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GNU  GNU’s not Unix, a free OS 
GPGPU General Purpose GPU  
GPL  GNU General Public Licence 
GPU  Graphic Processing Unit  
GRIB  GRIdded Binary 
HDD  Hard Disk Drive 
HECToR High End Computing Terascale Resources 
HMPP  Hybrid Multi-core Parallel Programming (CAPS enterprise) 
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HPC High Performance Computing; Computing at a high performance level 
at any given time; often used synonym with Supercomputing 

HPL  High Performance LINPACK 
ICHEC Irish Centre for High-End Computing 
ICOM            Imperial College Ocean Model 
ICON  Icosahedral Non-hydrostatic model 
IDRIS Institut du Développement et des Ressources en Informatique 

Scientifique (represented in PRACE by GENCI, France) 
IEEE  Institute of Electrical and Electronic Engineers 
IESP  International Exascale Project 
I/O  Input/Output 
IPSL  Institut Pierre Simon Laplace 
IS-ENES Infrastructure for the European Network for Earth System Modelling 
JSC  Jülich Supercomputing Centre (FZJ, Germany) 
KB  Kilo (= 210 ~103) Bytes (= 8 bits), also KByte 
LAPACK Linear Algebra PACKage 
LB  Lattice Boltzmann 
LBE  Lattice Boltzmann Equation 
LES  Large-Eddy Simulation 
LINPACK Software library for Linear Algebra 
LQCD  Lattice QCD 
LRZ  Leibniz Supercomputing Centre (Garching, Germany) 
MAGMA Matrix Algebra on GPU and Multicore Architectures 
MB  Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte 
MB/s  Mega (= 106) Bytes (= 8 bits) per second, also MByte/s 
MBPT  Many-Body Perturbation Theory 
MCT  Model Coupling Toolkit, developed at Argonne National Lab. (USA) 
MD Molecular Dynamics 
MFlop/s Mega (= 106) Floating-point operations (usually in 64-bit, i.e., DP) per 

second, also MF/s 
MHz  Mega (= 106) Hertz, frequency =106 periods or clock cycles per second 
MIC  Many Integrated Core 
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC 

processor architecture developed by MIPS Technology 
MKL  Math Kernel Library (Intel) 
MPI  Message Passing Interface 
MPI-IO Message Passing Interface – Input/Output 
MPI-M  MPI for Mathematics 
MPP  Massively Parallel Processing (or Processor) 
MPT  Message Passing Toolkit 
NCAR  National Center for Atmospheric Research 
NCF  Netherlands Computing Facilities (Netherlands) 
NEGF  non-equilibrium Green's functions, 
NERC  Natural Environment Research Council  
NEMO          Nucleus for European Modeling of the Ocean 
NERC  Natural Environment Research Council (United Kingdom) 
NetCDF Network Common Data Form 
NUMA  Non Uniform Memory Access 
NWP  Numerical Weather Prediction 
OpenCL Open Computing Language 
OECD  Organisation for Economic Co-operation and Development 
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OpenMP Open Multi-Processing 
OS  Operating System 
PAW  Projector Augmented-Wave 
PETSc Portable, Extensible Toolkit for Scientific computation 
PGI  Portland Group, Inc.  
PGAS  Partitioned Global Address Space 
PIMD  Path-Integral Molecular Dynamics 
PIO  Parallel I/O 
PLASMA Parallel Linear Algebra for Scalable Multi-core Architectures 
POSIX Portable OS Interface for Unix 
PPE  PowerPC Processor Element (in a Cell processor) 
PRACE Partnership for Advanced Computing in Europe; Project Acronym 
PSNC  Poznan Supercomputing and Networking Centre (Poland) 
PWscf  Plane-Wave Self-Consistent Field 
QCD  Quantum Chromodynamics 
QR QR method or algorithm: a procedure in linear algebra to factorise a 

matrix into a product of an orthogonal and an upper triangular matrix 
RAM  Random Access Memory 
RDMA  Remote Data Memory Access 
RISC  Reduce Instruction Set Computer 
RPM  Revolution per Minute 
RWTH Rheinisch-Westfaelische Technische Hochschule Aachen 
ScaLAPACK Scalable LAPACK 
ScalES Scalable Earth System model 
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS 
SHMEM  Share Memory access library (Cray) 
SIMD  Single Instruction Multiple Data 
SM  Streaming Multiprocessor, also Subnet Manager 
SMP  Symmetric MultiProcessing 
SP  Single Precision, usually 32-bit floating-point numbers 
SPH  Smoothed Particle Hydrodynamics 
STFC Science and Technology Facilities Council (represented in PRACE by 

EPSRC, United Kingdom) 
STRATOS PRACE advisory group for STRAtegic TechnOlogieS 
TB Tera (=240 ~ 1012) Bytes (= 8 bits), also TByte 
TDDFT Time-dependent density functional theory 
TFlop/s Tera (=1012) Floating-point operations (usually in 64-bit, i.e., DP) per 

second, also TF/s 
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this 

context the Supercomputing Research Infrastructure would host the 
Tier-0 systems; national or topical HPC centres would constitute Tier-1 

UMFPACK Unsymmetric Multifrontal sparse LU Factorization package 
UML  Unified Modeling Language 
UPC  Unified Parallel C 
WRF  Weather Research & Forecasting 
XIOS  XML IO Server, from IPSL
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Executive Summary 

In this deliverable we present the scientific codes performance modelling carried out during 
the first six months of work package 8 of PRACE-2IP. For each code selected in the domains 
of Astrophysics, Material Science, Climate and Particle Physics, we provide a short summary 
of the algorithms to be the subject of refactoring. A detailed description of the proposed work 
and its motivations are reported, for most cases motivated through a performance modelling 
analysis. Each code is supplied with a standard test suite, which allows the verification of 
quality and correctness of the re-implemented software. A detailed workplan for the 
implementation phase (M7-20) is presented for each application, specifying the timeline and 
the milestones for its refactoring, and clearly stating the main objectives of the development 
work. 

In the deliverable we also introduce a fifth scientific community, Engineering, which has 
recently joined the work package. At the time of the submission of the current document, this 
community has identified the relevant applications and specified the main targets for code 
refactoring. The performance analysis and modelling will be added as soon as data and results 
are available. 

1 Introduction 
In the first four months, PRACE-2IP [1] work package 8 (hereafter WP8) selected a number 
of scientific communities that expressed a specific interest in having their numerical codes 
enabled to the coming generation of HPC systems, and which were willing to contribute to 
their development and refactoring. They recognised the value of exploiting new powerful 
architectures and at the same time they realized the peculiarities of these new architectures 
that, in order to be properly and effectively used, require redesign of codes in a close and 
synergic interaction between community code developers and HPC experts. 

Communities’ representatives proposed a list of relevant numerical applications that have 
been the subject of a first screening procedure, in order to identify those most promising 
(from the HPC point of view). The selected codes were then analysed in terms of algorithms, 
of adopted parallel strategies and paradigms and of actual performances (estimated on 
available computing platforms) in order to verify their suitability to the envisaged refactoring 
work. The list of these codes is presented in Table 1. 

These steps have been extensively described in deliverables D8.1.1 [2], D8.1.2 [3] and D8.1.3 
[4]. Note that a few codes in the list presented here were not present in D8.1.3. In particular 
the ELK/EXCITING performance analysis could not be completed and presented on time in 
the previous deliverable. The missing information and the performance model are added here. 
Furthermore, one more Material Science module has been added to the ABINIT package, and 
its performance analysis is described Appendix B.  

All the collected information and data are now used to complete the performance model of the 
different codes. A performance model allows one to express the performances of a code 
analytically as a function of its main algorithmic features and of the hardware architectural 
characteristics. The performance modelling methodology [5][6][7][8] was introduced in 
D8.1.2. It is used to identify the numerical kernels on which the redesign and refactoring work 
must specifically focus, and to predict performances on new HPC systems.  

The results of the performance modelling of the selected code are presented in this document. 
Note that not all the resulting models have the same degree of sophistication, depending on 
the complexity of the code and the algorithms, the experience and knowledge of the 
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community developers and last, but not least, the level of detail needed to identify the targets 
for refactoring. In all cases, we present a detailed description of the expected work, with 
accurate justifications of the proposed choices and a clear plan for code design and refactoring 

For each code, we also present the testing and validation procedure that will be adopted to 
verify that the software produced by WP8 works properly and produces results compatible 
with those generated by the original codes.   

Finally, we also describe the specific refactoring workplan for each of the selected 
applications, setting timelines and milestones, toward the M20 software release, which will be 
followed by the acceptance procedure, based on the presented tests.  

