolic functions and key intracellular signaling pathways (including aspects of
structural plasticity and mRNA/protein trafficking).259,260

Ideally, such probes will allow high levels of multiplexing (single wavelength probes) and be
optimized for in vivo use (good signal-to-noise ratio, sensitivity, dynamic range, stability in the
cellular environment, resistance to photobleaching, lack of toxicity, etc.), as recent work has
demonstrated that astrocyte function is strongly influenced by behavioral state.261 Probe devel-
opment will go hand-in-hand with improvements in head-mounted camera technology for use in
awake behaving animals (e.g., UCLAminiscope project) and silicon probe design (for the simul-
taneous measurement of neuronal activity).262

In summary, genetic manipulation of regional and subregional astrocyte genes, in combina-
tion with (in vivo) functional studies of astrocytes and their interactions with local neurons, will
bring new insights into diversified astrocyte function and the consequences for control of local
neuronal circuits and subsequent animal behavior. Such information may well provide novel
insights into CNS diseases. It is likely studies of other CNS cell types, such as oligodendrocytes,
microglia and pericytes will benefit from adopting similar strategies.
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3.8 Probes for Oxygen Measurements by Phosphorescence Quenching

Tissue oxygen levels can be measured by the phosphorescence quenching method263,264 using
molecular probes with controllable quenching parameters and defined bio-distributions. This
approach relies on the ability of oxygen (O2) to quench emission originating from the triplet
excited states of probe molecules. Oxygen levels are derived from phosphorescence decay times,
which are independent of the optical properties of the medium and local probe concentrations.
“Protected” oxygen probes for truly quantitative imaging of oxygen in vivo consist of platinum
(Pt) or palladium (Pd) porphyrins encapsulated inside hydrophobic dendrimers, coated at the
periphery with hydrophilic polyethylene glycol (PEG) residues.265–267

Over the past decade, a special subset of phosphorescent probes has been developed
specifically for 2P phosphorescence lifetime microscopy (2P PLIM or simply 2PLM) of
oxygen.124 The 2PLM technique has become particularly popular in neuroimaging, enabling
imaging of oxygen distributions and concentration gradients in live brain with micron-scale
resolution.268–274 While being excellent linear absorbers, Pt and Pd porphyrins have vanishingly
small 2P absorption cross-sections. In the original 2P oxygen probes (e.g., PtP-C343) the ability
to absorb light by a 2P mechanism was boosted by supplementing the porphyrins with multiple
2P chromophores comprising 2P antennae.124,275,276 However, later a more potent probe was
developed, known as Oxyphor 2P125 (Fig. 15), which relies on a single porphyrin whose
2P-active excited electronic states have been tuned by way of synthetic manipulations, rendering
a chromophore with strong 2PA and exceptionally bright phosphorescence.277,278 Presently,
Oxyphor 2P is the probe of choice for 2PLM as well as for other applications of phosphores-
cence-based oximetry (e.g. Ref. 279).

The next challenge in the phosphorescent probes development area is to combine oxygen
imaging with sensing of other environmental analytes (e.g. temperature, proton gradients, metal
ions, etc.), explore higher orders of non-linearity (e.g. 3PA), and create sensors that can be tagged
selectively to particular types of tissues and cells.

Fig. 14 Astrocyte subpopulations in the mouse CNS show significant differences in Ca2þ signal-
ing. Ca2þ transients in sulforhodamine101 (SR101)-labeled astrocytes were detected using
Fluo-4. Measurements were made in mouse acute tissue slices containing cortical layer 1
(L1), cortical layers 3-5 (L3-5) and the hippocampal CA1 region (CA1). Ca2þ transients (expressed
as fluorescence changes relative to baseline: dF∕F0) were initially recorded under conditions of
baseline activity (BASE) and after sequential application of tetrodotoxin (TTX) (to isolate astro-
cytes from neuronal activity) and tetrodotoxin plus the α1-adrenergic receptor agonist phenyl-
ephrine (PHE). (a) Representative astrocytes (arrowheads) from three brain areas and the
Ca2þ transients recorded from these cells under the various experimental conditions. Scale bar,
50 μm. (b) Analysis of various transient parameters, recorded under identical experimental con-
ditions. Numerical values are the calculated means for each condition. AUC: area under curve.
Modified from Batiuk et al.254 *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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3.9 Bioluminescent Tools for Imaging, Modulating, and Integrating

Photons are typically generated from a physical light source, but they can also be produced by a
genetically encoded luciferase, an enzyme that oxidizes a substrate, a luciferin, thereby emitting
bioluminescence. Bioluminescent imaging enables minimal background and no photobleaching
as there is no need for an excitation light source. Bioluminescence can be repurposed beyond
imaging and be utilized as a versatile genetically encoded light source for controlling optogenetic
actuators.

Core principles behind this platform technology are fusions of a light-emitting luciferase and
a light-sensing photoreceptor such as opsins (channelrhodopsin, pumps),280,281 enzymes (adeny-
late cyclase, Cre recombinase),128,282 or transcription factors (CRY2/CIB, GAVPO).128,283

Expressing light-emitting luciferases and light-sensing proteins in pre- and postsynaptic neurons
permit causal interrogation of synaptically connected populations through an “optical synapse”
[Fig. 16(a)]. Engineered split luciferases allow for functional reconstitution, allowing light emis-
sion to be harnessed to activate light sensing proteins when Ca2þ, voltage, neurotransmitters, and
neuropeptides are detected or altered [Fig. 16(b)]. By making light itself activity dependent,
optogenetic proteins can be modulated by luciferases serving as an integrator of biological proc-
esses [Fig. 16(c)].

Light emission from luciferases can be harnessed to control a range of biological processes
by coupling bioluminescence with light-sensing proteins. Fusions of luciferase and opsin (lumi-
nopsins) have been used in vivo for improving motor deficits in a Parkinson’s disease mouse
model,284 suppression of seizure activity,285 enhancing neuronal repair and functional recovery
after ischemic stroke286 and spinal cord injury, modulating spatial and episodic short-term
memory,287 studying the effects of developmental hyperexcitation on behavior and circuit activ-
ity in adulthood129 [Fig. 16(d)], and promoting axon regeneration after peripheral nerve injury.288

We can expect that this technology will benefit from discovery of new organisms with novel
luciferase-luciferin combinations.289 Molecular engineering of luciferases towards brighter and
faster indicators in conjunction with tuning light sensing proteins will enable imaging, modu-
lation, and integration of neuronal activity in freely moving mice at increasing sensitivities. This
will further be enabled by chemical engineering of synthetic luciferins extending the color
palette and intensity of emitted light and advances in miniscopes.290 The trajectory of biolumi-
nescent probes will allow imaging, controlling, and integrating neuronal activity with increasing
sophistication.

3.10 Optogenetic Actuators

Optogenetic techniques have revolutionized neuroscience this past decade, offering an unprec-
edented toolkit for manipulating neuronal circuits with light.130 Driven by the goal of under-
standing the organization and function of the brain, optogenetics began with the discovery
of the light-gated cation-conducting channelrhodopsins ChR1 and ChR2291,292 and the applica-
tion of ChR2 for light-based excitation of mammalian neurons.131,293,294 This groundbreaking
advance was followed by efforts of multiple groups to enhance and diversify the optogenetic

Fig. 15 Structure, optical absorption spectra and basic photophysical properties of probe Oxyphor
2P. In the spectra (right): dotted black line, 1P absorption; solid black lin, 2P absorption; solid dark
red line, phosphorescence.
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toolbox.295,296 These efforts have culminated in the engineering of dozens of novel optogenetic
tools for activation and silencing of neuronal activity, for modulation of G-protein signaling
pathways and for direct modulation of second-messenger pathways [Fig. 17(a)]. Optogenetic
tools have also been developed for light-based control over gene expression, synaptic release,
and biochemical signaling pathways. While these have been recently reviewed elsewhere,297–301

we will focus here on the most commonly applied tools, which are based on microbial and ver-
tebrate rhodopsin proteins. Common to all these novel tools is the utilization of naturally occur-
ring light-sensitive proteins as actuators to drive cellular processes. The critical advance, and the
main attraction of optogenetic tools for neuroscience research, is that these tools are all genet-
ically encoded. This allows the use of genetic engineering techniques to direct the expression of
optogenetic tools to precisely defined cell populations, through implementation of transgenic
techniques and/or viral vector technology [Fig. 17(b)]. Selectivity is achieved via specific pro-
moter or enhancer sequences that are exclusively expressed in the target cell populations. Cells
expressing the light-sensitive protein respond to light in a manner defined by the properties of the
specific protein used, while their non-expressing neighbors will remain unaltered. Together, the
intersection of genetic specificity and the natural insensitivity of most brain tissue elements to
light, render optogenetics a powerful technique for functional dissection of brain circuits in liv-
ing animals. Optogenetics has been used for a wide range of experimental purposes, from func-
tional dissection of neuronal circuit connectivity302 through investigation of the contribution of
defined neuronal populations to highly specific behaviors303 to the development of light-driven
interventions in animal models of neurological disorders304 and, most recently, treatment of
human patients suffering from neurodegenerative disease.305

Optogenetic techniques require optical access to cells expressing optogenetic actuators, to
allow light-based modulation of the targeted cells. While this is simple to achieve in vitro
(Boyden et al., 2005), applying optogenetic manipulations in vivo requires technology for deliv-
ering light to the living brain. The first experiments using ChR2 in behaving rodents used multi-
mode optical fibers coupled through cannulas that were chronically implanted or affixed to the
skull.295,306 This arrangement allowed reversible connection of the optical fiber without the need
to physically insert a light guide into brain tissue for each experiment. This simple technical
approach has been the basis for numerous studies using 1P excitation [Fig. 17(c)] in a vast

Fig. 16 Bioluminescent tools for imaging, modulating, and integrating. (a)–(c) Luciferases are
genetically encoded light emitters that can be employed for imaging neuronal activity when used
as a Ca2þ dependent split molecule (a), for modulating neuronal activity when tethered to an opto-
genetic element (b), and for integrating neuronal activity by expressing the light emitter pre- and
the light biosensor post-synaptically (c). (d) Example of experiments taking advantage of the
bimodal feature of luminopsins: genetically targeted brain circuits were activated chemogeneti-
cally (luciferin) during a defined time window of postnatal development; the same neurons were
interrogated in adult animals optogenetically (LED).
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number of brain regions and neuronal circuits. However, one must consider that such manip-
ulations are far from being able to accurately mimic the natural activity patterns expressed by
populations of neurons in the unperturbed brain and might therefore lead to uninterpretable
results due to “off-manifold” effects.307

In recent years, 2P techniques have been combined with highly refined optogenetic actuators
to allow the control of single neurons308–310 and precisely defined multi-neuron ensembles
[Fig. 17(c)], see Sec. 6). Using pulsed near-infrared lasers combined with spiral scanning or
parallel illumination approaches,311,312 these developments have the potential to advance opto-
genetic techniques to the point that they can be utilized to “write in” information at the same level
of spatial and temporal precision that the brain uses to encode information.313–316 These exciting
developments will surely yield important insight into the natural “language” that neurons use to
communicate, encode the external world, and execute behavior. These are long-standing ques-
tions in neuroscience. The “optogenetic revolution” has brought us to the exciting place where
we can begin to address these questions with remarkable detail and precision.

3.10.1 Optogenetic tools: light-sensitive proteins

Optogenetic tools are derived from a wide range of organisms, from archaea to fungi, algae, and
animals. Genes encoding opsin proteins are widespread in nature, being found in all three
domains of life and viruses.317,318 Metagenomics led to a revolution in the field of opsin research
in the early 2000s and now both metagenomic and metatranscriptomic techniques are driving the
rapid expansion of our collective understanding of the taxonomic and functional diversity of
this family of proteins.319 While channelrhodopsins were the first to be applied as optogenetic
tools,131 the current optogenetic toolbox contains tools based on light-gated ion pumps, cation

Fig. 17 Optogenetic tools, genetic targeting and optical techniques. (a) Three major classes of
rhodopsin-based optogenetic tools: excitatory pumps and channels (left); inhibitory opsins com-
posed of chloride-conducting channelrhodopsins, proton and chloride pumps, and G-protein-
coupled rhodopsins coupled to the inhibitory Gi/o pathway (center); enzyme-rhodopsins (right);
shown are the histidine kinase group and the phosphodiesterase group. (b) Expression systems:
two examples of gene delivery techniques used to express optogenetic tools in target neuron
populations: crossing a recombinase driver mouse line with another that expresses a recombi-
nase-dependent optogenetic actuator (left) or stereotactic injection of a viral vector encoding
an optogenetic actuator. (c) Light-delivery techniques for optogenetics: (left) wide-field illumination
of neurons expressing an optogenetic actuator through a chronically implanted multimode optical
fiber or (right) 2P illumination of individual neurons using spiral-scanning of a diffraction limited
spot or parallel illumination of extended shapes using wavefront shaping approaches. Images
in panel (b) are from the Allen Institute for Brain Science (https://connectivity.brain-map.org/,
experiments #741951571 and #288264301).
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and anion-conducting channels, G-protein coupled receptors and light-activated enzymes.
The diversity of optogenetic tools allows for unprecedented flexibility in experimental design,
but also demands an understanding of the basic working principles of the complexities and
limitations associated with utilizing light-sensitive proteins.

3.10.2 Light-activated ion pumps and channels

The most widely used opsins in optogenetics are cation-conducting and anion-conducting chan-
nelrhodopsins, termed CCRs and ACRs respectively. In the early days, the cation conducting
Channelrhodopsin-2 from the alga Chlamydomonas reinhardtii (CrChR2 or just ChR2) and
its first mutant (ChR2-H134R, a mutation introduced to enhance the amplitude of functional pho-
tocurrents) monopolized optogenetic investigation.292,320 ChR2 is a CCR, mostly permeable to
protons but which also conducts other cations, including sodium but to a much lesser extent.321

Naturally occurring ACRs, first discovered in 2015, conduct a variety of anion species.322,323

Expressed exogenously in host cells, CCRs can act as photoactivatable depolarizing actuators
while the function of ACRs is dependent on the chloride reversal potential. In many circumstan-
ces, the chloride concentration difference is such that ACR activation leads to hyperpolarization
and neuronal inhibition. ACRs have been used extensively to silence adult mammalian neurons
but they do have some limitations. Photoactivation of ACRs can lead to excitation in some cells
(based on chloride reversal potential) and antidromic propagation when they are expressed in the
axon.324–326 In contrast to channelrhodopsins, ion pumping rhodopsins have the advantages of
high ion specificity, active transport of ions against the electrochemical gradient, and a wide vari-
ety of functions. Inward proton pumps (e.g. NsXeR) can be used to depolarize neurons,327 while
outward proton (e.g. eArch3.0), outward sodium (e.g. eKR2), and inward chloride pumps (e.g.
eNpHR3.0) hyperpolarize neurons and lead to inhibition.328–331 Unfortunately, in contrast to the
robust ion flux generated by some channelrhodopsins, pumps are limited by a one-to-one photon-
to-ion stoichiometry which can translate into weak photocurrents or photodamage induced by
prolonged and intense illumination in efforts to overcompensate for these limitations.332

Additionally, excessive buildup of ions over time can damage cells, especially protons which
can alter the intracellular or extracellular pH. These inconsistencies and limitations have moti-
vated the community to attempt to identify new tools for neuronal inhibition. G-protein coupled
receptors (GPCRs, discussed below) which engage G-protein signaling cascades or highly selec-
tive potassium channels (owing to the pronounced potassium gradient of neurons) would solve
some of the issues with pumps and channels as hyperpolarizing actuators. While significant
efforts to engineer a potassium channel from other channelrhodopsins enjoyed only partial suc-
cess, naturally occurring potassium channels from Hyphochytrium catenoides were characterized
recently and were termed Kalium Channel Rhodopsins (KCRs).333 Even though KCRs still need
to be tested and validated for in vivo experiments, this new discovery has long been awaited by the
optogenetics community and these actuators are a welcome addition to the toolbox.