 

Domain Application Usage 
Astrophysics RAMSES Galaxy - cluster of galaxy evolution 

PKDGRAV  Large scale structure of the universe, precision 
cosmology 

PFARM Electron-atom scattering 
Climate OASIS Full climate modelling, coupler 

CDI/XIOS/PIO Efficient I/O libraries 
ICON Dynamical core 
NEMO/ICOM Ocean models 

Material Science ABINIT Density functional theory, Density-Functional 
perturbation theory, Many-Body perturbation 
theory, Time-Dependent Density functional 
theory 

Quantum 
ESPRESSO 

Density‐Functional theory, Plane Waves, and  
Pseudo-Potentials, Projector‐Augmented waves 

YAMBO Many-Body perturbation theory, Time-
Dependent Density functional theory 

SIESTA Electronic structure calculations and ab-initio 
molecular dynamics 

OCTOPUS Density Functional Theory 
Exciting/ELK Full-Potential Linearized Augmented-Plane 

Wave 
Particle Physics tmQCD Lattice QCD 

Table 1: Codes selected for performance modelling. 

In the current deliverable, we also introduce Engineering as a further scientific domain whose 
applications will be subject of redesign and refactoring. This late addition was possible due to 
the scientific community procedure introduced in D8.1.1 and justified by the large interest 
expressed by additional communities to have their codes exploiting novel HPC architectures. 
Due to the late start-up, at the time of the submission of the current document, this community 
has identified the relevant applications and specified the main targets for code refactoring. 
The performance analysis and modelling are on-going and will be formally reported (as 
addendum to the current or annex to a future deliverable) as soon as data and results are 
available. 

This document is organized as follows. Sections 2 to 6 are dedicated each to a different 
scientific domain: Astrophysics (Section 2), Climate (Section 3), Material Science (Section 4) 
and Particle Physics (Section 5). All sections report a short overview, the performance 
modelling results and the testing and validation procedure for each of the codes under 
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investigation in the corresponding community. The specific work plans for each code are 
presented as well. The Engineering community, the related selection procedure and the codes 
description is reported in Appendix A, that follows the Conclusions Section (Section 6). 
Finally, Appendix B presents the linear-response methodology, the new ABINIT module and 
its performance analysis. 

  



D8.1.4 Plan for Community Code Refactoring 
 

PRACE-2IP - RI-283493  24.02.20122 
 

4

2 Astrophysics 
In this section we give a short overview of the three codes selected for Astrophysics, and we 
complete their performance modelling by presenting the projected performance for novel 
HPC architectures. The three codes have been already extensively analysed in the previous 
deliverables D8.1.2 [3] and D8.1.3 [4]. For each code we describe the testing and validation 
procedure that will be adopted to verify the correctness of the accomplished refactoring work. 
Finally, we describe the work plan for the re-design and implementation of the various 
algorithms. 

2.1 RAMSES 

2.1.1 Overview  

The RAMSES code [9] is an adaptive mesh refinement (AMR) multi-species code, describing 
the behaviour of both the baryonic component, represented as a fluid on the cells of the AMR 
mesh, and the dark matter, represented as a set of collisionless particles. The two matter 
components interact via gravitational forces. The AMR approach makes it possible to get high 
spatial resolution only where this is actually required, thus ensuring a minimal memory usage 
and computational effort. 

During the performance analysis phase [3], we identified the most computational demanding 
parts of the RAMSES code as the Hydro and the Gravity kernels together with the related 
communication infrastructure.  

For the Hydro kernel the performance is strongly dependent from the AMR data structure. In 
fact, memory contiguity of two neighbouring Octs, the fundamental cells of the adaptive 
computational mesh, is not enforced. Therefore the corresponding data can be far from each 
other in the memory of the same processor or even in the memory of two different processors. 
Furthermore, despite the usage of the space filling curves, the load is not perfectly balanced 
between processors. This problem grows with the number of processors, since smaller chunks 
of data are assigned to each of them. This means that first the data distribution tends to be 
more and more heterogeneous, leading to higher imbalances of the work. Second, in order to 
build the AuxBoxes (small data cubes used for solving hydrodynamics equations), each 
processor has to access information stored on a larger number of processors, affecting 
strongly the network load and the communication overhead. All the details and the formal 
definition of the Oct and the AuxBox data structures can be found in [4]. In order to improve 
the performances, both the load balancing must be improved and the communication 
overhead must be reduced. This can be obtained either working on the basic algorithmic 
architecture, changing the AMR data structure, or on the domain decomposition strategy, 
increasing data locality. These solutions, however, are extremely invasive, from an 
algorithmic point of view, leading to deep changes in the software architecture. A third 
feasible solution is that of exploiting some specific hardware solutions, like multi-core nodes 
with large shared memory and accelerators.  

In order to exploit shared memory, the Hydro kernel has to be re-implemented with a hybrid 
OpenMP+MPI approach. This, in principle, could be accomplished by an OpenMP parallel 
loop running on all the active cells stored in each node. However, specific care must be 
devoted in managing the access to the shared memory. 

Accelerators, like GPUs or MIC, can strongly improve the performances of the computational 
demanding Riemann solver. In fact, once AuxBoxes are built around the ncache cells, the 
computation is completely local and fully vectorisable: in order to calculate the new value of 
each cell, the code uses only the data stored in the corresponding AuxBox, with no other 
access to memory. Hence, each cell can be calculated independently from all the others, 
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perfectly matching, e.g., the CUDA programming model. Once more, for a detailed 
discussion, we refer to [4]. 

The Gravity kernel presents a data structure similar to that of the Hydro part, and data 
necessary to accomplish the calculation of the gravitational field are collected in patches (see 
[4]). However the long-range feature of the gravitational forces makes the implementation of 
an efficient data parallel algorithm hard. Therefore, of the two approaches proposed for the 
Hydro section, only hybrid OpenMP+MPI parallelisation seems to be suitable for the Gravity 
kernel.  

2.1.2 Performance improvements 

For both the RAMSES kernels under investigation, the envisaged refactoring effort will focus 
on the hybridisation with OpenMP, in order to exploit large multi-core shared memory 
systems, and support of accelerators for the speed-up of the calculation. 

The target architecture selected for both codes has features that are expected for most of the 
future HPC architectures, based on a large number (O(100000)) of multi-core (O(16-32)) 
nodes, each node equipped with 1 or more accelerators (like GPU or MIC), which, for 
suitable algorithms, can provide a computing power comparable or larger than the node itself.  

Shared Memory Multicore Systems 

The usage of multi-core nodes has for both Hydro and Gravity kernels relevant consequences, 
affecting the performances and the spectrum of problems for which the codes can be used.  

Shared memory avoids, inside a node, to go through explicit message passing and 
synchronisation. Memory access is delegated to the OS with no MPI related information 
exchange between different intra-node cores. This affects to some extent the performance, but 
the expected improvements are limited by different factors, first the intense memory usage of 
our algorithms, with continuous access to non-contiguous memory addresses, with a strong 
impact also on the cache usage, and the associated frequent race conditions. However, the 
availability of large memories allows a more efficient domain decomposition, strongly 
simplifying the building of the AMR tree hierarchy, thus reducing data exchange and 
improving synchronisation, leaving them to inter-nodal (so, coarse-grain) message passing 
operations, to optimise memory usage and to increase the size of the problems to be solved, 
reducing the storage needed for private variables, replicated in each memory.  

In practice, the performances of the hybrid (MPI+OpenMP) codes can be modelled in a 
simple way, focusing on the improvements related to the usage of message passing between 
M node instead of N cores, with M<<N. 

Performance model: single node. 

Given  

Ncores = number of cores in a node; 

T0 = time to complete a typical run for the given kernel on one core; 

MPI = MPI efficiency of the kernel on Ncores computing elements; 

OMP = OpenMP efficiency of the kernel on Ncores cores 

The time to solution can be calculated on Nnode computing elements, in this case cores, as: 

TMPI,NODE =  T0 / Ncores / MPI,Ncores, 

for the message passing code and, in the same way, for OpenMP: 

TOMP = T0 / Ncores / OMP,Ncores. 
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Therefore, on the node the performance increase, using OpenMP, can be estimated as: 

SNODE = MPI,Ncores / OMP,Ncores. 

Performance model: hybrid code. 

At this point, the computing element is represented by a whole node, the MPI part being 
characterised only by the inter-nodes communication. Therefore the MPI time to solution can 
be estimated as: 

TTOT =  TNODE / Nnodes / MPI,Nnodes 

For the hybrid code (MPI+OpenMP), we have that the time to solution on a single node 
(TNODE) is: 

TNODE = TOMP 

TTOT =  TOMP / Nnodes / MPI,Nnodes, = T0 / Ncores / OMP,Ncores / MPI,Nnodes 

and the overall performance increase for the hybrid code (with respect to the pure MPI 
version) is: 

THYBRID = TMPI MPI,NTOT / (OMP,Ncores  MPI,Nnodes) 

where TMPI is the time to solution of the pure MPI code on Ncores cores.   

GPU Accelerators 

The GPU has the main purpose of accelerating the computation through the exploitation of 
the many-cores architecture of the GPU. There are two main aspects to consider from the 
performance point of view. First, the data transfer between CPU and GPU has to be 
minimised, since the bandwidth between the two is typically 10-20 times smaller than that of 
the memory. Second, the work must be data parallel, with a high ratio of floating point 
operations to memory accesses, in order to benefit of the multi-core architecture of the GPU, 
hence to fully exploit its computing power.  

Another crucial aspect to consider is the GPU’s memory size, usually smaller than that of a 
node, that can pose important bounds to the maximum data size that can be moved on the 
GPU, and, hence, to the minimum number of data transfers to be instrumented. This can 
strongly impact the maximum achievable performance improvement. 

Performance model.  

We can estimate the time to solution for one of the kernels as: 

TTOT = TCPU + TCPU-GPU + TGPU-GPU + TGPU 

where TCPU  is the time spent on the CPU essentially for MPI data transfer between nodes, 
TCPU-GPU is the data transfer time between CPU and GPU, TGPU-GPU is the data load/store time 
in the GPU memory hierarchy and TGPU is the computing time on the GPU. 

MPI data transfer dominates TCPU and this does not change between pure MPI and GPU 
implementations. 

Data transfer between CPU and GPU (and back) is characterised by the PCI Express 
bandwidth PCI and protocol latency Lt: 

 

where M  is the size of a single variable on the node (in bytes), Nb is the number of cells 
collected for each integrated cell, NV is the number of variables to be copied on the GPU, 
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MMPI  is the size of data coming from other nodes for one variable and Ncache  is the number of 
data transfers between CPU and GPU. Furthermore, we assume the number of variables to be 
calculated and finally copied back from GPU to CPU is NR. 

Memory accesses on the GPU are mainly due to a) the reconstruction of Nc (e.g. for hydro: 
63) elements local domains, b) the copy of the results back from the shared to the main GPU 
memory. In this case we have to move only NR values per cell. The performance can be 
parameterised in terms of memory bandwidth GPU between GPU’s main and shared memory 
and the latency GPU to access main memory: 

   

Finally, the GPU computing time can be estimated as: 

 

where NOP is the average number of operations to integrate a cell and μGPU is the GPU 
performance (flops/sec). We always assume double precision (8 bytes) variables.  

Putting all together: 

  

A critical parameter is the number of iteration, Ncache, the GPU computation must be split into. 
This can be calculated as a function of the GPU memory size MGPU: 

 

where Mtot is the total memory size on the node. Hence: 

  

Use cases: 

We can estimate the performances in a reference case, with the above model parameters set to 
typical values for current architectures and using the results of deliverable D8.1.2. 

For the hybrid implementation (MPI+OpenMP), we have that for nodes up to 8 cores we can 
assume almost perfect scalability, therefore: 

OMP,8 = 1 

THYBRID = TMPI MPI,NTOT / MPI,Nnodes 

For the 5123 test we got an efficiency of about MPI,1024 = 0.7 on 1024 cores. On the 
corresponding number of nodes, we can estimate  MPI,128 = 0.95, hence 

THYBRID = TMPI MPI,1024 / MPI,128 = 0.74 TMPI 

The performance gain grows for larger problems, requiring a larger number of cores and for 
architectures with more cores per node (e.g. 32 cores per node). 
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For the GPU part we analyse different strategies. The Hydro kernel gives the results 
summarised in Table 2. 

 

Parameters Case 1 Case 2 Case 3
M (GBytes)  0.042 0.042 0.042 

MMPI (GBytes)  0.000120828 0.000120828 0.000120828 

NV  8 8 8 

Nb  1 216 216 

Nc  216 216 216 

NR  5 5 5 

NOP  1000 1000 1000 

μGPU (GF/sec)  250 250 250 

GPU (GB/sec)  130 130 130 

PCI (GB/sec)  6 6 6 

Lt (sec)  1.00E‐06 1.00E‐06 1.00E‐06 

GPU (10
‐9 sec)  0.25 0.009259259 0.009259259 

MGPU (GBytes)  5 5 5 

Results       

Ncache  0.109393324 14.59895802 200000 

Latency 2.18787E‐07 2.91979E‐05 0.4 

Tcpu-gpu 0.091161322 12.16582755 12.56579835 

Tgpu-gpu 2.834454808 0.644135363 0.644135363 

Tgpu 0.021 0.021 0.021 

Ttot 2.94661613 12.83096291 13.23093372 
Table 2: Results of the performance model related to typical hardware settings in the 1283 test, for the 
Hydro kernel. Symbols are defined in the text. 

Case 1 describes an algorithm implementation where all the necessary data are moved to the 
GPU at the beginning of the integration sweep and the results copied back at the end. This is a 
solution that optimises memory usage, since no data are replicated in memory, and minimises 
the copy effort to/from the GPU, but it is extremely demanding in terms of GPU main 
memory access, continuously collecting and copying scattered data to shared memory and 
decreasing the flops-per-byte ratio. In this case, our model predicts an overall time to solution 
of about 3 seconds, dominated by GPU memory accesses. Latency due to data movements 
from/to the GPU is negligible; the associated transfer and computing times give a minor 
contribution to the total time. In Case 2, the data array composed by all the pre-calculated 
sub-boxes is copied to the GPU. This in order to solve the previous problem on Tgpu-gpu, 
which is in fact strongly reduced, but with a critical penalty in terms of CPU-GPU data 
transfer time. Furthermore, TCPU increases accordingly (not shown here). The overall result is 
poorer GPU-related performance of approximately a factor of 4. Case 3 presents the same 
solution of Case 2 but with much larger Ncache value, as usually adopted in the pure MPI 
version of the kernel (typically Ncache = 10). This can improve the performance on the CPU 
but slightly worsen the performance on the GPU, due to the overhead related to the higher 
number of data transfers between the two devices.  

Case 1, therefore, seems to be the most effective in terms of GPU performance. Note that the 
same test, run using the pure MPI code on 8 cores (see D8.1.2), takes 8.26 sec. to complete.  

For the Gravity part, our performance analysis has pointed out that the implementation of an 
efficient GPU version can be extremely challenging. This is due to the multigrid approach 
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that introduces a hierarchy of meshes in order to accelerate the convergence to solution for 
each connected high-resolution patch. This limits the potential for GPU threads working 
independently, introducing a high degree of synchronisation that can strongly impact the 
performance. This kind of effect is hard to quantify, so it is not considered in the model. 
However, it can be expected to lead to poor performances on highly data parallel architectures 
such as GPUs.     

Conclusions 

The performance modelling procedure applied on the RAMSES code has proved that the 
refactoring of the main kernels, namely Hydro and Gravity, in order to exploit hybrid 
architectures, with a large number of computing nodes (communicating with the message 
passing paradigm), made by multi-cores processors with shared memory, and equipped with 
accelerators (e.g., GPUs and MICs), can be effective. 

The Hydro and the Gravity kernels can strongly benefit of the exploitation of shared memory 
nodes, not only for performance reasons, but also since the large available memory allows to 
optimise its usage, avoiding demanding data replica, which limits the maximum size of the 
simulated problem on distributed systems with small memory per core, and restricting the 
usage of MPI message exchanges to internodes communication, allowing efficient local data 
access instead. 

GPUs can be effectively used thanks to the intrinsic data parallelism of the hydrodynamics 
algorithms. This is slightly affected by the peculiar data structure adopted by RAMSES, that 
leads to a memory intensive activity, which penalises the accelerator’s throughput. 
Nevertheless, the performance model predicts relevant benefits in using the GPUs, especially 
moving the entire Hydro computational kernel on the device. 

The Gravity kernel turned out to be not particularly suitable to the GPU architecture. Possible 
solutions can be designed, but they require deep changes of the algorithm, that are probably 
beyond the scope of the current project. They will be considered only if time and resources 
permit. 

2.1.3 Testing and Validation procedure 

The RAMSES distribution comes with a number of tests to verify the correctness of the 
results. The simplest represent basic idealised fluid dynamics problem in one dimension, for 
which the analytical solution can be calculated and compared to the code results. In particular 
we have: 

 Advection test (1D square wave moving with the fluid with no diffusion) 
 Shock tube test (propagation of waves in a fluid starting from discontinuous initial 

conditions) 

Then classical tests like the Sedov Blast Wave in 1,2 and 3D can be run (evolution of a 
cylindrical or spherical blast wave from a delta-function initial pressure perturbation in an 
otherwise homogeneous medium). 

Finally, two different tests are available which involves all the different code’s kernels. The 
first is a full cosmological simulation while the second is a smaller scale galaxy formation 
run. For these tests no analytical solution exist, but reference data are available. 

2.1.4 Workplan 

The RAMSES re-design and refactoring has the following primary objectives: 

 Hybridisation (MPI+OpenMP) of the Hydro kernel 
 Hybridisation (MPI+OpenMP) of the Gravity (multigrid) kernel 
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 GPU enabling of the Hydro kernel using 
o OpenACC (directives) 
o CUDA 
o OpenCL 

 Approaching MIC architecture 
 GPU enabling of Gravity kernel (depending on availability of time and resources) 

The corresponding GANTT is shown in Figure 1. 