3.10.3 Opsin engineering and enhancement

Not long after the first optogenetics experiments were performed in the early 2000s, it became
clear that the capabilities and diversity of opsins available to neuroscientists would need to
increase substantially to match the scientific potential of the technique and overcome known
and yet unforeseen roadblocks. In addition to the ongoing microbial ecological research to dis-
cover naturally occurring opsins, the engineering of opsins with desirable properties through
targeted mutation and other means (such as fusions) became a fixture of the field. Efforts to
engineer opsins with improved properties such as ion selectivity, spectral diversification,
kinetics, light sensitivity, and ion conductance have seen success in recent years and have
remained active areas of research. Spectral tuning is of particular interest, because red shifted
light (i) penetrates more deeply into tissues, (ii) is less energetic than blue shifted light and thus
causes less photodamage, and (iii) can be helpful to eliminate cross talk when opsins are paired
with other tools such as fluorescent labels and voltage or Ca2þ indicators. A limited list of engi-
neered opsins of interest include those developed for (1) altered ion selectivity: ChloCs,334

(2) spectral properties: ReaChR335 and Phobos,336 (3) light sensitivity: ChRmine,314 and
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(4) kinetics: Chronos,337 f-Chrimson.338 The selection of optogenetic actuators for specific exper-
imental applications should be guided by their ionic selectivity, kinetics, action spectrum, and
photocurrent amplitude.

3.10.4 G-protein coupled rhodopsins and light-activated enzymes

Animal rhodopsins are GPCRs which catalyze GDP/GTP exchange through engagement of het-
erotrimeric G-proteins after light absorption.317 The utility of GPCRs in optogenetics research has
advanced significantly in recent years with the implementation of bistable melanopsins and para-
pinopsins. Human and mouse melanopsin variants (hOpn4L, mOpn4L) from retinal ganglion
cells can be activated and inactivated with blue light and yellow light, respectively, an advantage
in optogenetics experiments where temporal control of activity is desired.339 While both opsins
induce Gi∕o dependent inward rectifying Kþ (GIRK) currents and are highly light sensitive,
mOpn4L exhibits superior on and off kinetics as well as less reduction in amplitude from sus-
tained stimulation. However, these Opn4 variants both showed mixed activation of multiple G-
protein pathways, leading to complex effects on neuronal physiology.339 Herlitze and colleagues
later described Lamprey Parapinopsin (UVLamP or PPO) which has improved activation and
deactivation kinetics compared to mOpn4L and reduced spectral overlap between the active and
inactive states resulting in shorter light pulses required for full activation and deactivation.340

More recently, two new bistable opsins were characterized which couple selectively to the inhibi-
tory Gi∕o signaling pathways and allow for efficient optogenetic silencing at presynaptic termi-
nals. The targeting-enhanced mosquito homolog of encephalopsin, termed eOPN3, as well as the
lamprey parapinopsin (PPO) were both shown to inhibit synaptic vesicle release through Gi∕o
coupling.341,342 PPO allows switchable synaptic silencing, activated with blue-violet light, and
deactivated with green light. eOPN3 exhibits a red-shifted action spectrum, high light sensitivity,
and rapid activation. It returns to the inactive state spontaneously within minutes, making it an
excellent inhibitory tool on the time scale from minutes to hours. Another notable member of the
bistable GPCR-rhodopsin family, the zebrafish opsin Opn7b also couples to theGi∕o pathway and
is inactivated by light stimulation. Opn7b was applied as an “inverse optogenetic tool.” (Ref. 343).

The modulation of secondary messengers for the interrogation of cyclic nucleotide mediated
cellular processes and signaling pathways has far reaching implications in neuroscience and
biological systems in general and is an area where the spatiotemporal control afforded by opto-
genetics can provide a valuable advantage over pharmacological techniques.344 There are three
classes of enzyme-rhodopsins that have so far been described in the literature: histidine kinase
rhodopsin (HKR), rhodopsin guanylyl cyclase (Rh-GC), and rhodopsin phosphodiesterase (Rh-
PDE).345–347 While the use of enzymerhodopsins for in vivo optogenetics research is not yet a
staple, there are promising advances in the use of photoactive enzymes from flavoproteins. For
example, the system comprising photoactive adenylyl cyclase from Beggiatoa (bPAC) and a
cAMP-gated K+ channel from Spriochaeta thermophila (SthK) has been successfully applied
to inhibit diverse neuron types in mice and Zebrafish embryos.348 More recently, a variant of
bPAC was developed which exhibits lower dark activity (biPAC) and was then applied to inves-
tigate cAMP signaling in hypothalamic neurons and its impact on sexual behavior in mice.349

4 Imaging Brain Activity with One-Photon (1P) Excitation

Due to the rapidly expanding arsenal of fluorescent probes (discussed in Sec. 3), there is a grow-
ing need for technologies to enable fast and efficient imaging of these probes in brain tissue. The
main advantage of 1P fluorescent methods is the efficiency of excitation quantified as the absorp-
tion cross-section: the probability of photon absorption by a fluorophore molecule. In compari-
son with multiphoton methods (Sec. 5), the probability of 1P absorption for virtually all of these
probes is very high. Therefore, 1P excitation does not require pulsed lasers and can be achieved
with relatively inexpensive diode-pumped solid-state laser (DPSS) lasers, LEDs, or even a
filtered white light source such as a xenon or tungsten–halogen lamp.

With 1P excitation, one way to achieve fast, large-scale imaging is by using wide-field illu-
mination of the entire brain surface and capturing the emitted fluorescent light with a camera.
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This “mesoscale” imaging (Sec. 4.1) is fast, because no scanning is involved, but lacks section-
ing along the z-axis and has limited spatial resolution in the XY-plane due to light scattering.
Therefore, mesoscale imaging is well suited for studies of cortical activity that do not require
resolving single cells or cortical layers. Cell-type specificity can be achieved by genetic targeting
of fluorescent probes.

1P fluorescence imaging technology has been miniaturized to enable measurements in freely
behaving animals.350 These wearable “miniscopes” (Sec. 4.2) have been widely applied, in part
due to a relatively simple, open-source, low-cost design.351,352

Laser scanning microscopy improves resolution at the price of imaging speed, because of the
need to scan the excitation beam. Among different approaches, light-sheet microscopy6 has been
successfully applied for in vivo imaging of brain activity in various organisms from semitrans-
parent zebra fish embryos353 to mouse cortex354,355 (Sec. 4.3).

Optical imaging of deeper brain regions usually requires removal of the overlaying tissue or
insertion of bulky lenses. As a compromise between the invasiveness of the measurement and the
information content, fiber photometry has been used in many studies for detection of the fluo-
rescence signal without spatial resolution. A number of recording channels can be increased
using hundreds of splayed microfibers, each following a path of least resistance through
tissue.356 More recently, a proof-of-principle demonstration of deep brain imaging has been
achieved by scanning the excitation beam through an implanted multimodal optical fiber to form
an image (Sec. 4.4). Stabilization of this minimally invasive technology will enable cellular and
subcellular resolution beyond the penetration limit of multiphoton imaging (we discuss multi-
photon imaging in Sec. 5).

4.1 Wide-Field Calcium Imaging

In vivo wide-field Ca2þ imaging in awake mice expressing GECIs (see Sec. 3.1) allows simul-
taneous imaging of many brain areas as mice perform complex behavioral tasks.357 Sensory
integration, perception, memory and learning are just several examples of the cognitive functions
that can be studied using this approach.358–362 In addition, mesoscale imaging can be used to
characterize the organization of spontaneous cortical activity363–366 and functional mapping
of cortical areas358,367 [Figs. 18(a)–18(b)].

Very much like a conventional epifluorescence microscope, a wide-field or mesoscale fluo-
rescence imaging system consists of two major components: an excitation path delivering light to
the brain surface and an emission path that projects an image of the light emitted by the fluo-
rescent indicator onto a camera chip. The light source in most state-of-the art wide-field setups is
either a DPSS laser or an LED matching the excitation peak of a fluorescent sensor. A corre-
sponding emission filter in front of the camera blocks excitation light from reaching the camera.
The camera is often the most expensive component in the imaging setup. Many imaging setups
use sensitive and expensive sCMOS or EMCCD cameras, particularly when the fluorescence
signal is weak due to sparse labelling or limited brightness of the sensor. Tandem lens systems,
as initially described by Ratzlaff and Grinvald in 1991368 are often used to collect and project the
emitted light onto the camera chip.369 Excitation light can enter in between the lens pair via a
dichroic mirror. Alternatively, the brain surface can be illuminated obliquely via one or multiple
lightguides positioned independently from the excitation path.370

The advantages of wide-field imaging are its large field of view (the entire dorsal cortical
surface in the mouse) and the ability to image through the intact skull offering minimally inva-
sive and stable conditions. In addition, a typical wide-field imaging setup is fairly inexpensive,
appealing to many labs worldwide. The disadvantages are that 1P imaging is mainly sensitive to
superficial cortical layers, and suffers from light scattering, particularly when imaging through
the skull. In addition, the raw fluorescence signal can be contaminated by hemoglobin absorp-
tion. While many of commonly used fluorescent sensors for wide-field imaging are green (e.g.,
GCaMPs), hemoglobin strongly absorbs light in the blue-green spectrum. This leads to hemo-
dynamic artifacts due to the hemodynamic response (an increase in the blood volume and
decrease in blood oxygenation) associated with an increase in neuronal activity. Several methods
have been developed to correct for this artifact. These methods require illumination with addi-
tional wavelengths, thereby adding further components along excitation and emission paths.
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One method uses estimated changes in concentration of oxy- and deoxyhemoglobin, derived
from reflectance measurements at, e.g., 530 and 630 nm.363 Specifically for GCaMP imaging,
one can use Ca2þ-independent GCaMP fluorescence upon excitation at ∼405 nm.371 Due to the
significant decrease in hemoglobin absorption at red wavelengths, hemodynamic artifacts are
less prominent with red-shifted indicators, such as jRGECO1a, leading to relaxed requirement
for hemodynamic correction of the collected fluorescence signals.117

An example of the insights gained from wide-field imaging is shown in Figs. 18(c)–18(e)
adapted from Ref. 359. This study demonstrated that short-term memory was maintained in
distinct cortical locations depending on the behavioral strategy of the mouse, either in a frontal
area during an active strategy or a posterior area during a passive strategy.

Presently, wide-field imaging is being extended to specific neuronal populations via cell-
type-specific targeting of GECIs.164 Further development of red-shifted GECIs and other types
of indicators, such as voltage sensors, may enable deeper and faster imaging. Combining wide-
field imaging with fiber photometry and/or electrophysiological recordings will permit simulta-
neously imaging/recording of neuronal activity from both cortical and subcortical areas. Finally,
1P fluorescence imaging is being implemented in freely moving mice (Sec. 4.2), opening the
door to study more natural behaviors.

Fig. 18 Mapping of brain areas and task-induced neuronal activity with mesoscale Ca2þ imaging.
(a) Functional mapping of cortical areas. Example maps from three mice (m1, m2, m3) under anes-
thesia in response to different sensory stimuli: whisker, visual, auditory, forelimb, and hindlimb.
Mean evoked activity map is shown for each stimulus type for each mouse. Color denotes nor-
malized fluorescence (ΔF/F). The maps are registered onto the brain atlas (black lines; © 2004
Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available from: http://mouse.brain-map
.org/). Overlays of the 5 maps are shown on the right. (b) Parcellation of the dorsal cortical surface
into 25 areas. Cortices are color-coded: auditory (green), association (pink), somatosensory + V1
(blue), and motor (red). (c) Behavioral and wide-field imaging setup in mice performing a whisker-
dependent memory guided task. (d) Body movement vector in two example hit trials, one active
and one passive. (e) Short term memory (STM) maps (averaged during the quiet delay period) for
an active and passive trial showing frontal and posterior patches of activity, respectively. Color
denotes normalized fluorescence (ΔF/F).
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4.2 Wearable 1P Microscopes

Table-top microscopy systems, such as the one shown in Fig. 18 above, require head fixation of
the animal under the microscope objective. This condition is incompatible with many behaviors.
Wearable imaging systems have been developed to enable measurements in freely moving model
organisms, from rodents to zebra finches and primates.352,372,373 These miniaturized microscopes
(or “miniscopes”) exist in several implementations regarding imaging capabilities, size, and
weight depending on experimental needs. Many of them are currently tethered (i.e., connect
to the data acquisition system through flexible wires and, in some cases, fibers), allowing mea-
surements during behavioral assays commonly used in research settings. Most of them rely on
fluorescent indicators to provide the specificity and contrast necessary to study the cellular or
molecular signaling of interest.

1P miniscopes typically employ integrated LEDs or fiber-coupled DPSS lasers for fluores-
cence excitation and CMOS (complementary metal oxide semiconductor) image sensors for
detection [Fig. 19(a)].352,372,373 They offer high frame rates (up to ∼60 Hz at full resolution)
across large fields of view (from ∼0.6 mm up to 10 mm diameter). Spatial resolution varies
with the field of view from few microns to tens of microns.375,376 One of the main drawbacks
of 1P miniscopes is their potential out-of-focus signal contamination and limited optical depth
penetration in densely labeled tissue (≤150 μm depending on tissue type). Deeper regions can be
imaged using tissue-implanted relay optics, such as gradient index (GRIN) lenses [Figs. 19(b)–
19(c)]. The relatively low equipment cost and ease of use of 1P miniscopes have facilitated their
widespread adoption.

Wearable imaging systems have enabled biological studies difficult or unfeasible with their
larger stationary counterparts (e.g., social interactions, sleep-wake transitions, seizure activ-
ity).374,376 They have provided insight into how genetically defined cell types encode external
(e.g., sensory and motor) and internal (e.g., cortical state) information in various brain regions.
More recently, miniscopes have also enabled real-time measurement of cellular activity in the
spinal cord of behaving mice.372,377–379

In the future, we can expect these imaging systems to become even more powerful. Improved
electronics and optics (e.g., new CMOS sensors, custom micro-optics, electronic focusing sys-
tems) will enhance 1P miniscopes’ ability to record at higher resolution, sensitivity, contrast, and
speed, in multiple colors and across larger FOVs or tissue volumes.352,372,378–380 While initial
tether-free designs exist [Fig. 19(a)], further improvements in onboard or wireless power and
data transmission technology are needed to reduce overall device weight and boost recording
duration at desired image resolutions and frame rates.

Complementary to these hardware improvements, new indicators (e.g., transmitter and volt-
age sensors) and computational tools [Fig. 19(b)] (see also Sec. 9) are likely to enable real-time

Fig. 19 1P wearable microscopes for cellular-resolution imaging in freely behaving animals.
(a) Example 1P miniscope for high-speed, cellular-resolution imaging in freely behaving mice.
This implementation is wire-free and weighs 4-5 grams, including a 1.1-gram single-cell lithium-
polymer battery. It allows recordings of ≥30 min duration at 20 Hz, 320 x 320 pixels resolution,
x2 pixel subsampling across a 550 μm × 550 μm FOV. Data is logged onto a MicroSD card for
offline analysis. (b) Example raw images of GCaMP6f Ca2þ indicator-expressing (top) and com-
putationally identified cells (bottom) in the dorsal hippocampus of control and epileptic mice.
Imaging was performed using a tissue-implanted GRIN lens. (c) Spatially tuned activity pattern
across 20 example cells from control and epileptic mice trained to run on a 2-m linear track for
water reward. Adapted from Ref. 374 with permission from Nature Publishing Group.
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analyses and interrogation of nervous system activity. These innovations will permit longitudinal
investigation of various disease, treatment, or behavioral conditions best studied in freely mov-
ing animals.

4.3 Imaging in 3D with Light-Sheet Microscopy

The standard method of forming 3D images in intact, living specimens such as the brain is to
scan a high numerical aperture (NA) point of light to different positions within a volume of
interest. For instance, sequential raster scan of individual planes is often used in confocal micros-
copy to reconstruct a volume. However, this approach becomes increasingly challenging for
high-speed imaging, both because scanners begin to exceed physical limits, and integration time
per pixel becomes vanishingly small, nearing the fluorescence lifetime of many fluorophores.381

To overcome these limitations, it is possible to acquire data using parallel illumination of multi-
ple regions at once. In multiphoton microscopy (Sec. 5), this approach has taken many forms,
from multi-point scanning382,383 to extended axial range imaging.384–386 An embodiment of this
approach using 1P excitation is light-sheet microscopy, which illuminates an entire plane within
the sample, achieving optical sectioning by generating a focused image of this illuminated plane
onto a camera detector. This approach greatly increases integration time per pixel compared to
point scanning, while its selective illumination of only the plane being imaged makes light-sheet
microscopy especially light-efficient.381

Light-sheet microscopy has traditionally been applied to imaging cleared tissues (Sec. 2.2),
where generating a thin light sheet and focusing onto this light sheet with a second, orthogonal
objective is relatively simple for samples up to the size of a whole mouse brain.387,388 Another
application has been to image small organisms such as Drosophila embryos and zebrafish during
early development, and also for functional imaging in the larval zebrafish brain and heart.389,390

However, the standard use of two orthogonal objective lenses in these light-sheet systems limits
both sample size and geometry. 3D imaging speed is also limited by the need to either translate
the sample through the light-sheet plane or scan the light sheet in synchrony with repositioning
of the detection focal plane. An approach that overcomes these speed and geometry constraints
is swept confocally aligned planar excitation (SCAPE) microscopy, a single-objective light-sheet
approach, which uses a confocal de-scanning to enable an obliquely incident light sheet at the
sample to be scanned from side to side, while the image of the oblique plane is de-scanned,
rotated and mapped onto the face of a fast camera [Fig. 20(a)].354,355 The system’s single, sta-
tionary objective permits a wide range of intact samples to be imaged in an upright or inverted
geometry and does not require restraint or physical translation of the sample. This approach
permits 3D microscopy of a wide range of living organisms at speed of up to 300 volumes per
second, leveraging the low phototoxicity associated with light-sheet excitation and high light
efficiency to capture Ca2þ dynamics as well as 3D movement in behaving animals.

SCAPE microscopy has been applied to high-speed imaging of a range of different samples
including proprioceptive neurons in crawling Drosophila larvae,391 whole-brain Ca2þ imaging
in adult Drosophila,392 zebrafish larvae [Fig. 20(b)],381 Ca2þ and red blood cell dynamics in the
beating hearts of zebrafish larvae,355,393 and neuronal activity in freely moving C. elegans
worms.355 SCAPE is also effective for imaging the mouse nervous system, capturing activity
in apical dendrites in layers 1–3 of the awake mouse cortex at 10 volumes per second
[Fig. 20(c)],7,354,381,394 and profiling Ca2þ response properties of 10,000’s of olfactory sensory
neurons in the intact mouse olfactory epithelium.395 All the prior examples utilized 1P excitation
at 488 and 561 nm illumination. However, SCAPE and related light-sheet approaches are also
suitable for 2P excitation which can enable deeper imaging into the living mammalian brain. In
the future, 2P SCAPE will provide a competitive alternative to multiplexed 2P strategies outlined
in Sec. 5. Efforts are also underway to implement SCAPE via an implanted GRIN lens enabling
imaging of deep brain regions.

4.4 Deep Imaging Through Multimode Optical Fibers

GRIN lenses, prisms and fiber bundles have been successfully used to image deeper brain
regions.396–401 However, insertion of these optical elements into the brain is invasive. One
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strategy to minimize this problem is imaging though hair-thin multimode fibers (MMFs). Light
transport through MMFs is a complex, hardly predictable, yet deterministic process. It can be
described by the transmission matrix (TM),402 a linear operator whose components can be
experimentally measured by means of wavefront manipulation and interferometry.403 For this
application, the TM can be conceptually thought of as a lookup table between the light “shape”
entering and exiting the fiber.

Once available, the TM prescribes an optical field entering the MMF required to form the
desired field distribution at the focal plane [Fig. 21(a)]. When applied to deep-tissue fluorescence
imaging, the fiber is being advanced through the overlying tissue until it arrives at a subcortical
brain region under investigation [Fig. 20(b)], which is then sequentially exposed to a series of
illumination fields. These fields most commonly form diffraction-limited spots sequentially dis-
played across the focal plane, mimicking a laser scanning microscope. The emitted fluorescence
is collected through the same fiber, spectrally separated, and recorded by a photodetector such as
a photomultiplier tube (PMT) [Fig. 20(c)].

In context of neuroscience, holographic endoscopy has been used for structural imaging of
neurons in cultures,405 acute brain slices404,406 and in vivo403–405 [Fig. 20(d)]. Among all other
endoscopes, imaging with MMFs features the smallest probe footprint inducing tissue damage
while maintaining subcellular resolution [Fig. 20(e), Ref. 404]. Even dendritic spines and axonal
boutons can be resolved using MMFs with diameters ∼100 μm [Fig. 20(f), Ref. 404]. The first
indication that spatially-resolved functional imaging of intracellular Ca2þ is possible to implement
through the means of holographic endoscopy has been shown recently [Fig. 20(g), Ref. 405].

Using fibers with higher numerical apertures, imaging of custom-designed regions of inter-
ests and optimizing the animal models for indicator sparsity required in 1P imaging should ulti-
mately open the door for minimally invasive imaging of neuronal activity anywhere in the brain.
Moreover, high speed scanning of custom-designed trajectories along blood vessels containing a
fluorescent indicator would allow imaging of blood flow similarly to a 2P technique pioneered
by David Kleinfeld and collaborators.407 Importantly, the same probe could be used not only for
imaging but also for spatially resolved optical stimulation of opsins (i.e., optogenetics).

All these imaging modalities funneled through a hair-thin optical probe would push the
microscopic visual reach beyond the fundamental limits of optical far-field imaging technolo-
gies. The main challenge lies currently in transitioning this technology into awake animals and
the realm of chronic experiments.

Fig. 20 SCAPE microscopy: elements and application. (a) Top: SCAPE microscopy uses an
oblique light sheet to illuminate the sample, and emitted light is collected by the same objective
lens. SCAPE sweeps the oblique light sheet back and forth across the sample, de-scanning and
rotating returning light to focus onto a stationary camera. Bottom: example images of a drosophila
larva, captured as the light sheet scans. (b) Top: experimental imaging configurations to image
neuronal activity in zebrafish larvae and awake, behaving mouse. Bottom: visualization of sponta-
neous neuronal GCaMP activity in the whole brain of a larval zebrafish. Volume rendering shows a
maximum intensity projection over time with inset showing time-courses of 6 cells at 6 different
depths in the brain. (c) Top and middle: spontaneous activity of apical dendrites of layer 5 neurons
in whisker barrel cortex via GCaMP6f imaging in awake behaving mouse. Maximum intensity
projection from the top (XY) and side (YZ) with colors denoting time of peak activity. Bottom:
time-courses for the seven numbered regions of interest indicated above.
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5 Imaging Brain Activity with Multiphoton Excitation

There are a few fundamental challenges when imaging brain activity. One challenge already
discussed above (Sec. 4) is to be able to capture fast signaling events (1–100 ms) flowing rapidly
between neurons. This challenge scales with the size of neuronal network under investigation.
Another challenge is that brain tissue is often highly scattering, which limits the depth penetra-
tion of 1P microscopy methods. For example, in the mouse cortex, 1P voltage imaging can be
used to measure spikes in cortical neurons with cell bodies located in layers I and II, i.e., less than
∼200 μm below the surface.99,201 Deeper penetration requires multiphoton imaging.

Here, we introduce a suite of multiphoton technologies that have been developed and/or
significantly advanced in the last decade to penetrate deep into scattering tissue and cover a
large field of view while retaining high resolution and speed. We start by highlighting a
multi-region 2P microscopy design that has been developed to improve the imaging field of
view (Sec. 5.1).408–410 These microscopes rely on very large objectives with high NA. The prob-
lem of multiregion imaging has also been addressed by optical systems with multiple arms and/
or objectives.411–413

Next, we provide a brief overview of several strategies to increase the imaging speed through
temporal and spatial multiplexing and “light sculpting,” i.e., engineering of the point spread
function (PSF, a.k.a. the focal spot) (Sec. 5.2). This is followed by a more detailed discussion
of two fast imaging strategies: discrete sampling of specific voxels of interest with acousto-optic
lenses414 (Sec. 5.3) and multipass temporal multiplexing where the excitation laser pulses
sequentially excite fluorescence in axially displaced voxels (Sec. 5.4).415

In 2P microscopy, excitation of fluorophore molecules by scattered photons results in the
background signal leading to deterioration of signal to background ratio (SBR) with depth.
This background can be reduced using two photons of different color derived from two laser
beams that overlap only in the focal plane (Sec. 5.5). In 3P microscopy416 (Sec. 5.6), the prob-
ability of simultaneous absorption of 3 photons outside of the focal volume is very low, allowing
deeper penetration. In addition, 3P excitation requires less energetic, red-shifted photons that
scatter less in tissue.

Fig. 21 Deep brain imaging through an optical fiber. (a) Coherent light propagated through a MMF
forms a speckle pattern at the output (left). Manipulation of the wavefront entering the MMF yields
a desired optical field, e.g., a focal spot (right). (b)–(c) Experimental configuration for in vivo im-
aging. (d) Inhibitory neurons expressing tdTomato imaged in vivo (panel adapted from Ref. 403).
(e) The trade-off between the fiber size and resolution. (f) Dendritic spines of a hippocampal neu-
ron ex vivo resolved using a MMF (bottom). Comparison of the same field of view imaged with a
confocal microscope (top). Panels (e) and (f) are adapted from Ref. 404. (g) In vivo neurons
expressing GCaMP6f (left) and their activity visualized as standard deviation over time (right).
Bottom traces show the change of signal in time after background (BG) subtraction from two
regions of interest (1 and 2). Panel adapted from Ref. 405 © Optica.
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The ability of multiphoton technologies to image the brain tissue deeper, clearer, and faster
makes these tools well compatible with the “circuits-to-behavior” neuroscience studies. Ideally,
these studies would be conducted in freely behaving animals. To this end, several miniaturized,
portable multiphoton designs have been explored (Sec. 5.7).417,418 The major limitation for these
miniaturization efforts is the fundamental tradeoff between the objective diameter, resolution,
and field of view. To overcome this limitation, alternative strategies are being explored including
microlens arrays419,420 and nanofabricated metalenses.421 In the meantime, however, perfor-
mance of tabletop multiphoton microscopes remains unsurpassed.

5.1 Multi-Region 2-Photon (2P) Imaging

Many conventional 2P imaging systems have fields-of-view (FOVs) that are limited to 1 mm2 or
less, and typically a single image plane is monitored per acquisition. However, neuronal circuitry
can be distributed across many cubic millimeters, and capturing dynamics at this spatial scale,
with a sub-second time resolution, can lead to novel insights into brain function. Thus, it is useful
to pursue large-scale 2P imaging.