 
Figure 1: GANTT for RAMSES refactoring 

Three milestones have been identified, associated to main achievements of the work on 
RAMSES (red lines in the GANTT). The first, at M10, corresponds to the hybrid 
(MPI+OpenMP) code ready (both for Hydro and for Gravity kernels). The second milestone 
is at M14, when a first version of RAMSES (Hydro kernel) will be running on GPUs (with 
different paradigms adopted). At M18, we expect to have the code fully optimised on the 
GPU and this corresponds to the last milestone. 

The effort will be shared between CSCS-ETH and the physics department of the University of 
Zurich (developing RAMSES). However contributions are expected also from CEA, who has 
already experience in the CUDA implementation of a highly simplified (not AMR) version of 
the code. 

 

2.2 PKDGRAV 

2.2.1 Overview  

PKDGRAV [10] is a Tree-N-Body code, designed to accurately describe the behaviour of the 
Dark Matter in a cosmological framework. The central data structure in PKDGRAV is a tree 
structure, which forms the hierarchical representation of the mass distribution. PKDGRAV 
calculates the gravitational accelerations using the well-known tree-walking procedure of the 
Barnes-Hut [11] algorithm. 

PKDGRAV is an extremely well engineered software, optimised for HPC, whose main 
current performance limitations are related to the adoption of adaptive time steps (see [4] for 
details). PKDGRAV performance improvement can be expected by exploiting multi core 
shared memory systems. In fact, core calculations of PKDGRAV have been written to use 
“tiles” of vectors whose size can be optimised for OpenMP. The domain decomposition can 
be performed over nodes as opposed to cores, greatly reducing overhead and increasing 
parallelisation for difficult cases.  
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2.2.2 Performance improvements 

The performance analysis highlighted how the management of workload on different 
processors represents the main PKDGRAV performance bottleneck when adaptive time steps 
are switched on. Adaptive time-stepping copes with the large dynamical range typical for 
cosmological simulations. In this situation, each particle, depending on its dynamical state, 
evolves on different timescales. This means that long time steps can be adopted for particles 
lying in “quiet” (i.e. under-dense) regions, using a small time step only for those particles that 
really need it for numerical accuracy, strongly reducing the computational effort, which is 
mainly due to small time steps particles.  

The performance gain obtained with adaptive time steps is however lost on parallel systems. 
The number of particles at the different time step levels changes continuously in time. 
Furthermore, particles at different levels have an inhomogeneous space distribution, and a 
balanced domain decomposition is challenging to get. When multiprocessors architectures are 
used, an effective load balancing is difficult to achieve, considering that at different levels, 
different processes impact the computing time, as it is clear from Figure 2. The figure 
demonstrates how at level 0, where we have a homogeneous distribution of the weakly 
interacting particles, imbalances are negligible, while the force calculation represents the most 
demanding part of the algorithm. The imbalance is also low at the highest levels. For those 
levels in fact, few particles are present (although each particle accounts for 128 and 256 steps 
with respect to level 0) and most of the overhead is due to the access to the distributed tree. 
Imbalance is instead dominating the intermediate time step levels. 

 
Figure 2: Distribution of absolute time spent in different parts of the code td different timestep levels in 
runs with 1000 (left) and 2000 (right) processors. The solid lines show the time for the various sections 
integrated on the various time levels. 

The resulting overall picture is extremely complex. Previous algorithmic solutions, 
implemented to improve the load balance among processors, proved to be either ineffective or 
highly computationally demanding, with the load balance scheme dominating the computing 
time. An interesting solution, however, is the usage of large shared memory nodes integrated 
in a distributed system. In this way, from one side, load balancing is easier to achieve, due to 
the much coarser domain decomposition. On the other hand, communication is reduced, and 
NUMA memory access becomes dominant, strongly improving the performance in all the 
kernels involved in the calculation.  

The implementation of a hybrid MPI+OpenMP version of the code represents the main target 
of the work in WP8. This would be a major algorithmic improvement, preliminary to any 
other kind of enhancement, since it appears to be the only way to support adaptive time-
stepping on large multi-core HPC systems with reasonable performances. This is also suitable 
to the resources available for this task in the project and compatible to the WP8’s time frame. 
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2.2.3 Testing and Validation procedure 

PKDGRAV is not supplied with a standard test suite. However the developers have selected 
two data configurations that can be adopted as reference cases. Both are defined in a binary 
file, storing the initial positions and velocities of the particles, and in a parameter file, setting 
the physical and numerical parameters characterising the model. The two tests account for a 
different number of particles. The first is a 2.5 million particles dataset, suitable for 
debugging and small performance tests. The second, composed by 1 billion particles, is used 
for large performance and scaling benchmarks. 

For both datasets, log files are provided, containing reference quantities that can be used for a 
first check of the correctness of the results. Final data files, generated by the original version 
of the code at a given time step, are then available for a detailed comparison of the simulated 
particles distribution. 

2.2.4 Work plan 

The work on PKDGRAV is focused on the hybridisation of the code to exploit large multi-
nodes multi-core architectures. Three main phases are expected, the first consisting in the 
OpenMP enabling of the Gravity kernel and encompassing the first five months of activity, 
the second focusing on the Tree building numerical kernel, going from M11 to M15, the third 
considering the most challenging time integration kernel, with the adaptive time step part. 
This is the most demanding phase, going from M13 to M18. All phases have a first part 
characterised by code implementation and a second part for debugging and optimisation. The 
last three months are dedicated to testing, validation and further optimisation of the code as a 
whole. The GANTT of the work plan is presented in Figure 3. 

The work will be carried out by the PKDGRAV developers at the Physics Department of the 
University of Zurich, in collaboration with CSCS and the University of Coimbra (UC-LCA).  

 
Figure 3: GANTT for PKDGRAV refactoring. 
 

2.3 PFARM 

2.3.1 Overview 

PFARM is part of a suite of programs based on the ‘R-matrix’ ab-initio approach to 
variational solution of the many-electron Schrödinger equation for electron-atom and 
electron-ion scattering [41] relativistic extensions have been developed, and have enabled the 
production of accurate scattering data. The package has been used to calculate electron 
collision data for astrophysical applications (such as: the interstellar medium, planetary 
atmospheres) with, for example, various ions of Fe and Ni and neutral O, plus other 
applications such as plasma modelling and fusion reactor impurities (for example ions of Sn, 
Co, and in progress, W). In R-matrix calculations configuration space is divided into two 
regions by a sphere centred on and containing the atomic or molecular ‘target’. Inside the 
sphere an all-electron configuration interaction calculation is performed to construct and 
diagonalise the full (energy-independent) Hamiltonian for the problem within the finite 
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volume in readiness for energy-dependent ‘R-matrices’ to be constructed on the boundary. 
PFARM performs the energy-dependent one-electron 'outer region' calculations, forming R-
matrices and propagating them in the multi-channel potential of the target from the R-matrix 
sphere boundary to the asymptotic region in which scattering matrices and (temperature-
dependent) collision strengths are then produced [41]. 

PFARM divides configuration space into radial sectors and solves for the Green’s function 
within each sector using a basis expansion: the BBM method [42]. The parallel calculation 
takes place in two distinct stages, with a dedicated MPI-based program for each stage. Firstly, 
parallel sector Hamiltonian diagonalisations are performed using a domain decomposition 
approach with the ScaLAPACK-based code EXDIG. The energy-dependent propagation 
(EXAS stage) across the sectors is then performed using systolic pipelines with different 
processors computing different sector calculations. 

EXAS Stage 

In this stage of the calculation the majority of the processors available are arranged in arrays 
of processor pipelines, where each ‘node’ of the pipeline represents one sector. These 
pipelines are supplied with initial R-matrices (one for each scattering energy) from the inner 
region boundary by an R-matrix production group of processors (domain decomposition 
calculation). The final R-matrices produced by the propagation pipelines are passed on to a 
third group of processors for a task-farmed asymptotic region calculation, before results such 
as collision strength results are written to disk by a much smaller group of ‘manager’ 
processors . The decomposition is shown in the figure below. 

 
Figure 4: Example Process Decomposition in the EXAS Stage 

The significant advantage of this ‘hybrid’ decomposition of tasks in EXAS is that much of the 
initial R-matrix and sector R-matrix propagation calculation on each node of the pipeline can 
be based upon highly optimised level 3 BLAS routines, leading to highly efficient usage of 
the underlying HPC architecture [21]. The main priority is therefore to optimise the number 
of processes dedicated to each task-group, particularly the asymptotic region calculation, and 
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minimise the runtime management (data collection) group whilst ensuring the best achievable 
load-balancing properties. The processor configuration is currently determined automatically 
via a Perl script using predictive algorithms for expected performance of each task-group 
[16], but this is in need of updating for the latest multi/many core and accelerator based 
architectures. 