Measuring neuronal activity across large FOVs (∼10 mm2 or more) with subcellular reso-
lution requires relatively large diameter optics, such as microscope objectives that are >50 mm

wide.408,422,423 Objectives with moderate-to-high numerical apertures (>0.45 NA) and large
FOVs (i.e., long focal lengths) provide access to an order of magnitude more pixels.
However, the sampling time of the raster scan is unchanged, so scanning the full FOV results
in frame rates that are too slow (>1 s per frame) to be useful for many applications. To this end,
strategically choosing specific subregions within the large FOVand fast jumping between these
subregions408,410,422 can be used to sample across large FOVs while still maintaining sub-second
temporal resolution. This technique can be combined with temporal multiplexing422,424 and
spatial multiplexing409 to achieve fast, simultaneous acquisition of multiple volumes (Fig. 22).
An alternative approach to imaging in multiple regions simultaneously is to have multiple, small
ROIs under separate, independently positioned objectives.411,412

Multiphoton imaging has been scaled up in the axial dimension as well. For example, one can
temporally multiplex 2P imaging and 3P imaging (Sec. 5.6) to simultaneously image superficial
and deeper neocortical layers.425 Many innovations in conventional 2P imaging have found

Fig. 22 Large field-of-view, multiregion 2P imaging. (a) FOV available in conventional 2P systems
are often confined to ∼0.5 mm, which is smaller than many cortical areas. Larger FOVs
(2-mm diameter, or the 5 x 5 mm region of the Diesel2p system410 provide optical access to multi-
ple cortical areas simultaneously. (b) Neuronal activity can be monitored across these FOVs
through rapid beam steering and/or multiplexed beams. (c)–(d) The Diesel2p is a system that pro-
vides a large FOV (c) and dual scan engines coupled into a single objective (d) for independent
multiplexed imaging and/or 2P optogenetic manipulations of neuronal activity. (e) With large FOV,
2P imaging systems, subcellular resolution is available across a large imaging volume, containing
on the order of a million neurons. Adapted from Ref. 410.
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application in multi-region 2P systems as well, including adaptive optics410 (Sec. 5.8), axially
extended Bessel beam volume scanning426 (Sec. 5.2), and quad-region scanning.427

5.2 Sampling Strategies for Fast 2P Imaging

Conventional 2P microscopy is based on raster scanning of a near-infrared laser beam focused
into a “point” (diffraction-limited) PSF. However, as previously described, sequential scanning
of this PSF throughout large (mm3) volumes is too slow to image neuronal activity, which occurs
on the timescale of milliseconds. Figure 23 summarizes various approaches for fast 2P imaging
with large FOVs that have been proposed in recent years. Among them is the multi-region

Fig. 23 A summary of state-of-the-art approaches for fast 2P imaging. (a) Commonly used exci-
tation modalities: (i) high NA gaussian beams,428 (ii) low NA gaussian beams,429 (iii) Bessel
beams,430 (iv) stereoscopic low NA gaussian beams,386 (v) line foci for tomographic imaging182

and (vi) temporally focused, low NA Gaussian beams.311,431 Top row: simulated intensities of inci-
dent beams in the objective back focal plane (BFP) used to generate different excitation PSFs.
Middle row: simulated excitation PSFs (red colormap) and the proportional 2P excited fluores-
cence (green colormap) generated in the focal plane (XY). Bottom row: same as middle but axial
(xz) slices. The color bars and principal axes in (i) are applicable to all simulated data apart from
(vi) where different colors are used to represent the different wavelengths constituting the ultrafast
pulse with central wavelength λ0 used for temporal focusing. τ refers to the pulse duration which is
shortest at the focal plane where 2P excitation is maximized. Abbreviations: |E| refers to the ampli-
tude of the electric field; jEj2, the intensity, and jEj4, the proportional 2P fluorescence; NA, numeri-
cal aperture; TwINS, 2P imaging of neurons using stereoscopy. (b) A summary of different
implementations of (i) lateral, (ii) axial, and (iii) temporal multiplexing that have been applied to
fast 2P imaging. (i) Left: the incident beam is divided into two beamlets each directed to simulta-
neously image different regions of interest (ROI).432 Right: the excitation field is divided into multi-
ple laterally separated spots which sample different portions of the same field of view.433 (ii)
Multiple planes throughout a volume can be imaged simultaneously using axially multiplexed
beams432 or by directing beamlets with different wavelengths to different sample depths.424 (iii)
Since the lifetime of common fluorophores is shorter (shown, not to scale) than the separation
between subsequent pulses generated by suitable mode-locked lasers, each pulse can be divided
into multiple beamlets, which can be laterally (upper) or axially (lower) displaced to perform fast 2P
imaging.415,434,435 (c) Sequential and parallel acquisition modes used for fast 2P imaging. (i)–(v)
Methods based on single pixel detection: (i),428 (ii),430 (iii),182 (iv),436 and (v).437 (xii)–(x) Common
parallel excitation methods combined with camera detection: (vii),438,439 (viii),429 and (ix).440

Abbreviations: PD, point detector; SPAD, single-photon avalanche diode array. (d) (i) Simulated
widefield PSF and detection PSFs used for extended depth of field imaging: (ii),441 (iii),383 (iv),442

and (v).443 Abbreviations: PM, phase mask; WF, widefield; DH, double helix PSF; LF, light field.
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microscopy discussed in Sec. 5.1. Another (not mutually exclusive) approach is “sculpting” the
PSF in space and time in order to increase the imaging speed (or to image larger volumes whilst
maintaining acquisition rates).

Diverse photonic technologies354,444–452 have increased the rate of sequential scanning, and
volumetric imaging rates have also been increased by converting lateral scanning of a patterned
substrate in space into axial displacements.453,454 Some techniques aim to reduce the pixel dwell
time of 2P microscopy to its fundamental limit (determined by the excited state fluorophore
lifetime) by dividing high-energy ultrafast laser pulses into beamlets that sequentially excite
fluorescence in different voxels.415,424,434,435 The temporal resolution of 2P microscopy has also
been improved by optimizing the scan trajectory450 or by discretely sampling voxels distributed
throughout the region of interest.100,436,455

An alternative approach for fast 2P imaging is to sculpt the excitation PSF and increase the
instantaneous volume of excitation to reduce the total number of sequential measurements. This
includes line scanning,182 and axially elongated excitation PSFs such as Bessel beams which
are scanned in the directions orthogonal to their elongation.426,430,456,457 The acquisition of stereo-
scopic (tomographic) information is necessary in the case of elongated foci and densely labelled
samples.182,386 Illumination with spatial and temporal focusing of femtosecond pulses has also
been used to increase frame rates.431,438,439 Another subclass of parallel methods spatially
multiplex the excitation beam, project multiple foci in 3D, and record fluorescence using
1D425,432,437,449 or 2D detectors.383,433,441,458–460

5.3 Two-Photon Imaging in 3D with an Acousto-Optic Lens

For many applications, such as imaging Ca2þ transients in neuronal cell bodies, specific den-
drites, axons, or synapses, the ideal sampling strategy would not be a complete coverage of a
volume, but rather a set of regions of interest (ROIs) strategically positioned to overlap with
locations of interest. This can be achieved by using random-access 3D imaging with an
acousto-optic lens (3D-AOL) to steer a 2P laser beam to arbitrary preselected locations in the
imaging volume.461 Moreover, the same technology can be used to correct for brain movement in
real time, which can be problematic for imaging of small structures during behavioral tasks.462

Selective imaging of ROIs with 3D-AOL microscopy enables considerably higher temporal res-
olution than imaging the entire volume, since the inertia-free focus and scanning is rapid and the
ROIs typically occupy a small fraction of the volume.414,436,463 In addition, this type of acquis-
ition streamlines curation, analysis, storage, and sharing, because only the required data are
collected.

3D-AOL laser scanners consist of two orthogonally arranged pairs of AO deflectors, with
counter-propagating acoustic waves that fill the TeO2 crystals, creating dynamic diffraction pat-
terns that can steer and focus a 2P laser beam in 10–25 μs436,455,464 [Figs. 24(a), 24(b)]. Linear
acoustic drives enable random access focusing of a laser beam to any point in the 3D imaging
volume (called 3D-RAMP)436 or random access focusing and continuous line scanning in differ-
ent x–y planes,455 while nonlinear drives enable continuous line scans in any arbitrary direction
(x, y, z) at tens of kilohertz.467 Unlike resonant galvanometers, 3D-AOL line scans can be varied
in orientation, length, and dwell time (∼107–105 s∕pixel). A compact design version of the 3D-
AOL has a 10 × 10 × 25 cm footprint and can be introduced into the optical path of conventional
2P microscopes providing an imaging volume of 400 × 400 × 400 μm3.414 Real-time correction
for brain movement is achieved by tracking a fluorescent object in the imaging volume [typically
a bead; Fig. 24(c)] with closed-loop FPGA-based image processing and compensating for
the movement with a rigid translation of the imaging volume using the 3D-AOL scanner with
update rates up to 1 kHz.462

3D-AOL microscopy has been used with GECIs to image neuronal population activity in
the forebrain of tethered zebrafish while performing swim bouts,462 and populations of
excitatory463,468,469 and inhibitory neurons465,470 in mice [Fig. 24(d)]. Its high spatial resolution
has enabled imaging of large populations of axons in the cerebellum471 and selective imaging of
dendritic trees and spines with millisecond precision with either 3D-RAMP436,463 or multiple line
scans466 [Fig. 24(e)]. It is particularly suitable for high-speed multiscale imaging of neurons and
neuronal structures that are sparsely distributed within local circuits [Fig. 24(f)].
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Current developments include increasing the imaging volume and speeding up movement-
stabilized imaging of entire dendritic trees. In the medium-term, this technology could be opti-
mized for movement-stabilized voltage imaging100 and photo-stimulation applications. On the
longer-term, ultra-high-speed adaptive optics capability of this technology467,472 could be useful
for a range of applications, including higher spatiotemporal imaging of neuronal circuits, optical
tweezers, and nanofabrication.

5.4 Dense Volumetric Imaging with Light Beads Microscopy

Another approach to address a trade-off between resolution, speed of acquisition and the volume
size of the recorded neuronal population is Light Beads Microscopy (LBM)415 that pushes
multiphoton imaging to the limits dictated only by the tolerable biological radiation exposure
and the nature of fluorescence. In LBM, a set of axially separated and temporally distinct
foci record the entire axial imaging range near-simultaneously, enabling volumetric recording
at 1.41 × 108 voxels per second only limited by fluorescence lifetime (Fig. 25). Combined with
an acquisition strategy that allows recoding of each distinct spatial voxel by only one laser pulse,
this results in maximization of generated fluorescence light per unit excitation power.

LBM has been applied to achieve cellular resolution recordings within a volume of ∼5.4 ×
6 × 0.5 mm spanning both hemispheres of the mouse cortex and containing more than 1 million
neurons at ∼2 Hz as well as other configuration in which volume size is traded for recording
speed. These data provided evidence of covariance of neuronal activity within the population of
stimulus-tuned neurons separated by several millimeters across the brain at single-trial level

Fig. 24 Principles and applications of 3D-AOL microscopy. (a) Schematic of pair of AO deflectors
(AODs) with chirped sound waves that curve the optical wavefront of a laser beam (red lines).
Modified from Ref. 463. (b) Two pairs of orthogonally aligned AODs that make up a spherical
AOL that can focus and scan a laser beam in 3D. Cubes below illustrates multiple linear (left)
and nonlinear (right) drive-based imaging modes. Modified from Ref. 414. (c) Left: illustration
of 3D movement correction with XY and Z scans of a bead interleaved with multiplane imaging.
Right: sequence of operation to track a reference object in 3D and compensate imaging for brain
movement. Modified from Ref. 462. (d) Selective imaging of sparsely distributed inhibitory inter-
neurons in the cerebellum. Top left: awake mouse on a treadmill. Top right: locations of somatic
ROIs in 3D-AOL imaging volume of mouse expressing GCaMP6f in Golgi cells. Middle: montage
of 72 selectively imaged Golgi cell somata. Bottom: activity traces extracted from the cells during
locomotion, whisking (WMI) and mild air puff to the whiskers (Puff). Modified from Ref. 465.
(e) Image of pyramidal cell with dendritic branches selectively imaged with multiple line scans
(Ribbon scanning). Aligned images of individual dendritic segments with spines clearly visible
(middle). Modified from Ref. 466. (f) Schematic illustrating multiscale imaging functionality of
3D-AOL microscopy, which enables simultaneous imaging of neuronal populations, dendrites,
spines and axons present in a local circuit.
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representing information on internal states or uncontrolled aspects of external stimuli and
behavior.415

We expect that in the future, SNR of LBM can be further enhanced using shorter laser pulses
and higher bandwidth amplification between the photodetectors and digitizers. Together with
development of more efficient, red-shifted indicators these developments are expected to extend
the depth of imaging and the size of recorded neuronal population within the limits of tolerable
sample exposure to laser light. The ability to record from such large neuronal populations with
cellular resolution opens up a range of opportunities for understanding the neurocomputation
principles underlying multiregional encoding and processing of sensory and behavioral infor-
mation across the mammalian brain.

5.5 Non-Degenerate 2P Microscopy

In the 2P imaging modalities described above (Secs. 5.1–5.4), a fluorophore was excited by the
simultaneous absorption of two photons of the same energy within the near infrared spectrum,

Fig. 25 Light Beads Microscopy: elements and application. (a), (b) The Many-fold Axial
Multiplexing Module (MAxiMuM) enables 30-fold temporal multiplexing in the axial direction using
a cavity-based design resulting in a set of 30 axially focused beams, “Light Beads” at the sample
with σx;y ∼ 1.1 μm and σz ∼ 13 μm. A high energy pulse undergoes 30 roundtrips in a slightly
imbalanced 8f reimaging cavity and during each round trip a sub-pulse at an appropriate delay
is coupled out. Choosing the reflectivity of the output coupler, the exponential falloff of pulse
energy can be exactly matched to the required power increase in scattering tissue for all beads.
(c) Volumetric recording of 807,748 neurons within ∼5.4 × 6 × 0.5 mm3 at 2.2 Hz within the mouse
cortex. 3D rendering of neuron spatial coordinates for a 9-minute recording. (d) Subset of 50 traces
from the total of 807,748 extracted neurons, offset: 0.5 ΔF∕F0.
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derived from the same pulsed laser beam. This is known as “degenerate” 2P (D-2P) excitation.
Alternatively, the same energy needed for the transition to the excited state can be delivered via
absorption of two photons of different energy (i.e., different color) [Fig. 26(a)]. This is “non-
degenerate” 2P excitation (ND-2PE). ND-2PE has a long history in the chemical physics and
microscopy.474–477 Using ND-2PE, we can vary the energies of the individual photons (ℏω1 and
ℏω2) while keeping the sum energy E ¼ ℏðω1 þ ω2Þ constant. The first laser beam can be tuned
within the standard near-infrared range of excitation wavelengths used in conventional 2P
microscopy, placing the second laser beam within the short wavelength infrared wavelengths
range for excitation of visible emission fluorophores (green to red). Due to the requirements
of two temporally synchronized pulsed beams [Fig. 26(b)], it is preferential to use a single source
as a master oscillator. Commercially available turn-key options include dual output femtosecond
lasers with one beam fixed at 1040-nm and a second tunable beam.478 To gain more tuning
flexibility, one can also use a femtosecond Ti:Sapphire laser pumping an Optical Parametric
Oscillator (OPO).479–481

ND-2PE results in an increase in the probability of 2P excitation,480,482 quantified as the
excitation cross-section – an important parameter that, for a given fluorophore concentration
and laser power, translates into brighter fluorescence. Because laser illumination may have
adverse effects on live biological tissues, large cross-section is always a desirable feature at the
focus of fluorophore engineering.277 Importantly, ND-2PE does not alter the shape of 2P absorp-
tion spectrum, so that that the peak absorption remains the same [Fig. 26(c)].