2.3.2 Performance Improvements 

As described in the previous section, EXAS has been developed so that the vast bulk of the 
computation takes place within optimised LAPACK and BLAS routines. It is probably fair to 
assume that these specialised, usually vendor-optimised libraries will continue to be provided 
on any future architecture in PRACE, including library routines optimised for accelerator-
based architectures. With this in mind, the key to enabling fast and scalable performance of 
EXAS lies with maintaining excellent load balancing and minimising initialisation, check-
pointing and finalisation costs (all dependent upon efficient I/O). 

Load-Balancing Model 

The load-balancing model assigns the correct number of processes to each stage of the 
calculation (see Figure 4) in order that: 

 

1. Initial R-matrices are produced at a sufficient rate to satisfy demand from the process 
pipelines 

2. Asymptotic calculations are processed at a sufficient rate to deal with the supply of 
final R-matrices from the process pipelines 

3.  Pipelines are never stalled 
 

The model is described in detail in [16] where the more complex ‘spin-split’ case is also 
modelled. It is used to calculate the number of process pipelines ࡼࡺ that can be formed from 
a given number of processes ࢚ࢀࡺ given that the computational load must be balanced with 
that of the other functional groups ࢘

, ࢙
, 

where ࢘
 is the number of processes in 

the R-matrix production group, ࢙ 
is the number of processes in the asymptotic region group 

and  
is the number of processes in the manager group.  For simplicity in this document 

we assume a single R-matrix production group. The PFARM code has been upgraded for 
petascale architectures to allow several production groups working simultaneously with 
appropriate adjustment of the performance model. The model takes into account how the 
computational load varies for different group sizes, with two coefficients requiring adjustment 
according to hardware architecture and communication efficiency. These coefficients need to 
be obtained for each (PRACE) hardware system by test runs to be carried out as part of the 
porting process. 

Based on standard floating point operation counts for matrix-matrix operations, it is 
straightforward to show that the number of floating point operations (flops) required to 
construct initial propagation R-matrices is: 

ܰ
௦ ൌ  ݊ଷݍ2

where qin is the number of radial continuum basis functions retained in each channel in the 
internal region and n is the number of channels. 
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The number of flops required to calculate a corresponding sector R-matrix in a pipeline is: 

ܰ
௦ ൌ  ଷ݊ݍ6

where q is the number of BBM basis functions retained in each channel in the external 
region. 

A constant C1 is introduced to account for communication costs during propagation. This is 
machine dependent and varies according to factors such as memory bandwidth and latency, 
interconnect bandwidth and latency and the system’s efficiency in overlapping 
communication with computation.  

Therefore the ratio ࢘
  can be written as  ࡼࡺ 

࢘

ࡼࡺ
  ൌ   

݊ଷݍ2

ଷ݊ݍ6   ൈ  ଵܥ  

which reduces to 

࢘

ࡼࡺ
 ൌ    

ݍ

ݍ3
 ൈ   ଵܥ  

This determines the ratio of number of pipelines to processes in the initial R-matrix 
production group. 

Similarly, at the end of each pipeline sufficient processes must be allocated to the asymptotic 
calculation group to prevent the pipelines from being held up. 

Calculations on the asymptotic nodes are dominated by the singular value decomposition 
LAPACK routine dgesvd during the calculation of the K-matrix. The number of flops in the 
calculation is 12n3 when all channels are open. Therefore the ratio ࢙ 

 :is ࡼࡺ  :

࢙

ࡼࡺ
  ൌ   

12݊ଷ

ଷ݊ݍ6   ൈ    ଶܥ  

Where C2 is a constant that arises from i) the proportion of the total time spent calculating the 
K-matrix in the overall asymptotic calculation (usually close to 1) and ii) the relative flop rate 
of dgemm and dgesvd.    

Assembling these ratios and introducing ࢚ࢀ
 , ࢇ

 and 
 , respectively the total number 

of processes, the number of processes in each pipeline and the number of manager nodes (all 
determined from the input data), gives us the following relationship for the non-spin-split 
case : 

ൌ ࡼࡺ  
 ݊

െ  ݊
ೝ

ேು
  

ೞ

ேು
  ݊ೌ

 
 

 (where ࡼࡺ , ݊ೝ
, ݊ೞ

 are estimated to the nearest integer). 

Parallel I/O using ‘XStream’ 

In order for the models of the type described above to be highly accurate, the amount of time 
spent in setting up the production system and producing final data, in particular I/O from the 
internal region, between the EXDIG and EXAS stages and final output of what may be large 
amounts of energy and temperature dependent scattering data must be minimal. This is not 
necessarily the case for petascale HPC machines designed for clock-rate performance and for 
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which substantial serial I/O may become a major architecture-dependent bottleneck. This 
question must be tackled by adopting parallel I/O methods that target relevant MPI tasks, do 
not overload the system and which ideally produce portable data, as for example, the inner 
and outer region stages may be run on different machines.  We note the following points.  

• R-Matrix codes consist of various stages (eg, radial integrals, angular couplings, 
Hamiltonian construction and diagonalization inner region stages, diagonalization and 
propagation/asymptotic PFARM outer region stages). The older serial codes used 
unformatted and direct access files to pass data: this is not always portable. More recently, 
final inner region output may be written in portable XDR format.  

• PFARM preferably uses XDR files but may also read unformatted binary files in various 
convenient data arrangements to read inner region data, and XDR files between stages 
with data written to different files for pickup by the different groups in EXAS. MPI-IO 
files are more efficient in parallel but not portable. 

• The I/O-handling ‘XStream’ package [46]. is being developed to provide a wrapper 
package to allow various option at any given file read/write.  Details of the format 
required are supplied in a much more straightforward manner than the set of namelist 
parameters currently required: the package provides a generic interface for top-level I/O 
routines in order to provide effective object oriented parallel I/O.  Internally an MPI-IO 
extension allows parallel writes and reads to different file records which follow the direct 
access patterns originally expected by the codes. 

• The package is already in use in other (inner region) programs within the R-matrix suite. 

• The final package will be freely available as a standalone to be incorporated into other 
codes in the PRACE project. 

Conclusions 

The workplan for PFARM will first allow detailed testing of the load-balancing performance 
models on the range of PRACE architectures, leading to fine-tuning (any necessary 
adjustments) and ideally a straightforward automated procedure and script to generate the 
machine dependent coefficients and optimal core distributions. It will also thoroughly upgrade 
and test the parallel XStream package to be useful as a general key I/O tool within PRACE, in 
addition to further improving the R-matrix suite. If time permits, a secondary goal will test 
any recent developments in parallel eigensolver library routines, such as ELPA [44] and 
MAGMA [45] in order to determine their suitability for the large Hamiltonian 
diagonalizations that are required in EXDIG. 

2.3.3 Workplan  

PFARM electron-atom electron-molecule collisions R-matrix Code Development 

 
 

Implementation  Testing and Optimization 

Figure 5: GANTT chart for PFARM. 
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Workplan Milestones: 

M14: EXDIG Parallel IO completed 

M18: EXAS Parallel IO completed 

M20: XStream Final Package completed 

2.3.4 Testing and Validation Procedure 

During development of the parallel code results from a standard test suite were collected and 
regularly validated with results from the code’s predecessor - serial FARM and other 
propagation methods [47]. More recently an alternative R-matrix propagation code has been 
developed based on the Airy Log-Derivative propagator, originally developed by Alexander 
[48] which has allowed validation of larger test cases [46].  
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3 Climate 
As discussed in deliverable 8.1.2 [3], seven codes were evaluated and analysed within four 
different areas of computational climate science: 

1. Couplers:  OASIS 
2. Input/Output: CDI, XIOS, PIO 
3. Dynamical cores: ICON 
4. Ocean Models: NEMO, Fluidity-ICOM 

The performance analysis reported in [3] and the potential computational improvements 
proposed in [4] led to extensive work for some of the codes, such as ICON, NEMO and 
Fluidity-ICOM, on porting to GPUs.  In addition,  performance models were developed for 
some of these codes and these results are also reported here.  In the areas of couplers, 
preparatory work on analysing the scalability of OASIS3-MCT has taken place and is 
reported here.  The effort on I/O was of preliminary nature, namely forging a consensus 
among I/O stakeholders in the community.  The initial I/O strategy and work plan are 
discussed subsequently.  

 

3.1 Couplers: OASIS 

The OASIS coupler was seen to be a key component of European climate models, and its 
performance was shown in D8.1.2 to be a bottleneck to petascale and exascale modelling. In 
D8.1.3, a new version of OASIS, OASIS3-MCT, was examined and tested against OASIS4 
with pre-computed weights. Following this, it has been decided to optimise OASIS3-MCT as 
the coupler for scaling current climate models, and prepare a new generation of coupler for 
future models. 