ND-2PE has been used to extend the excitation wavelength range providing a third “virtual”
excitation wavelength.473,483,484 Using synchronized pulses from a femtosecond laser and an

Fig. 26 ND-2PE with collinear and displaced beams. (a) Schematic Jablonski energy diagram for
D-2PE, D-3PE, and ND-2PE. If, fluorescence signal intensity; INIR and IIR, intensities of the two
laser beams; λNIR and λIR, the wavelength of the two laser beams; σD2PE, σD3PE, and σND2PE, cross-
sections for D-2PE, D-3PE, and ND-2PE; [C], fluorophore concentration. (b) Simplified schematic
of ND-2PE microscope setup: GS-XY, galvanometer scanner; SL, scan lens; TL, tube lens; DM,
dichroic mirror; OL, objective lens; PMT, photomultiplier tube. (c) Left: color-coded normalized
non-degenerate absorption cross-section for EGFP as a function of the combination of NIR and
IR wavelengths. The cross-section value at each combination of wavelengths was normalized by
the peak value of this fluorophore. The isocline corresponding to the ground to excited state tran-
sition energy is indicated in dashed black line. Right: normalized cross-section values as a function
of the equivalent degenerate wavelength 2∕λD ¼ 1∕λNIR þ 1∕λIR are shown in red. Independently
measured degenerate cross-section values normalized by its peak within the equivalent range of
the total photon energy are shown in black. The black dashed line indicates the position of the
peak degenerate absorption used for the normalization procedure (930 nm). These wavelengths
correspond to the energy isocline shown in panel (b). (d) Simultaneous excitation of four different
fluorescent proteins in Brainbow mouse cortical tissue using ND-2PE with λNIR ¼ 850 nm, and
λIR ¼ 1100 nm. Panel (d) is reproduced with permission from Ref. 473. (e) Left: D-2PE excites
the sample both near the surface and within the focal volume. Right: by selecting the two excitation
beams for ND-2PE outside of the excitation spectrum of the fluorophores and spatially displacing
the beams, the sample is excited only in the focal volume where two beams overlap. (f) Simulation
results for the normalized values of signal, background, and SBR versus the beam displacement
from the colinear configuration.
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OPO, Mahou et al. demonstrated simultaneous excitation of four different fluorescent proteins in
Brainbow mouse cortical tissue473 [Fig. 26(d)]. ND-2PE has also been explored to increase spa-
tial resolution (Refs. 485, 486 2004 #2024) and penetration depth in scattering media.487,488

Importantly, ND2P excitation can be used to suppress the background (out-of-focus fluores-
cence) by choosing their wavelength outside of the D-2PE spectrum of the fluorophores and
shaping the beams to overlap only at the focal spot.478,488–491 For example, one can arrange the
beams to enter the back aperture of the objective side-by-side parallel to each other and the
optical axis [Fig. 26(e)]. This arrangement reduces their overlap above the focal plane minimiz-
ing the background at the price of reducing the effective numerical aperture (NA) for each
beam.478,492 Simulation studies using a beam propagation model have shown that the amount
of enhancement in the signal-to-background ratio (SBR) depends on the amount of displacement
[Fig. 26(f)]. Both the efficiency of ND-2PE (signal) and out-of-focus fluorescence (background)
decrease by increasing the spatial separation of the beams. However, the background decreases at
a higher rate leading to the overall increase in SBR.478

Further studies are required to optimize the key parameters important for achieving the opti-
mal SBR in ND-2PE: the amount of displacement, the beam size, and the quality of the beam
overlap in the focal volume. These improvements would allow increasing the depth penetration
of 2P microscopy, particularly in cases of dense fluorescence labeling.

5.6 Three-Photon (3P) Microscopy

As we discussed above, 2P microscopy (2PM)428 in combination with genetically expressed
fluorescent probes493 has been enormously influential in neuroscience. It opened the door for
studies of brain structure and function with cellular and subcellular resolution in living animals.
The main limitation of this technology is depth penetration: SBR deteriorates when imaging
deep into the brains.494 This problem is commonly known as out-of-focus background fluores-
cence (mentioned in Sec. 5.5). 3P microscopy (3PM, Fig. 27)497 overcomes this “fundamental”
limitation.

The deep tissue penetration capability of 3PM derives from the longer excitation wavelengths
to reduce tissue scattering497–499 and the higher-order nonlinear excitation to steepen the drop in
the probability to excite fluorescence away from the focus.415,497,500,501 In contrast to 2PM, 3PM
is not limited by out-of-focus fluorescence, so far even in densely labeled samples.

Long wavelength 3PM is being applied to deep tissue imaging beyond the depth limit of
2PM, such as 3PM of GCaMP-labeled neurons in the mouse hippocampus497 and 3PM of quan-
tum-dot-labeled mouse brain vasculature at > 2.1 mm depth.496 3PM is capable of imaging
through a highly turbid layer such as through the intact skull of adult mouse495 and adult
zebrafish.502 2PM and 3PM can be combined for simultaneous imaging of both the cortical
layers and the subcortical regions.424 By leveraging blue-shifted 3P excitation, simultaneous
imaging of multiple fluorophores can be achieved. For example, commonly used blue, green,
yellow and red fluorescent proteins can be 3P excited using a single excitation beam at
1340 nm,503 enabling four color, deep tissue imaging.

While long wavelength 3PM has significantly increased the penetration depth of high spatial
resolution fluorescence imaging, there are a number of limitations that must be overcome for
3PM to achieve its full potential. 3P excitation is inherently weaker than 2P excitation.504,505

In fact, the 3P signal strength sets the practical limit of the imaging depth of 3PM today.506

Therefore, improving the 3P signal is essential to increasing the 3P imaging depth. Large
3P cross-sections,503 adaptive optics,507,508 and imaging the regions of interest only509 can
improve the 3P signal. Furthermore, the laser source for 3PM is not yet optimized for deep tissue
penetration, and the complexity and cost of the excitation source is a major barrier for the appli-
cations of 3PM. An excitation source with cost and user experience similar to a Ti:Sapphire laser
for 2PM is necessary to make deep tissue 3PM a routine instrument for brain research. Finally,
foundational knowledge of many parameters for 3PM is not yet available. For example, the
spectral properties of 3P cross-sections have not been studied for nearly all dyes and fluorescent
proteins at wavelengths >1100 nm. Although the scattering and absorption characteristics of
the mouse brain between 1300 nm and 1700 nm have been measured recently,495,510 systematic
studies of tissues are needed for other brains (e.g., fly, fish, non-human primate, etc.) to define
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the application space for 3PM and lower the barrier of adoption of the 3PM technique beyond
the mouse brains.

5.7 Wearable Multiphoton Microscopes

Both 2P and 3P microscopes have been miniaturized to enable imaging in freely behaving ani-
mals. Compared to 1P miniscopes (Sec. 4.2), their 2P counterparts offer higher resolution, both
laterally and axially, and larger depth penetration (up to ∼300 μm) [Figs. 28(a)–28(c)].372,373,418

Depending on the scanning modality, frame rates of up to ∼40 Hz (but typically ≤15 Hz) can be
achieved. 3P miniscopes offer even larger imaging depths (up to ∼1.1 mm in the cortex) but
require low-repetition-rate amplified laser systems and special fibers in less widespread use
[Figs. 28(d)–28(f)].417 Due to their reliance on short-pulse lasers and photomultiplier tubes

Fig. 27 Deep imaging with 3PM. (a) 3PM of GCaMP6s-labeled neurons in the mouse cortex and
the hippocampus. Green, fluorescence; magenta, third-harmonic generation (THG). (b) Activity
recording in the Stratum Pyramidale layer of the hippocampus at ∼1 mm depth. Only a small por-
tion of the 48-minute recording session is shown. Reproduced with permission from Ref. 416.
Springer Nature. (c) Imaging through the intact mouse skull. Red, RFP-labeled neurons in a
Brainbow mouse, male, 12 weeks. Green, THG. The zero depth is set just beneath the skull.
Reproduced with permission from Ref. 495. Springer Nature. (d) In vivo 3PM of mouse brain vas-
culature labeled with quantum dots (Qtracker 655) to ∼2.2 mm depth. Reproduced with permis-
sion from Ref. 496, © 2019 American Chemical Society.
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(PMTs) for fluorescence excitation and detection, respectively, multiphoton miniscopes are
fiber-coupled. The use of hollow-core (HC) photonic crystal fibers has allowed efficient fluo-
rescence excitation at defined wavelengths [Figs. 28(a), 28(d)]. However, multiphoton minis-
copes’ attainable field of view tends to be smaller (up to 420 μm but typically ≤300 μm)
than their 1P counterparts [Figs. 19(b), 28(b), 28(e)].372,373 Additionally, their relatively low
frame rate and depth-of-field can complicate stable recordings during animal behavior-induced
or tissue-intrinsic movements.

In the future, improved laser scanning and optical components may enhance multiphoton
miniscopes’ FOV, frame rate, and axial beam control [Fig. 28(a)]. Other features may include
the ability to perform all-optical or combined imaging and electrophysiological interrogations in
unrestrained animals.352,372

5.8 Adaptive Optics in Multiphoton Microscopy

Adaptive optics (AO) is a method used in brain imaging to reduce the blurring effect of wave-
front distortions and recover diffraction-limited performance deep within the brain tissue. AO
was first developed for ground-based telescopes to measure and correct the distortion introduced
by the turbulent atmosphere on wavefronts of distant astronomical objects.511,512 It was later

Fig. 28 2P and 3P wearable microscopes for cellular-resolution imaging in freely behaving ani-
mals. (a) Example 2P miniscope for high-resolution imaging at depth. This implementation weighs
4.2 grams and includes an electrically tunable lens (ETL) (top right) for rapid focus adjustment
across a 180 μm focal range (bottom right). Using a microelectromechanical system (MEMS)
scanner, the miniscope allows 10 Hz recordings at 512 x 512 pixels resolution across a
420 μm FOV. (b) Example images of GCaMP6s-expressing neurons acquired at the indicated
focal depths (z) in the mouse prefrontal cortex. (c) Ca2þ transients from dendritic (top) and cell
body regions of interest (ROIs) (bottom) within the focal planes shown in (b). (d) 3P miniscope for
deep, high-resolution imaging. This microscope weighs 5 grams and includes a 1.2-m hollow-core
photonic bandgap crystal fiber (HC-PBGF) (right) for low-dispersion delivery of the ∼1; 320 nm
excitation light-pulses. A plastic optical fiber collects the emitted fluorescence for remote detection
by photomultiplier tubes (PMTs). (e) Image of GCaMP6s-labeled rat cortical neurons at the indi-
cated focal depth (z) in the posterior parietal cortex. (f) Ca2þ spiking from four example neurons
recorded at 1; 120 μm cortical depth. (a)–(f) Adapted with permission from Nature Publishing
Group: (a)–(c) from Ref. 418 and (d)–(f) from Ref. 417.
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adopted by ophthalmologists to correct the aberrations of the eye for high-resolution imaging of
retinal structures.513,514 With the increasing popularity of multiphoton fluorescence microscopy
for in vivo brain imaging, AOmethods have been developed to measure and correct the distortion
that brain tissue imparts on the wavefront of the excitation light [Fig. 29(a)] for high-resolution
imaging at depth.515

An AO system corrects the distortion or optical aberrations of the image-forming light (i.e.,
the excitation laser in multiphoton microscopy) by controlling its wavefront with a phase device
such as a deformable mirror or liquid-crystal spatial light modulator, so that a diffraction-limited
focus can be formed within the sample [Fig. 29(b)]. Effective correction requires accurate meas-
urement of sample-induced aberrations. Methods similar to those applied in astronomy and oph-
thalmology, where the distortion is directly measured by a wavefront sensor (typically made of a
lenslet array and a camera), have been demonstrated for sample preparations with minimal
scattering.516,517 For samples with substantial scattering, indirect wavefront sensing methods
have been developed. Some measure wavefront distortion by manipulating the excitation wave-
front and detecting its effect on fluorescent signal/image,518–520 while others measure the electric
PSF of the excitation focus directly.521

Both direct522,523 and indirect AO methods521,524–526 have been applied to 2P fluorescence
microscopy for high-resolution structural and functional imaging of the brain down to layer
5b of the mouse cortex523 and through thinned skull [Fig. 29(c)].527 Combined with 3P fluo-
rescence microscopy, AO has enabled non-invasive high-resolution imaging of structures such
as subcortical synapses and spinal cord neurons [Fig. 29(d)].506,508 The recovery of diffraction-
limited resolution enabled accurate measurement of Ca2þ activity from thalamic boutons in layer
4 of the mouse primary cortex [Fig. 29(e)], which led to the discovery of extensive orientation-
selective thalamic inputs.528

The proof-of-principle experiments described above have firmly established the importance
and effectiveness of AO for high-resolution brain imaging at depth. Now it is time for the field to
go beyond purely technological demonstrations so that AO can contribute to biological discov-
eries in the brain. The biggest obstacle is how to integrate AO modules into existing and new
microscopes, and to ensure its ease of use and robust performance even in the hands of users with
no optical expertise. Further engineering and collaboration with microscope companies will be
necessary to realize this goal.

Fig. 29 Adaptive optics enables high-resolution multiphoton microscopy at depth. (a) Wavefront
distortion of the excitation light can be (b) corrected with a deformable mirror (DM) or liquid crystal
spatial light modulator (SLM) to form a diffraction-limited excitation focus. Blue: wavefront. Red:
excitation light. Orange: fluorescence. (c) 2P fluorescence images of dendrites and dendritic
spines (606 − 608 μm depth) in the mouse cortex. (d) 3P fluorescence images of a neuron
(414 μm depth) in the mouse spinal cord. (e) AO increases Ca2þ transient strength ΔF∕F and
enables detection of orientation selectivity.
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6 Two-Photon Optogenetics

The advent of optogenetic actuators (Sec. 3.10), has ushered a new era in causal neuronal circuit
interrogation. Yet, in most “traditional” applications of optogenetic perturbation an entire pop-
ulation of neurons is excited or suppressed together, and furthermore the experimenter often does
not observe the neuronal response to the perturbation. However, in essentially every neuronal
circuit, the activity of different neurons within a population is heterogeneous. Further, neuronal
excitability varies in both space and time, strongly affecting responses to optical stimulation.
Thus, providing more nuanced insights into key problems in systems neuroscience like the con-
nection between neuronal code and behavior, requires the advancement of neurophotonic meth-
ods with increased precision and built-in optical readout. The resulting set of techniques are often
termed “circuit optogenetics”529 or “all-optical” circuit interrogation.311,530,531

6.1 2P Optogenetic Photostimulation

From a technical standpoint, stimulating distributed sets of pre-defined neurons in the brain with
single-cell resolution has become possible through the advent of holographic 2P optogenetic
photostimulation (e.g., Refs. 532–536), which has transformed the study of the behavioral rel-
evance of specific circuits and activity patterns.313–315,537,538 2P optogenetic photostimulation
utilizes the principle of non-linear 2P absorption to excite light-sensitive opsins within a confined
axial plane deep into tissue.308,532,539 Holographic optical neuronal interfaces (HONIs, in analogy
to their holographic optical trap (HOT) predecessors) use phase-modulating spatial light
modulators (SLMs) to diffractively shape a distributed excitation pattern in two or three
dimensions.449,540–543 Tightly focused diffraction-limited focal spots maximize 2P excitation
efficiency within the focal volume but are not very efficient in modulating behavior of the tar-
geted neuron, because only a small patch of the cell membrane is affected. Therefore, practical
implementation of 2P optogenetics commonly relies on one of the two general strategies: rapidly
scanning a diffraction-limited spot to cover a large fraction of the cell’s membrane310,314,315,532,536

or defocusing (i.e., spatially expanding) the focal spot to cover the entire cell
body533,535,537,539,544–546 [Figs. 30(a)–30(b)]. The first approach generally trades robustness of
optogenetic actuation with temporal precision, and typically lacks the high temporal resolution
necessary for generation of precise spike timing to reproduce spatiotemporally patterned activity.
The second approach requires more complex hardware. In addition, temporally focused 2P
excitation311,438,544 is used to decouple the lateral and axial dimensions of the excitation spots
by shaping the light pulse’s spatiotemporal profile.