OASIS3-MCT, combining the coupler from CERFACS with the Model Coupling Toolkit 
(MCT,[31]) was tested on the PRACE Tier-0 Bullx computer “CURIE” up to 2048 cores.  As 
the code has been under active development, a full performance model has not been possible. 
Nevertheless, two scaling weaknesses were highlighted at high core counts: 

1. The time taken to exchange fields in the “toyatm/ocn” test case with high resolution fields 
(IFS T799 grid and the ocean component using the ORCA 0.25 deg grid) was seen to 
decrease for 1 to 128 cores, but then increase. Profiling shows that while communications 
remain reasonable, the matrix-multiply when remapping from the source to target grid is 
responsible for the uptick in time taken. Hence this has been chosen as a target for 
optimisation. 

  

Figure 6: OASIS3-MCT: Coupling exchange 

0,0000

5,0000

10,0000

15,0000

20,0000

25,0000

30,0000

35,0000

1 4 16 64 256 1024

Datenreih
en1
Datenreih
en2



D8.1.4 Plan for Community Code Refactoring 
 

PRACE-2IP - RI-283493  24.02.20122 
 

19

2. The time taken for initialisation of the coupler has been highlighted for work. While the 
time taken for initialisation is in practice a small part of the overall runtime of climate 
simulations, it may be significant in the case of multiple, short runs. Hence this was chosen as 
the second target for optimisation within PRACE WP8. 

ICHEC will be dedicating 6 months of effort to these tasks. 

  
Figure 7: time spent in OASIS3-MCT initialisation 

Secondly it was agreed to work on developing the „next generation“ coupler, targeting models 
with icosahedral or unstructured grids (e.g. ICON, the Fluidity-ICOM ocean model, etc.). 
Open-PALM has been developed at CERFACS and ONERA for data assimilation in ocean 
models. While this coupler is frequently used in many fields, such as aerospace, it does not to 
date include conservative interpolation. Hence it is agreed to analyse using existing 
conservative interpolation schemes (e.g. ESMF and Farrell/Maddison) within Open-PALM. 
This work is to be undertaken by CEA/GENCI: the work will be done through „ La Maison 
de la Simulation“ by Joel Chavas, in collaboration with CERFACS. 12 months of effort will 
be devoted to this task. 
 

 
Figure 8: GANTT chart for OASIS 

 
3.2 Input/Output: CDI, XIOS, PIO 

As described in D8.1.3 [4], a common “I/O services” module is being developed within the 
ENES community, for use by all climate models. A workshop is planned at DKRZ in 
Hamburg  on February 27-28, 2012, at which the design will be completed. Hence full details 
of this task were postponed until this meeting. Nevertheless, progress has been made on the 
larger design of the proposed “IO services” module and the role of PRACE-2IP WP8: 
 

 I/O services will implement a writer service, reading data from the model nodes (those 
nodes running the climate model itself) via RDMA / single-sided communications. 
This enables the model to continue while I/O services handles the parallel write (read 
is not an issue for global models). 
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 The I/O services implement parallel writes to a number of potential formats, 
principally netCDF and GRIB, using the CDI library or a variant.  

 The I/O services are implemented using separate I/O nodes, to enable buffering of I/O 
in memory. This balances the large transient communications internal to the compute 
cluster (e.g. 250 GB/s) to the typically smaller but sustained I/O bandwidth; then I/O 
scaling becomes a matter of adding additional nodes for I/O. 

 Post-processing is then handled on the fly within the I/O services, based on the XIOS 
model from IPSL.  
This work is done in collaboration with IPSL (XIOS developers), MPI-M (CDI 
developers), in parallel to the G8 “ICOMEX” dycore initiative and IS-ENES efforts.  
 

Within PRACE, ICHEC and CSCS will implement an initial template version of the common 
I/O services based on the ScaLES CDI, in comparison to the existing PIO  developed at 
NCAR. This implements the API, in which the post-processing services will be implemented 
in parallel by ENES partners (IPSL).  

Currently ICHEC are scheduled to do 18 months effort on this project; CSCS 6 M. 

 

 
 

3.3 Dynamical Cores: ICON 

3.3.1 Performance Model 

As pointed out in deliverable D8.1.3 [4], the ICON non-hydrostatic dynamical core is a good 
candidate for the Roofline Model [15]. This semi-empirical model (see Figure 9) provides a 
simple, understandable mechanism for predicting performances on emerging architectures 
based on two simple benchmarks: the stream benchmark for attainable memory bandwidth, 
and a computationally intensive micro-benchmark (generally a matrix-matrix multiplication) 
to determine the maximum attainable floating-point performance.   For a memory bandwidth-
bound application, the rate of floating-point operations is related linearly to the computational 
intensity, namely the number of operations performed per byte transferred to/from memory 
(which may or may not reside in cache). At some given computational intensity, the floating-
point unit becomes the bottleneck, and the performance saturates at roughly the micro-
benchmark level.  

As discussed in D8.1.3 [4], the computational intensities of the ICON NH kernels were the 
subject of an extensive evaluation at the beginning of the project.  As shown in Figure 10, the 
intensities range from 0.1 to 1.0, with an average of 0.38.  ICON NH performs exclusively 
double precision (8-byte) arithmetic. 
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Figure 9: The Roofline Model provides a simple mechanism for predicting application performance based 
on two benchmarks.  The performance figures given are for a quad-core Opteron 8380 (2.5 GHz). 

 
Figure 10 : The roughly 60 ICON NH kernels vary in computational intensity and performance. The 
outlying kernels on the right and left are part of the vertical implicit solver, which has loop dependencies 
and has to run sequentially, noticeably reducing performance. 

In order to predict the time to solution of the dynamical core, we take note of the following 
attributes of ICON NH: 

 As one would expect, run time is linear in the number of iterations. 
 The base resolution, R2B0 with 80 triangles and 35 vertical levels, requires roughly 

0.0735 giga-operations (GFlop) per iteration. 
 The step from one iteration level to the next higher consists of subdividing each 

triangular face into four new triangles, and adds almost exactly a factor of 4 to the 
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number of operations.  Tests show that run times on CPUs increase by slightly larger 
factor (4.1-4.2) probably due to cache effects.  On GPUs, the run times increase by a 
factor of less than four due to better utilisation of the device (higher thread 
occupancy). 

This leads to the following prediction of time to solution (in seconds), as a function of the 
number of iterations, the level of refinement, and the memory bandwidth (in GB/s) 
determined from the stream benchmark: 

 

Some single-node measured triad-stream benchmarks are: 45.9 GB/s on a dual-socket AMD 
Interlagos (32 total cores) node, 24.8 GB/s on a single socket Intel Westmere (8 cores), 116.6 
GB/s on an NVIDIA GTX285, 84.1 GB/s on an NVIDIA S1070, and 103.1 GB/s on an 
NVIDIA C2070. 

This model is oblivious to cache issues, and assumes, in the case of GPUs, that all data are 
moved to the device before the first time iteration and copied back after the last. Figure 11 
contains the predicted and measured execution times for 1000 iterations of the ICON NH 
dynamical core. The single-node model provides good predictions on the AMD Interlagos and 
NVIDIA Fermi C2070 architectures.  On the NVIDIA GTX285 and Tesla S1070, the actual 
timings are more than twice the predicted, however these are expected, due to known 
performance issues with double precision arithmetic. The Intel Westmere performs 
considerably better than predicted, most likely due to better cache utilisation than the AMD 
Interlagos. 

 
Figure 11: Predicted and measured single-node ICON-NH execution times for R2B3 and R2B4 resolution 
(1000 iterations) 
 

The performance modelling so far has concentrated on single-node implementations.  The 
current ICON development code is, however, an MPI+OpenMP hybrid code.  Single-node 
optimisation is a mute point if communication – mainly the halo exchange – is the 
fundamental bottleneck.  We have therefore performed a preliminary analysis of node-to-node 
communication, to determine the node configuration where communication starts to 
dominate. Figure 12 indicates that R2B4 communication is manageable until at least 4 nodes, 
and R2B5 communication until 8 nodes, and higher resolutions should scale out farther.  It is 
clear that one should run the application on the minimal number of nodes, filling up the node 
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memory as much as possible.  On the other hand, strong scaling to large configurations cannot 
be expected. 

 
Figure 12:  The aggregated time for computation (blue) and communication (red), for R2B4 and R2B5 on 
a Cray XK6 with 16 cores per node.  Optimal scaling would yield horizontal lines.  Green (AMD 
Interlagos), purple (Intel Westmere) and light blue (NVIDIA M2090) indicate the predicted times for 
those architectures assuming optimal scaling, and these timings are therefore a worst-case scenario for 
communication. 