All-optical HONIs technology is a highly active area of neurophotonics and multiple recent
studies have advanced key performance attributes of the optogenetic probes and the spatiotem-
poral characteristics of the generated light patterns. Several new families of red-shifted optoge-
netic probes were developed and/or characterized primarily for this application including
Chrimson,337 ReachR,549 ChRome535 and ChRmine,314 soma-targeting strategies were developed
for increased efficacy and precision,533,535,550,551 and transgenic animals that express these probes
under genetic control have been developed546,552 (see also Sec. 3.10). While these opsins have the
desirable property of being effectively excited at the ∼1040 nm wavelengths of many common
pulsed lasers, their extended excitation shoulder at shorter wavelengths means that they suffer
from unwanted “cross-talk” excitation from the 2P imaging laser (which becomes worse for
more sensitive probes). One possible alternative strategy being developed is to combine a
blue-shifted opsin like CoChR with a red-shifted indicator like jRCamp.534,551 While earlier stud-
ies in this area excited neurons with moderate temporal precision (typically >50 ms), sensitive
probes and effective excitation from amplified laser sources with low repetition rate now enable
millisecond-precise stimulation,314,533,535,538,546 turning SLM switching times into the limiting
factor. Increasing this performance parameter is possible by employing rate-optimized SLMs314

(where the liquid crystal elements are also heated), by sequentially stacking several SLMs,314 or
by sequentially illuminating different sectors of the SLM553,554 —a technique first developed
for rapid pulse shaping.555 While holographic patterning of diffraction-limited focal spots in
3D is quite straightforward, development of temporally focused holographic stimulation
required creative optical solutions.311,531,542,556–558
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6.2 Combining Precision Optogenetics with Psychophysical Measurements

These advances, together with a complementary toolbox of experimental and analysis tech-
niques, have set the stage for neurophotonic probing of the precise relationship between subtle
circuit manipulations and the observed behavior [Fig. 30(c)]. Population-wide circuit perturba-
tion often leads to dramatic and easily detectable behavioral effects. In contrast, early attempts to
apply precision optogenetics in awake behaving animals have failed to evoke measurable behav-
ioral effects.532 To date, several (non-exclusive) strategies to address this challenge have
emerged. The first one is to intensify the manipulation, e.g., by increasing its duration.313–315

The second strategy is to train the animal to detect or discriminate among purely synthetic per-
cepts. In the process of such training, animals become increasingly sensitive to subtle pertur-
bations, reducing their perceptual thresholds by several orders of magnitude. This approach
underlies recent studies on the coding logic of olfactory,538,559,560 and visual561 perception.
Efforts in this area are often inspired by classical studies that have used subtle electrical stimu-
lation to bias sensory psychophysical curves.562

Due to the above-mentioned neurophotonic advances, complex challenges in determining
the behavioral relevance of specific features of neuronal circuit activity can now uniquely be

Fig. 30 Precision optogenetic modulation of neuronal circuits and behavior. (a) All-optical preci-
sion circuit interrogation is enabled by combining 2P imaging and cell-targeted holographic stimu-
lation of a distributed pattern of multiple neurons, typically using a dedicated low-repetition rate
(amplified) femtosecond laser. The illumination is extended across each neuron’s membrane by
either rapid scanning, reducing the effective numerical aperture (at the cost of optical sectioning)
or by parallel illumination of temporally focused extended shapes in two or three dimensions.
(b) An array of methods are being developed to calibrate the projected light patterns, adjust
as needed, and “smooth” their intensity profile (by minimizing holographic speckle547), and in some
cases, validate and correct their precise targeting in situ inside the tissue.548 (c) Beyond target
validation, all-optical precision neurophotonic interfaces enable direct readout of the effects of
circuit perturbations with simultaneous imaging of neuronal activity (left panel from Ref. 536).
This paradigm can be used to infer circuit connectivity and dynamics. One can also infer neuronal
activity indirectly through animal behavioral reports of its (perturbed) perceptual experience (right
panel, from Ref. 538), which informs us about the behavioral relevance of specific neurons and
coding features.
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addressed with all-optical circuit interrogation solutions and with unprecedented detail. For
example, this toolbox now allows experiments like “leave one out” and cross-excitation of two
equivalent populations, providing unprecedented data for computational studies. Likewise, pre-
cise manipulation of stimulus timing and inter-neuron synchrony can also be precisely studied.
Moreover, changing the parameters of optogenetic actuation by light, including frequency and
duration, not only affects the stimulation efficacy, but also provides an important control for
possible experimental confounds.538

7 Microscopic Imaging of Blood Flow and Oxygenation

Brain cells, including astrocytes and microglia, partner with neurons to maintain healthy brain
activity and metabolism (see Secs. 3.6, 3.7). Another important player in this partnership is blood
vessels.563 During neuronal activity, vasoactive molecules and ions released by neurons and glia
control the diameter of local microvasculature producing changes in blood flow.564,565 In parallel,
active brain cells consumeO2 causing an increase in O2 extraction from blood vessels to cerebral
tissue. Therefore, measurements of blood flow and oxygenation indirectly reflect neuronal
activity.566 In addition to serving as a surrogate for neuronal activity, these measurements are
important in their own right, because perfusion of tissue by blood and the partial pressure of O2

(pO2)—in blood vessels and tissue (the interstitial space)—arefundamental physiological param-
eters in health and disease.

Cerebral blood flow (CBF) can be measured volumetrically with microscopic resolution
using OCT that utilizes red blood cell (RBC) motion-induced Doppler shifts (Sec. 7.1).
Other optical CBF measurements include laser speckle contrast imaging (LSCI)567–569 and
2P imaging of RBC velocity.407 LSCI provides a rapid widefield qualitative characterization
of the motion of light scattering particles.570 2P measurements of RBC velocity require fluo-
rescent labeling of the blood plasma or RBC.407,571

Approaches to microscopic measurements of O2 in the brain utilize different principles and
differ in their degree of invasiveness and sensitivity.572,573 Depth-resolved real time measure-
ments of intravascular and interstitial pO2 with micron-scale resolution have been enabled
by 2P imaging of phosphorescent nanoprobes (Sec. 3.8). This technique termed ‘2P phospho-
rescence lifetime microscopy’ or 2PLM (Sec. 7.2) also enables estimation of cerebral metabolic
rate of O2 by quantifying pO2 gradients around penetrating cortical arterioles.574,575

Measurements sensitive to cerebral blood flow, volume and oxygenation are commonly
referred to as “hemodynamic.” One of the most popular hemodynamic imaging modalities is
functional Magnetic Resonance Imaging (fMRI), a macroscopic noninvasive technology com-
monly used in humans that leverages paramagnetic properties of deoxyhemoglobin to generate
signal. Optical hemodynamic imaging technologies create contrast due to differences in the
absorption spectrum of oxy- and deoxyhemoglobin.576 Among them is functional near-infrared
imaging (fNIRS),577 an optical counterpart of fMRI, which we cover in the companion paper
dedicated to human optical imaging technologies. In animals, optical intrinsic signal imaging
(OISI) has been extensively used for mapping of cortical activity.578

Photoacoustics (PA) offers another solution to hemodynamic imaging (Sec. 7.3). This is a
hybrid technology that relies on absorption of photon energy to produce other physical phenom-
ena: heat (a change in temperature) and sound (a pressure wave), which is detected by ultrasonic
transducers.579 Photoacoustic microscopy (PAM), which required optical focusing, offers quan-
tification of oxygenation in individual RBCs. Photoacoustic tomography (PAT) provides deeper
imaging at the price of lower resolution.580

7.1 Imaging Brain Function with Optical Coherence Tomography

Cerebral blood flow (CBF) supports brain function by delivering oxygen and other nutrients,
while removing waste. Neuronal activity modulates CBF through a process known as “neuro-
vascular coupling.” Therefore, measurements of CBF and related hemodynamic parameters can
reflect brain function. Earlier (Sec. 2.6), we discussed optical coherence tomography (OCT),
which uses optical interferometry to detect echoes of light backscattered from different depths
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in tissue,75 in the context of imaging tissue structure. Over the years, researchers have developed
a rich toolbox of functional extensions based on fluctuations of light scattered from red blood
cells (RBCs), providing a measurement of brain function. These methods include Doppler,581

angiography,582 decorrelation,583 and capillary transients (RBC passage).584

Compared to 2P microscopy, in general, OCT offers slightly greater penetration depths if
performed at the same excitation wavelength, enables imaging through less invasive prepara-
tions, and does not require extrinsic contrast agents. Amongst optical methods, OCT has the
unique advantage of acquiring with depth priority. This enables measuring simultaneously across
cortical depths, revealing subtle differences between cortical laminae585,586 that might otherwise
be obscured by physiological noise. This capability has led to OCT angiography studies
that pinpoint layer IV as the cortical layer with the largest RBC response to functional
activation585,587 (Fig. 31). Second, OCT acquires three-dimensional volumes in seconds or even
fractions of a second, enabling comprehensive assessments of microvascular network dynamics.
This capability has led to studies showing flow homogenization during functional activa-
tion588,589 as well as the retrograde propagation of dilation.590 Third, OCT uses time and confocal
gating to reject multiply scattered light and isolate backscattered light from sub-picoliter brain
volumes. Such precise control of the light path enables quantitative measurements of capillary
speed,588 oxygenation,591 hemoglobin concentration,592 and metabolic rate of oxygen consump-
tion.592 These baseline measurements are “absolute” in the sense that they can be compared
between locations or subjects, and followed over time, unlike conventional laser speckle and
optical intrinsic signal imaging. Such baseline measurements provide critical context to interpret
neuronal activity-associated changes in hemodynamics or metabolism.

Emerging trends include 1700 nm OCT for imaging of deep cortical and subcortical
regions,83 new contrast mechanisms,593 and algorithms594 that may highlight different aspects
of brain function at the level of neuroglial tissue. Proper validation against other gold standards,
such as multiphoton microscopy,595 will be critical to provide a sound physiological underpin-
ning for these and other emerging OCT techniques.

Fig. 31 Angiography and blood flow measurements with OCT. (a) Depth-resolved OCT angiog-
raphy of the rat somatosensory cortex.587 Location of OCT cross-sections shown on volumetric
angiogram [maximal intensity projection (MIP); superficial vessels in orange-yellow, deep vessels
in green]. (b), (c) Cross-sectional angiogram (dynamic intensity, (b)) and static intensity (c) images.
(d), (e) Localized changes in dynamic red blood cell (dRBC) content extracted from boxes in
(b) and (c), respectively. (f) Depth-resolved measurements show the strongest dRBC responses
in middle cortical layers.
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7.2 Two-Photon O2 Imaging

High-resolution, real-time quantification of the partial pressure of O2 (pO2) in vivo has
long been a much-desired objective.596–599 Development of 2P-enhanced oxygen probes
(Sec. 3.8)124,125,275,600–603 and 2PLM of pO2 in the brain268,269 have provided important insights
into the brain oxygen metabolism. Among them are confirmation of the “initial dip” in pO2

upon neuronal activation,269,270 evidence for artero-venous diffusional shunts in the brain269 and
experimental demonstration of diffusional gradients in O2 around individual RBCs—the so-
called Erythrocyte-Associated Transients (EATs).269,604

This technology also enabled estimation of the cerebral metabolic rate of O2 (CMRO2), a
notoriously challenging task,605 based on pO2 gradients immediately surrounding diving arte-
rioles (Fig. 32).574,575 This method relies on 2 assumptions. The first assumption is that peri-
arterial tissue gets all its O2 from the arteriole. This is justified by the absence of capillaries
within the periarteriolar space,606 the presence of a pO2 gradient in tissue around diving arte-
rioles,270,575 and a pO2 decrease within arterioles from the vessel center to the vessel wall indi-
cating the O2 leaves through the arteriolar wall. This organization can be approximated by
Krogh’s model of O2 diffusion from a cylinder607 where the diving arteriole serves as a single
O2 source for the periarterial tissue. With this model, one can estimate CMRO2 from maps of
periarterial tissue pO2. Recently, this method was used to evaluate baseline CMRO2 across layer
in the mouse cortex.

We are only starting to understand microscopic O2 metabolism, and many questions remain.
In current practice, pO2 measurements are acquired in a “point scan”mode, where the laser beam
jumps from point to point. Interleaving of point scan 2PLM with traditional line scan fluores-
cence measurements would allow near-simultaneous probing of pO2 and other parameters, such
as neurotransmitter release and vasodilation, needed to address important questions about regu-
lation of O2 delivery to cerebral tissue. Combined with imaging of glucose metabolites (see
Sec. 3.6), pO2 measurements will expand our understanding of the relative contribution of
oxidative and non-oxidative metabolic pathways in the brain across different conditions.

7.3 Photoacoustic Imaging

Photoacoustic (PA) tomography (PAT) is a rapidly developing modality that combines optical
excitation with ultrasonic detection and can be used over a range of spatial scales at high speed.
PAT can utilize endogenous (label-free) contrasts and exogenous probes to provide anatomical,
functional, histologic, metabolic, and molecular imaging.579,608,609

In PAT, non-ionizing laser pulses (∼ps − ns) are directed to the tissue for excitation. Some of
the delivered optical energy is absorbed by the tissue and converted into heat. The heat then
induces a pressure rise through thermoelastic expansion. The pressure rise launches an ultrasonic
wave, which is referred to as a PA wave. The PA wave is detected by ultrasonic transducers to
form an image by a computer. PAT has two primary incarnations: reconstruction-based photo-
acoustic computed tomography (PACT) and focused-scanning-based photoacoustic microscopy
(PAM).579

Fig. 32 2P imaging of tissue pO2. (a) MIP of a 2P vascular image stack of the top 200 μm of
cerebral cortex. Contrast is due to intravascular fluorescent dye. (b) Zoomed-in measurement
plane. (c) Color-coded pO2 measurement points overlaid onto the survey phosphorescence
image. (c) pO2 as a function of distance from the center diving arteriole.
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PAT has found broad applications in neuroscience (Fig. 33). PAM has been used to map
cortical vasculature in the mouse brain and quantify oxygen saturation and total concentration
of hemoglobin at the single capillary level, based on an endogenous PA contrast—hemoglobin
absorption.613 Label-free PACT has imaged detailed mouse brain structures,614 provided a meas-
urement of the whole rat brain resting-state functional connectivity,610 and visualized the epi-
leptic wave propagation across the whole mouse brain during a seizure.611 More recently, PACT
has imaged brain activity in adult humans.615 Exogenous PA probes are also being developed to
monitor glucose metabolism and detect rapid voltage and Ca2þ responses to external stimula-
tions in live animals.616,617

In the future, we expect that PAT will visualize action potential pulses in the deep brain in
rodents with the development of novel voltage∕Ca2þ indicators operating in the red or near-
infrared spectral range. We also expect PAT to be translated to adult human brain imaging, while
its current primary barrier is the skull. The adult human skull severely attenuates the excitation
light and the emitted PA waves and strongly distorts the PA waveforms, deteriorating image
quality. A potential solution is to combine PAT with x-ray computed tomography (CT) or
MRI, which can provide accurate skull information to correct for the wavefront distortion.
In addition, machine learning methods may play a revolutionary role in this problem due to
their high tolerance to skull modeling errors and high computational speed.