3.3.2 Testing and Validation 

From the initial case study, the test harness for the single-node implementation is available for 
testing correctness of GPU kernel results to those on the CPU. While bit-for-bit identity 
between CPU and GPU is generally not achievable, a round-off tolerance can be defined.  
These round-off acceptance tests should be sufficient for the development of the directive-
based port to GPUs, however, a final validation of the model running on GPU and/or CPU 
must still be performed by the community (e.g., MPI-M). As ICON is still under 
development, such a validation will take place in any case. 

3.3.3 Work Plan 

The basic community requirement for the ICON hydrostatic and non-hydrostatic dynamical 
cores is a portable code, which performs well on current and future architectures.  Moreover, 
the long-term goal is to formulate the underlying algorithms with a domain specific language 
(DSL).  PRACE views its contribution to these goals as (1) providing efficient underlying 
implementations for emerging technologies (e.g., GPUs, MIC, Sandybridge), without 
sacrificing performance on current ones, (2) supplementing existing efforts to look at new 
DSL paradigms which might be applicable for this purpose, and (3) investigating parallel I/O 
strategies.  As parallel I/O will be discussed in a separate section, only two central objectives 
are defined here for the remainder of the project: 

 Task A: A performance-portable implementation of the kernels constituting the ICON 
NH dynamical core.  This will be based on the existing code, augmented with 
additional OpenMP and OpenACC directives to support both CPUs and GPUs.   

 Task B: A prototype implementation of a scaled-down ICON dynamical core based on 
the OP2 [56] domain-specific language for unstructured-mesh CFD problems. 

The key personnel in this effort are: 

 Task A: Max Planck Institute for Meteorology, L. Linardakis, et al.; Swiss National 
Supercomputing Centre, W. Sawyer, G. Fourestey 

 Task B: Imperial College, D. Ham, C. Bertolli; The Cyprus Institute, G. Fanourgakis 

The following milestones are proposed: 

 M9, Task A:  proposal for the multi-platform design which offers suggestions how to 
incorporate multiple programming paradigms (e.g., OpenMP, OpenACC, possibly 
CUDA or OpenCL) into one code base while maintaining performance portability 
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 M10: Task A: refactored, optimised ICON development branch ready for further 
development 

 M10, Task B: scaled-down dynamical core ready for OP2 development 
 M10, Task B: design for OP2 development ready 
 M14, Task A: optimised OpenACC-based kernels ready 
 M18, Task A: kernels integrated into full ICON model 
 M18, Task B: OP2 dynamical core prototype ready, utilising CPUs with OpenMP and 

GPUs with CUDA from the OP2 back-end 

Figure 13 illustrates the work plan timeline. 

 
Figure 13: Timeline for ICON dynamical core efforts 

 

3.4 Ocean Models: NEMO and Fluidity-ICOM 

3.4.1 Overview of NEMO 

NEMO Fehler! Verweisquelle konnte nicht gefunden werden. is a widely-used, highly 
portable numerical platform for simulating ocean dynamics, biochemistry and sea-ice. It is 
written in Fortran90 and parallelised using MPI with a regular domain decomposition in 
latitude/longitude. The governing equations are solved in finite-difference form upon a tri-
polar 'ORCA' grid. 

In [3] we highlighted NEMO's poor MPI scaling and the fact that the majority of its 
computation is memory-bandwidth bound. We proposed two different approaches to ease the 
latter: porting the code to make use of GPU accelerators (with their greater memory 
bandwidth) and porting to OpenMP. We have applied these approaches to key routines from 
NEMO in order to assess their suitability and the potential performance gains. 

The lim_rhg Routine 

The most expensive routine in the NEMO profile presented in Deliverable D8.1.2 [3] was 
lim_rhg, which deals with the deformation (rheology) of the sea ice. This is despite the fact 
that, in the standard ORCA2_LIM configuration, the sea-ice component couples with the 
ocean component only once every ten time steps. 

A completely serial test harness was constructed around the lim_rhg routine. However, the 
halo-swap calls were retained and always executed on the master thread running on the host 
CPU. This ensured that, for the harness to give correct results, the necessary data had to be 
available on the CPU prior to each halo-swap call. Each section of code suited for 
acceleration was moved into a distinct 'codelet' subroutine. 
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All unnecessary data transfers to and from the GPU were eliminated by making the related 
variables 'resident' on the device. Required data transfers for these variables were then 
explicitly managed via HMPP's advancedload/delegatedstore directives. Note that trying to 
declare Fortran allocatable arrays to be resident on the GPU revealed a bug in HMPP (version 
2.4.4). For the purposes of the test harness therefore, these allocatable arrays were made 
static. 

As with the majority of NEMO, the computational intensity of the loops in lim_rhg is actually 
rather low. In addition, the sea-ice model does not use an explicit discretisation of the 
thickness of the ice and as a result there is no z-dimension to the calculations. Hence all of the 
compute loops are only doubly nested. 

  Nehalem 
CPU 

Tesla 
GPU 

Region Call count Total (s) Total (s) 

Whole kernel 6 39.43 981.04 

Alloc GPU 2 0.00 2.43 

GPU store 3252 0.00 273.41 

GPU load 2172 0.00 179.75 

part1 6 0.22 4.43 

part2 6 0.35 7.60 

part3a 720 12.94 9.11 

part3b 720 4.23 7.40 

part3c 720 5.86 6.15 

part3d_odd 360 2.63 129.92 

part3d_even 360 2.73 130.74 

part3e_even 360 2.65 133.89 

Table 3: Comparison of the profiles of the ported lim_rhg routine when run on a single Nehalem core and 
a Tesla GPU. Only codelets, data transfer and GPU initialisation costs are included. Timings are for the 
ORCA025 grid. 

The profile of the ported, optimised lim_rhg routine for an ORCA025-resolution test case is 
shown in Table 3 for both a single Nehalem core and a Tesla GPU. Clearly the average time 
taken per kernel call is much greater on the GPU (164 s) than it is on the Nehalem (7 s). 
However, this large difference is primarily due to data transport costs as can be seen by the 
entries for GPU store and GPU load (data downloaded from the GPU to CPU RAM and vice 
versa, respectively). The part3d* and part3e* kernels also include substantial data transfer 
costs because their codelet arguments include arrays that are transferred to/from the GPU 
upon every call. (They have not been optimised to the same extent as the other kernels in the 
table.) This emphasises the need to optimise data transport to/from the device in order to 
achieve good overall performance. 
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In this case however, the compute performance itself does not justify the effort required to 
optimise the data transport. Consider the performance of the part3a-c kernels, which are 
particularly important due to their involvement in the iterative solver (note the high call 
counts). Only for part3a does the GPU out-perform the Nehalem core and then only by 
~30%; part3b is ~75% slower on the GPU and part3c ~5% slower. This is to be contrasted 
with the situation in tra_ldf_iso (below) where the kernel was a factor of four faster on the 
Tesla GPU and retained a factor of two speed-up, even when OpenMP was employed to use 
all four cores of a single Nehalem chip. 

We can therefore conclude that given the low performance of the compute kernels and the 
frequency with which data must be transferred back to the CPU memory, this routine is not 
well suited to making good use of the Tesla GPU.  

The tra_ldf_iso routine 

Before attempting to optimise the routine for the GPU, we measured its performance on a 
single core of an Intel Nehalem chip. Compiled with the Intel compiler with flags ``-O3 -
axAVX'' and run on 1 Nehalem core the mean time/kernel call over 100 calls was 0.095 
seconds. Following all of the optimisations done for the GPU, this time was reduced to 0.082 
seconds. The most difficult task in porting the kernel was dealing with the scoping of the 
various arrays used in the computation; with the exception of integer parameters, all of the 
variables used in an accelerated region must be contained within the current program unit and 
cannot come from external modules. 

We worked around this issue by enclosing the computational kernel (the body of a subroutine 
that USE'd several modules) within a 'region' pragma. The data usage patterns for the various 
arrays (c.f. INTENT(in) or INTENT(inout) in Fortran) are then specified as parameters to the 
region. The key steps in optimising the resulting kernel are listed in Table 4. 

 

Optimisation notes No. of calls Mean time per call (s)

First working traldf_iso on GPU 10 32.238 

Put !$hmppcg parallel for outer two loops of the 
most expensive triply-nested loop 

10 16.920 

Repeat above for all triply-nested loops  10 0.100 

Move outer tracer loop inside and unroll 10 0.100 

Put io=in condition on temporary arrays to 
prevent them being copied back to host 

10 0.096 

Simulate 3D gridification in 2D on most 
expensive loop 

100 0.067 

Permute indices (jk, jj, ji) to (jj, ji, jk) on second 
most expensive loop 

100 0.053 

Undo 3D gridification on most expensive loop and 
permute indices 

100 0.022 
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Permute indices on all remaining loops 100 0.017 

Removal of device allocation from within timing 
region 

100 0.015 

Optimised code on single Nehalem core 100 0.082 

Table 4: The key stages in optimising tra_ldf_iso to run on the Tesla GPU using HMPP workbench. For 
comparison, the bottom row gives the performance of the final code when built with the Intel compiler 
and run on a single core of a Nehalem chip. 