8 Hybrid and Multimodal Approaches

In contrast to optical imaging technologies based on detection of photons, hybrid technologies
rely on absorption of photon energy to produce other physical phenomena. Above, we discussed
photoacoustics (Sec. 7.3) where absorption of photon and heating launches an ultrasonic
wave.579 Ultrasound (US) is also being explored to steer the light in tissue618 and in US-assisted

Fig. 33 PAT of the brain. (a) In vivo PACT image of a whole rat brain in the coronal plane.610 (b) In
vivo high-resolution PACT image of a mouse brain in the coronal plane.611 (c) In vivo superreso-
lution PACT image of a mouse brain, where green shows the conventional PACT signals, and
magenta shows the enhanced signals from localized droplets.612 (d) In vivo PAM image of a
mouse brain.613 (e) Cross-sectional PACT image of a mouse brain at 2.8 mm depth.614
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optical imaging (Sec. 8.1).619–622 Recently, the photoacoustic process has been used for spatially
confined neuronal stimulation.623

Another approach is to combine those technologies that do not interact serving as parallel and
complementary information channels extending the spatiotemporal scale, resolution and speci-
ficity of each modality alone. For example, implanted “neurophotonic” probes have been devel-
oped bearing LEDs and electrodes along the penetrating shanks; LEDs deliver the light required
for optogenetics actuation of light-gated ion channels and ion pumps, and electrodes record
neuronal activity.624–626 An alternative solution for depth-resolved optogenetic actuation is
tapered optical fibers that allow the light to exit at different locations along the tapered fiber
end depending on the angle of incidence of the laser beam entering the fiber. Recording electro-
des printed along the fiber enable simultaneous electrophysiological recordings (Sec. 8.2).
Another multimodal approach is combining optical imaging with electrophysiological record-
ings using optically transparent electrode arrays627–629 (Sec. 8.3). Integration of photodetectors
along the shanks of penetrating neurophotonic probes is also being explored.626 Our final exam-
ple is simultaneous optical imaging (and optogenetic stimulation) with fMRI630–634 (Sec. 8.4)
that can help physiological underpinning of noninvasive imaging signals and human translation.

8.1 Ultrasound-Enabled Deep Fluorescence Imaging

Light scattering in brain tissue is a barrier to studying the living brain beyond superficial depths.
Conventional optical focusing methods rely on ballistic photons, which exponentially decrease
with depth. Loss of photons to scattering limits the signal that can be achieved at the focal spot.
In addition, scattered photons contribute to out-of-focus excitation. Taken together, these two
effects decrease the signal to background ratio (SBR) with depth. Ultrasound (US) scatters less
than light in tissue and can be used to image beyond superficial depths, but in general has lower
specificity compared to what can be achieved with targeted fluorescent probes.

US has been used to assist optical imaging and photostimulation and has also been explored
as a guidestar mechanism for optical wavefront shaping (Fig. 34). Optical wavefront shaping
works by tailoring the input optical wavefront to counteract scattering as it travels through the
tissue. The scattering properties of tissue (ignoring the contributions by blood cells) is static on
the timescale of several seconds at depths up to a few millimeters.635 Within this time window,
knowledge of the relevant parts of the transmission matrix allows the incident wavefront to be
pre-distorted to form a desired pattern inside the tissue. In Sec. 5.8, we discussed the use of
fluorescent guidestars in multiphoton microscopy. Non-optical guidestars can greatly extend the
penetration depth of optical techniques.

The fundamental property that allows the scattering behavior of tissue to be characterized and
compensated for is the deterministic nature of elastic scattering.636 In practice, this property is
exploited by latching onto a signal from inside the sample provided by a guidestar to find the
needed part of the transmission matrix and correctly modulate the incident light. The predomi-
nant methods to find this correct input pattern rely on either feedback optimization or direct
conjugation of the signal from a guidestar. In addition to ultrasonic637 and fluorescent guide-
stars,638 other modalities have been explored including kinetic,639,640 magnetic particle,641 and
photoacoustic642 guidestars. The performance of these systems is typically benchmarked by the
number of independent elements of the transmission matrix that can be controlled and the latency
between wavefront recording and playback. The spatial resolution in each case is limited by the
nature of the guidestar.

Using wavefront shaping, the penetration depth is no longer limited by scattering (i.e., the
transport mean free path) but by the absorption limit. This limit can be several centimeters deep
within tissue at wavelengths where absorption is low in the near-infrared regime, and wavefront
shaping systems have been demonstrated to successfully focus at depths of up to 2.5 cm in
chicken breast and 10 cm in tissue-mimicking phantoms.643

However, there are still significant challenges imposed by the temporal dynamics of light
scattering in the tissue. In vivo, blood flow (i.e., moving red blood cells, RBCs) is a major con-
tributing factor to scattering dynamics. Due to RBC flow, the measured transmission matrix
elements can become outdated within several milliseconds even at a depth of 1 millimeter and,
due to the nonlinear relationship between scattering path length and penetration depth, this
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decorrelation time decreases below one millisecond at a depth of only 2 millimeters.644 This
requires low latency wavefront sensing and shaping systems to maintain the correct wavefront
solution. To date, state-of-the-art systems have achieved latencies on the order of a few milli-
seconds with control of 105 optical modes by leveraging fast waveform modulators such as dig-
ital micromirror devices.645 While lower latencies can be achieved with faster modulators such as
acousto-optic646 or microelectromechanical light valves,647 these techniques typically only offer
control over several hundred optical modes.

Recently, a proof-of-principle for another US-enabled fluorescence imaging method has been
demonstrated that is not limited by fast speckle decorrelation.619 Rather, the fluctuating speckle
intensity at a point of interest is co-encoded in the emitted fluorescence and US-modulated light.
Using the US-modulated transmissions as a decoding key, the fluorescence from the target point
at the US focus can be extracted from the overall fluorescence emission. A number of technical
challenges associated with this approach still need to be addressed including decreasing the

Fig. 34 Wavefront shaping system design. (a) The wavefront shaping system consists of 5 major
steps: Recording, camera data transfer, phase mask computation, phase map transfer, and phase
map display and playback. First, the scattered light from a guidestar inside the tissue is captured
and collected by the wavefront measurement system. Depending on the type of guidestar, the
measurement system may use interferometry to detect the signal from the guidestar (e.g., with
an ultrasonic guidestar) or simply measure the bulk signal after filtering (e.g., fluorescence from
a particle or cell). The captured data from the camera in the measurement system is then trans-
ferred to a computing device such as a PC or FPGAwhere it is processed to find the desired phase
map to send light back to the guidestar. Then, this phase mask is transferred to the SLM and
displayed to form the shaped playback wave. (b) An example of a wavefront shaping system used
to focus light in brain tissue using time-reversed US-encoded light focusing. The US-tagged light is
recorded by the camera and then used to calculate the correct wavefront solution to playback a
light focus at the previous location of the ultrasonic focus. (c) The sum of the time required to
perform each step of the wavefront sensing and shaping process forms the system latency.
Typically, the wavefront measurement time is the most significant portion of the process, but when
large pixel number cameras and SLMs are used, the time for data transfer becomes significant as
well. Parallel processing on embedded systems such as FPGAs can be used to enhance process-
ing time. Furthermore, SLM technologies such as DMDs can be used to reduce the display time to
several tens of microseconds as compared to the much slower, millisecond-order liquid-crystal
based SLMs.
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measurement time and enlarging the field of view. In the meanwhile, wavefront shaping remains
the most promising approach for overcoming light scattering.

In the future, we expect wavefront shaping technologies to develop along two main axes:
(1) For some applications where the penetration depth is relatively shallow, such as imaging

of deep cortical layers, wavefront distortions are more strongly associated with gross tissue
heterogeneity and less impacted by blood flow. These distortions can be addressed with adaptive
optics solutions such as the ones described for multiphoton microscopy in Sec. 5.8.

(2) To be able to correct for dynamic light scattering induced by moving RBCs, further tech-
nological development is needed to improve system latency by leveraging fast wavefront shap-
ing devices like digital micromirror devices (DMD) and parallelization to solve the data transfer
and processing bottlenecks. Currently, wavefront shaping techniques have largely been demon-
strated in carefully controlled experiments. To move toward broader adoption, it is necessary to
develop strategies tackling the temporal dynamics, especially to reach the ultimate depth limits,
and to address practical implementation concerns such as how to interface the wavefront shaping
systems with the types of configurations commonly used in neuroscience experiments (e.g.,
freely moving rodents). To achieve these goals, we envision a wavefront shaping device which
will integrate the wavefront sensing and shaping elements such as the one demonstrated in
Ref. 648, will be critical to address the wavefront measurement bottleneck by parallelizing the
measurement and guaranteeing alignment between the measured and shaped wavefronts.

8.2 Tapered Optical Fibers as Implantable Multimodal Neuronal Interfaces

Tapered optical fibers have recently emerged as a new platform for implantable devices to opti-
cally interact with deep structures of the mouse brain. These fibers can both deliver or collect
light over either large brain volumes or spatially confined subregions all around the conical
shape, while generating little to no damage to the brain tissue, comparable to that caused by
sharp electrodes used for electrophysiological recordings.649–651

Tapered optical fibers have the unique ability of enabling depth-resolved optogenetics and
fiber photometry by exploiting the modal properties of the narrowing waveguide: high and low
order modes can exchange energy with the brain tissue at different depths along the implant,
resulting in a fully integrated and implantable mode-division multiplexer/demultiplexer
(MODEM) for brain microcircuitry [Fig. 35(a)]. For example, if the tapered fiber is implanted
in cerebral cortex, one can control which cortical layer is being illuminated by changing the input
angle of light entering the fiber [see different colors in Fig. 35(a)]. Due to modal mixing of
propagating light in the waveguide, the resolution of this technique is in the order of a few
hundreds of micrometers. For obtaining finer spatial resolution of light delivery and/or collec-
tion, micro and nanofabrication can be employed to coat the fiber with a reflective metal thin
layer followed by etching small windows along the tapered end [Fig. 35(b)].652–654

Together with the low invasiveness, this technology has contributed to the dissection of basal
ganglia neuronal circuitry in the mouse brain: motor-action-related topographical organization of
the striatum was probed by depth-selective optogenetic stimulation,655 while differentiated

Fig. 35 Tapered optical fibers as neuronal interfaces. (a) Example of howmodes of different order
outcouple at different sections of a TF. Image is in false colors. (b) High resolution patterning
allows structuring the non-planar edge of metal-coated tapered optical fibers.
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dopamine transients in dorsal and ventral striatum in reward processing were observed by apply-
ing depth-resolved fiber photometry.651 From the perspective of advanced detection of photons
generated in deep brain regions, tapered fibers are compatible with time-correlated single photon
counting technologies recently employed to probe the biochemical state of neurons,656 and can
help in bringing this technology to deeper (subcortical) brain structures.657

In addition to the ability of carrying excitation or fluorescence light, tapered fibers can host
extracellular recording electrodes, resulting an interesting paradigm for probing small brain vol-
ume with spatially confined light delivery and electrophysiological recordings.658 The main chal-
lenge in this respect is the non-planar surface of the narrowing waveguide, which does not allow
using standard micro- and nano-fabrication techniques.

The photonic properties of tapered fibers also offer the opportunity to control nanoscale light-
matter interactions on the fiber surface659 providing a suitable platform to translate in vivo the
many options for enhanced biomolecular interfacing using plasmonic resonances that have been
proposed in vitro.660 These include Surface Enhanced Raman Scattering (SERS), refractive
index sensing, metal-enhanced fluorescence, and highly localized, ultrafast heat delivery in com-
bination with the modulation of the radiative field through sub-wavelength apertures for light
delivery and collection in highly scattering tissue.

Next generation technology will therefore have to focus on the development of methods to
integrate complex optical and optoelectronic elements on the edge of the fiber taper, aiming at
the realization of multifunctional neuronal interfaces targeting both small and wide brain
volumes.

8.3 Transparent Electrode Arrays for Multimodal Brain Mapping

Optical methods for monitoring and stimulating neuronal activity enable investigating large-
scale neuronal networks up to subcellular resolution, and across multiple signaling dimensions.
Combining optical tools with electrophysiological recordings allows comprehensive investiga-
tions of brain circuits in vivo, multi scale, as it leverages the finely tuned spatial resolution of
optical imaging with the high temporal resolution and fidelity of electrophysiology. Multimodal
studies, however, are not possible with conventional opaque metal microelectrodes, as they block
optical access and suffer from photovoltaic artifacts that can contaminate the recordings.661,662

Recent progress in materials and fabrication processes for neuroelectronic interfaces has led
to the development of transparent microelectrode arrays for simultaneous, artifact-free imaging
and recording in the same brain location. These devices typically consist in planar arrays of
transparent microscale electrodes (spatial scales ranging from 50 μm to 250 μm) patterned onto
<20 μm thin, flexible polymeric films (e.g., parylene, polyimide, PET). The majority of the
transparent devices proposed thus far are micro-electrocorticography (microECoG) arrays
[Fig. 36(a)],661–663 although there are a few examples of laminar electrodes for intracortical
recordings.627,666

The enabling technology behind transparent electrodes are novel nanomaterials that combine
high optical transparency for imaging with the electrical conductivity required to record neuronal
signals. Graphene—a 2D monoatomic layer of carbon atoms—in particular has emerged as the
material of choice for many of these technologies, due to its remarkable combination of trans-
parency, electrical conductivity, biocompatibility, low noise, and resistance to corrosion.667–669

From the initial works demonstrating co-localized Ca2þ imaging with electrophysiology627

and optogenetics661 through graphene microECoG arrays, transparent electrodes have been
used for simultaneous LFP recordings, 2P Ca2þ imaging in layers II/III of the mouse cortex,
optogenetics, and hemodynamic imaging [Fig. 36(b)],662 for delivering cortical stimulation
and concurrently mapping the evoked cortical activation patterns [Fig. 36(c)],664 and for
studying the onset and spreading dynamics of epileptiform discharges via simultaneous
electrophysiology and wide-field Ca2þ imaging [Fig. 36(d)].663 Graphene electrodes have also
been integrated with optic fibers to realize battery-powered devices for closed-loop optogenetics
[Fig. 36(e)].665

Despite the exciting results, the main drawbacks of transparent graphene microelectrodes are
the high interface impedance—which limits the ability to record single extracellular spiking
activity—and the complexity of processing and fabrication. In the attempt to overcome
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Fig. 36 Multimodal measurements and interrogation of brain activity using transparent electrode
arrays and neurophotonic technologies. (a) (Top) Design of a flexible, transparent 16-channel
microECoG array for multimodal mapping the dynamics of epileptiform discharges in mouse mod-
els.663 The array is a grid of 50 μm × 50 μm square electrodes with 500 μm spacing (total record-
ing area: 1.55 mm × 1.55 mm, total array footprint 2.75 mm × 2.75 mm. Scale bar: 2 mm). (Bottom)
Photographs illustrating the optical transparency of the array in the recording area. Scale bars, left
to right: 1 mm, 250 μm, and 100 μm. Reproduced from Ref. 663. (b) Simultaneous optogenetics,
recording and hemodynamic imaging in Thy-Cr2 mice through graphene arrays.662 (Left) Line-
scan imaging of arteriolar dilation induced by optogenetic stimulation under two different electrode
sites (marker: FITC-dextran, red arrows show line-scan location). Scale bars: 50 μm. (Middle)
Average vascular diameter change and (right) light-evoked LFPs recorded at the graphene elec-
trode sites. Reproduced from Ref. 662. (c) Maps of cortical responses to co-localized electrical
stimulation delivered through graphene electrodes in GCamp6f mice.664 (Top) Ca2þ fluorescence
intensity in response to cortical electrical stimulation under (left) a graphene and (right) a platinum
array of the same size. (Bottom) Spatiotemporal maps of cortical activation following electrical
stimulation at varying intensities delivered from a transparent graphene electrode (marked with
the red star). Adapted from Ref. 664. (d) Multimodal analysis of ictal state transitions in acute
mouse preparations induced by 4-aminopyridine (4-AP).663 (Top left) Schematics of the relative
graphene contact positions and 4-AP application site. (Top right) Propagation of the ictal wavefront
at seizure onset mapped with wide-field Ca2þ epifluorescence imaging. (Bottom) Ca2þ fluores-
cence intensity beneath each electrode and simultaneous microECoG recordings from the gra-
phene array during seizure onset. Adapted from Ref. 663. (e) Closed-loop graphene device for
artifact-free optogenetics. (Left) Photographs of the transparent graphene array and (right) the fully
assembled battery-powered, closed-loop device integrating the graphene array with an optic fiber
for optogenetic stimulation. Adapted from Ref. 665.
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these limitations, a number of alternative materials have been explored for transparent micro-
electrodes, including carbon nanotubes (CNTs),670 platinum nanoparticle coatings,671 conductive
polymers (e.g., PEDOT-PSS628), and gold nanomeshes.629,666

In addition to addressing the impedance, temporal resolution and scalability issues, future
work is needed to evaluate the longevity and biocompatibility of graphene-based and other trans-
parent electrode technologies for chronic in vivo implants. Furthermore, innovative approaches
combining surgical preparations with custom device configurations are required to conduct multi-
modal investigations into deeper subcortical regions, which are inaccessible to planar microECoG
arrays. Finally, there is a lack of established frameworks for analyzing high-dimensional datasets
operating on different spatial and temporal scales, such as those emerging from multimodal opti-
cal and electrophysiological mapping of neuronal activity.

8.4 Optical Imaging and Functional Magnetic Resonance Imaging (fMRI)

Blood-oxygen-level-dependent (BOLD) fMRI is a widely implemented, clinically and preclini-
cally accessible, noninvasive neuroimaging tool with whole-brain coverage. Despite these
strengths, BOLD-fMRI data have relatively low spatiotemporal resolution (sub-millimeter to
millimeter, ∼1 Hz), and are insensitive to the cellular origins of activity. This can limit the utility
and interpretability of BOLD-fMRI measurements.672 As a complementary neuroimaging tool-
set, optical imaging methods have high reporter specificity and spatiotemporal resolution
(micron to sub-millimeter, tens to hundreds of Hz), but are limited to optically accessible tissue
and to applications in animal models due to the introduction of fluorophores which requires
invasive manipulation of the nervous system. Together, optical imaging and BOLD-fMRI pro-
vide a link between reporter specific measurements of activity and the most widely used method
for assessing human brain function as well as a means of crossing disparate spatiotemporal
scales.

BOLD-fMRI and optical imaging can be performed concomitantly (Fig. 37), or serially, to
interrogate the physiological reporter specific underpinnings of the BOLD-fMRI signal, explore
brain-wide circuit- and network-level activity patterns, and neuro-glio-vascular coupling in
health and disease. To collect BOLD-fMRI and optical imaging data from the same subject,
significant experimental challenges must be overcome to accommodate the confined space and
high magnetic field of the MR-scanner without compromising the optical signal. This can be
particularly difficult if the multi-modal data are acquired simultaneously which is necessary
when studying certain aspects of brain function such as spontaneous activity (without external
stimuli).673,674

To date, there are a handful of implementations of BOLD-fMRI with simultaneous single/
double-fiber photometry to yield ‘point’ measurements, or one-dimensional time-courses of
optical data and two reports of simultaneous wide-field imaging using fiber-optic bundles to
obtain two-dimensional optical images of cortical activity.630,631,634,675–681 Experimentally, each
in-scanner optical imaging implementation includes a means of delivering excitation light to,
and relaying optical signal from within the bore, reducing MR-susceptibility artifacts caused
by surgeries that yield optical access to the brain, minimizing motion, and eliminating or keeping
metal components at a safe distance from the MR-scanner. The signal-processing and analyses of
these data follow a variety of strategies that depend on the implementation and scientific
question.

In the near future, we expect improved in-scanner optical imaging compatibility with state-
of-the-art MRI technology (e.g., imaging with an MR-cryo-coil), experimental versatility
(e.g., use of novel or multiple optical probes), and data quality (e.g., better signal-to-noise).
Along with these advances in data acquisition, more complex applications will be attempted
including implementations in awake behaving animals, disease models, and both young and
old subjects. Further, the analyses of these multi-modal data will expand and progress through
more wide-spread implementation, data sharing and cross-specialty collaboration. Ultimately,
BOLD-fMRI and optical imaging methods have the potential to link animal and human studies
and to provide unique insight into the functional organizing principles of the brain in health and
disease.
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Fig. 37 Concurrent optical imaging and fMRI. (a) Optical imaging implementations within the MRI
scanner. Schematic of typical wide-field imaging components (i.). Excitation light is delivered (LED
light source), passes through a dichroic mirror, and is focused onto the mouse cortex (1X objec-
tive). Emitted fluorescence signal is relayed to a camera and recorded. Example imaging frames
from a movie recorded from a mouse expressing GCaMP in glia (Aldh1l1-Cre/Ai162) (top right).
Data are collected in-scanner. Blooms of increased activity are in hot colors; epochs of decreased
activity are in cool colors. Schematic of a typical fiber photometry experiment (ii.). Excitation light
delivered and signal recorded through long fiber optic cables. Both (i.) and (ii.) can be performed
within an MRI scanner (iii.) where simultaneous BOLD-fMRI data can be recorded. Wide-field im-
aging yields measures of cortical activity (2D images), while fiber photometry can target subcort-
ical areas (1D time courses). Simultaneously recorded glia-Ca2þ (green) and BOLD (orange)
spontaneous activity from a cortical roi are plotted (middle). In this example, these signals are
moderately correlated (Pearson’s correlation R2 ¼ 0.52, P < 0.05). (b) In-scanner wide-field im-
aging. Components and light path are indicated (image reproduced from Ref. 630). For wide-field
imaging, optical access to the cortex is gained by resecting the scalp and covering the skull in
dental cement, glue, and glass (right). The wide-field imaging data can be registered to the
MRI data using the middle cerebral arteries as anatomical landmarks and an MR angiogram.
Example multi-modal measurements of spontaneous Ca2þ fluorescence and BOLD activity.
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9 Computational Imaging

Computational microscopy is a class of methods that synergistically combines optical hardware
and computational algorithms for enabling novel capabilities that the optics alone do not support
(Fig. 38). The motivation is to overcome the many challenges in neuronal imaging. These meth-
ods have been broadly applied to 1P or multiphoton imaging of functional indicators (e.g., Ca2þ

imaging and voltage imaging), OCT, and PA imaging.
The first type of challenges stem from the physical tradeoffs between several desirable im-

aging parameters, including SNR, imaging speed, spatial resolution, FOV, depth of field (DOF),
and the size and weight of the optical device. To overcome this, new types of computational
microscopes have been developed to enable high-speed volumetric imaging, enhanced resolu-
tion, and extended DOF. For example, Light field microscopy enabled single-shot in-vivo 3D
recording of neuronal activity442,682–687 [Fig. 39(a)]. Similar concepts have enabled miniaturized
microscopes, such as MiniLFM,688 Miniscope3D,690 CM2,419 and FlatScope,691 for 3D recording
of neuronal activity in freely moving animals [Fig. 39(b)]. Structured illumination microscopy
enabled super-resolution reconstruction and background suppression for in vivo brain
imaging689,692,693 [Fig. 39(c)].

The second type of challenges stem from the complexity of the large-scale multi-dimensional
neuronal imaging data. To overcome this, many advanced computational algorithms have been
developed to perform various signal extraction tasks, such as segmentation, enhancement of
SNR, image deconvolution, and spike estimation. In the past few years, parametric and
model-based techniques, such as principal component analysis (PCA), non-negative matrix
factorization (NMF), and sparse deconvolution, have shown tremendous success. In recent
years, data-driven machine/deep learning-based techniques have become popular and achieved
the state-of-the-art performance in various tasks, such as vessel segmentation in deep
brain694,695 [Fig. 40(a)], neuron segmentation696,698 [Fig. 40(b)], functional signal denoising697

[Fig. 40(c)], Ca2þ signal extraction,699,700 3D deconvolution,701,702 and super-resolution
reconstruction.703

In the future, we can expect that computational microscopy will continue to broadly impact
both the system design and signal analysis in neuronal imaging. One promising area is to jointly

Fig. 37 (Continued) (c) With multi-modal data registered to a common space (i.), ROIs can be
imposed (e.g., Allen Atlas regions) and a connectome computed. Multi-modal spontaneous activ-
ity can be used to compute a between contrast transfer function (ii.). Here, gamma-variant fitting629

was applied to compute a transfer function using simultaneously recorded spontaneous BOLD
activity and excitatory neuronal Ca2þ activity (Slc17a7/Cam/TeTG6f, N = 6, plotted in blue) or glia
Ca2þ activity (Aldh1l1-Cre/Ai162, N = 5, plotted in purple). Abbreviations: functional magnetic res-
onance imaging (fMRI, MRI, MR), light emitting diode (LED), anterior (A), posterior (P), right (R),
left (L), dorsal (D), ventral (V), Pearson’s correlation (R2), region(s) of interest (roi, rois), signal
intensity (SI), arbitrary units (au), blood-oxygen-level-dependent (BOLD), seconds (secs), echo
planar imaging (EPI), repetition time (TR), field of view (FOV), radio frequency (RF).

Fig. 38 Computational microscopy synergistically combines optical hardware and computational
algorithms.
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optimize the optics, acquisition strategy, and computational algorithm in a holistic framework to
further push the imaging performance limits. We also anticipate that more advanced deep learn-
ing methods beyond the widely used supervised learning methods will be developed, which will
incorporate unsupervised learning, semi-supervised learning, physical model-based priors for
more data efficient and reliable signal extraction.

Fig. 40 Deep learning enables state-of-the-art neuronal signal extraction. (a) Vascular segmen-
tation from 2P imaging data.694 (b) Active neuron segmentation in 2P Ca2þ imaging.696

(c) Denoising 2P Ca2þ imaging data.697

Fig. 39 Computational microscopy enables novel imaging capabilities. (a) Light field microscopy
enables single-shot high-speed volumetric neuronal imaging.442,683 (b) Miniaturized light field
microscope allows volumetric neuronal recording in freely moving mice.688 (c) Structured illumi-
nation microscopy achieves super-resolution reconstruction of dendrites expressing ChR2-GFP
on the mouse brain in vivo.689
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10 Conclusions

In this Status Report, we provided a 30,000-foot view of a suite of neurophotonic methods—
ranging from molecular sensors to imaging technologies that allow high-speed imaging with
large fields of view—that have emerged from the BRAIN Initiative and related large-scale neuro-
science efforts. For each domain, we outlined the current state-of-the-art of the respective tech-
nologies, identified the areas where innovation is needed, and provided an outlook for future
directions. Our goal was not to offer a comprehensive list of all recently developed neuropho-
tonic tools. Further, our choice was often biased toward technologies developed in our own
laboratories. We hope, nevertheless, that the overall scope does justice to the breadth of the
modern neurophotonics arena spanning across the spatiotemporal scales:704 from the nanometer
scale of molecular sensors to the mesoscale of cortical columns and entire brain areas (hundreds
of microns); from the nanosecond scale of fluorescent lifetime to slow changes in mood, exec-
utive function, and arousal unfolding over minutes and hours.

Most often, the invasive nature of the methods described in this report limits their direct
translation to humans. Exceptions exist, including intraoperative brain imaging705–707 and/or
other situations where the benefit overweighs the probability of the risk. For example, optoge-
netic methods are being tested in clinical trials aimed at (partial) restoration of vision.708 Maybe
some of the methods presented here will evolve or inspire noninvasive techniques that can be
employed in humans one day. But even in cases where the direct translation is prohibited, micro-
scopic imaging in animals has led to better interpretation of noninvasive optical signals achiev-
able in humans. In particular, physiological underpinning of fNIRS (as well as fMRI) signals
requires an understanding of the relationship between neuronal network activity, blood flow, and
O2 consumption.566,709,710 Neurophotonic methods designed to noninvasively probe deep tissue
and apply to humans will be the focus of our companion report.

Each of the technologies highlighted in this report has been conceived by a small group of
experts, but not without input from the bigger neurophotonics community. In every case, a dialog
with the community and parallel efforts elsewhere have been instrumental in driving innovation,
providing a testbed for early developments, and fine-tuning the new technology to serve specific
applications. Among the most significant measures of the success for these efforts are ever-
expanding collaborative ties between the technology and biology experts and growing global
science network across countries and continents.3,711

As impressive and significant as the recent progress has been, we are just getting started. Our
next challenge as a community is to sustain the momentum beyond the lifetime of any individual
program or initiative. Needless to say, this entails, among others, retaining and nurturing the best
of our students. So, if you are a student reading these lines, we would like to conclude by speak-
ing directly to you:

Dear Student, thank you for making it to the end of this report. We appreciate your curiosity and
persistence. At the risk of sounding self-congratulatory, we would like to tell you that each of the tools
featured here is a story of ingenuity, perseverance, and tireless work. Each one is a personal story of
trial and error, triumph and failure, a bold vision baked into a dry and meticulous scientific
approach. These are technologies made by people. We are using light to illuminate the future, and
it’s never been so bright! Come and join us in this endeavor!
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