As with the PGI directives, the key step is, unsurprisingly, to ensure that the correct loops are 
being parallelised. The next largest improvement was gained by permuting loop indices from 
(jk,jj,ji) (i.e. levels, latitude, longitude) to (jj,ji,jk). If left unpermuted, the nested loop is 
parallelised such that consecutive threads are working on array sections well separated in 
memory. Since threads on the GPU are divided up into groups which are then executed in 
lock-step/SIMD (Single Instruction Multiple Data) fashion, best performance is obtained 
when a fetch from memory supplies data that can be used by all of the threads in a given 
group. If the threads aren't working on a contiguous section of memory then this will not 
happen. Permuting the loop indices ensures that parallelisation occurs over the indices in 
which an array is contiguous in memory and thus that neighbouring threads are working on 
contiguous parts of an array. The final result of 0.015 s per kernel call is some 20% faster than 
the time of 0.021 s achieved with the PGI directives. 

The tra_adv_tvd routine 

The tra_adv_tvd routine calls another subroutine, nonosc, but the two routines combined are 
only 374 lines in total. However, both tra_adv_tvd and nonosc contain several halo-swap calls 
and these present the major difficulty in porting these routines to the GPU. 

As with the other routines, we first created a serial test harness for tra_adv_tvd which allows 
its results to be compared with those obtained from the original version within NEMO. The 
initial form of this harness with the original version of tra_adv_tvd demonstrated that it took 
0.115 s/call on a single Westmere core and 0.124 s/call on a single Nehalem core (when 
compiled with the Intel compiler with “-O3 -axAVX”).  

We used HMPP Workbench to port the routine due to its support for asynchronous data 
movement. Since the calls to the halo-swap routines must be executed on the CPU, these 
naturally break the routine up into several sections, each of which was made into a separate 
codelet for execution on the GPU. The two calls to nonosc had to be inlined since code 
executing on a GPU cannot call subroutines within the HMPP model. In total the ported 
routine consists of six codelets for execution on the GPU. As usual, great care had to be taken 
to avoid unnecessary data transfers to/from the GPU. For this we made use of HMPP's ability 
to map an array from different codelets to the same piece of memory on the GPU and keep it 
there between calls. This achieves the same result as declaring an array to be device-resident 
but is simpler to do in practice. We also succeeded in removing uploads/downloads of 
temporary arrays by declaring them as inputs to the codelet and then using the noupdate 
clause for them at the corresponding callsite. 

The main steps in the porting and optimisation of the routine are listed in Table 5. After 
significant effort, the final, ported version of the routine on a Tesla GPU is some 31% faster 
than the original version running on a Nehalem core when using the ORCA2_LIM dataset. 
Attempts to execute the code with the ORCA025 grid failed because of insufficient memory 
on the GPU and so we used the ORCA1 grid. 



D8.1.4 Plan for Community Code Refactoring 
 

PRACE-2IP - RI-283493  24.02.20122 
 

28

Notes Time per call (s)

First working port with kernel1 on GPU 0.401 

Permute loops in kernel1 0.229 

Move kernel2 to GPU 0.252 

Permute loops in kernel2 and keep arrays on GPU between calls 0.214 

Make kernel2 asynchronous and overlap with halo swaps 0.194 

Asynchronous download of results from kernel2 0.177 

In-line nonosc and convert into two codelets, nonosc1 and nonosc2 0.274 

Permute loops in nonosc{1,2} 0.242 

Make work arrays in nonosc{1,2} local instead of arguments. Overlap 
sending of work arrays with their halo swaps. 

0.205 

Remove unnecessary data transport for nonosc{1,2} 0.196 

Move kernel3 to GPU 0.181 

Improve halo-swap performance by re-ordering indices on work arrays 
so that tracer index is slowest-varying 

0.092 

Move working-array initialisation into separate kernel_init so can 
overlap with data transfers which must happen upon every iteration of 
the timing loop (more realistic) 

0.095 

Re-ordered initial data loads and switched to have them synchronous 
and kernel_init codelet asynchronous 

0.085 

Original kernel on single Nehalem core  0.124 

Table 5: Steps in the porting and optimisation of the tra_adv_tvd routine. Timings are on Nehalem and 
Tesla hardware for the ORCA2 dataset. 

Figure 14 shows the breakdown of the kernel execution time in terms of compute and data 
transport (to and from the GPU). From a comparison of the first two columns, it is clear that 
data transport is the main performance bottleneck when the kernel is run on the GPU. 
However, the majority of the data transfers between the GPU and CPU are for the purposes of 
doing halo-swaps which obviously only involves the halo regions of each array. Therefore, 
we modified the code so that only the halo regions of an array are transferred between the 
GPU and CPU when doing a halo swap. Doing so reduced the time spent in transferring data 
from 0.34 s (per kernel call) to just 0.09 s when using the Tesla GPU (third bar in Figure 14). 
Uploads (downloads) of halos to (from) the GPU were overlapped with the packing 
(unpacking) of halos on the CPU for any other arrays involved in a particular halo swap. 
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Figure 14: Time spent in compute and data transport in the tra_adv_tvd kernel for the ORCA1 grid when 
running on a single Nehalem (Westmere) core and a Tesla (Fermi) GPU. The 2nd bar shows performance 
before halo transfers were optimised. 

Finally, this version of the kernel was benchmarked on a Fermi GPU. As expected, the data 
transport cost remained similar at 0.08 s per call and the computational cost was slightly 
reduced from 0.14 s on the Tesla to 0.11 s on the Fermi. Strangely, this time was obtained 
when the NVIDIA CUDA compiler targeted the Tesla architecture (``sm_13''). If it targeted 
the Fermi (``sm_20'') architecture then the computational cost of the resulting binary was 0.13 
s per kernel call (see the rightmost two bars in Figure 14). 

OpenMP 

Finally, for a fair comparison of the performance of the GPU with the CPU we must create a 
version of the GPU-accelerated routine capable of using all of the cores on the CPU. The 
standard method for doing this is to use OpenMP to parallelise the various loops in the routine 
over the available number of threads/cores. In order to minimise the overhead of the creation 
and destruction of thread teams, the whole timing loop was enclosed within an OMP 
PARALLEL region. Within this, each computational loop was parallelised by simply 
specifying OMP DO. This means that all of the 3D loops were parallelised in the z/depth 
dimension. The few 2D loops, mainly dealing with the surface and ocean floor, were 
parallelised in the y dimension. 

In order to maintain good performance when running across more than one socket, the code 
had to be modified to ensure that memory was initialised by the thread that will access it, 
rather than just by the master thread - this ensures that it is allocated in close vicinity to the 
physical core on which it is executing. Care also must be taken in enforcing suitable affinity 
settings in the run-time environment. We set KMP_AFFINITY=none and used the taskset 
command on the linux-based systems and set PSC_OMP_AFFINITY=FALSE on HECToR. 
On the Westmere chip, the six- and four-thread jobs were fastest when the threads were 
shared evenly between the two sockets of a node. (This demonstrates that four threads are 
sufficient to saturate the memory bandwidth to a single socket.) On the older Nehalem chip, 
the same applied just to the four-thread job. We were unable to find any way to guarantee the 
sharing of threads evenly between sockets on the Power7 system. 

Porting tra_ldf_iso with OpenMP 

Figure 15 shows the performance of the OpenMP version of tra_ldf_iso relative to the HMPP 
version running on the NVIDIA Tesla card. For a single thread/core, the Intel Nehalem and 
Westmere processors gave very similar performance and were, surprisingly, slightly quicker 
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than the Power7. As the number of threads is increased, the Westmere initially matches the 
Power7 and both outperform the Nehalem, presumably due to their greater memory 
bandwidth, which is key for the low computational-intensity loops at the heart of the routine. 
Using a full node of SiD (two, six-core Westmere chips) gets us to 79% of the performance of 
the code on the Tesla GPU. Using a single socket (six cores) gets us 69%. Only the Power7 
system is able to match the performance of the GPU and it requires two sockets (16 cores) to 
do so. Note that the HECToR results could be improved upon by taking care to share threads 
evenly between sockets and/or dies (the Magny Cours chip is actually two, six core dies on a 
single socket) so as to make best use of available memory bandwidth. 

Porting lim_rhg with OpenMP 

We found earlier that the GPU version of this routine was unable to compete with even a 
single Nehalem core. We now consider the performance of this kernel when ported to use 
OpenMP. The plot in Figure 16 shows the scaling performance of the OpenMP version of the 
kernel on a single node (two Nehalem chips) of the cseht cluster. On a full Nehalem socket 
(four cores), the OpenMP version achieves nearly a factor of three speed-up over the 
performance obtained on a single core for both the ORCA2 and ORCA025 datasets. The 
OpenMP version is therefore a significant improvement and emphasises the dominance of the 
CPU over the GPU for this kernel. 

That said, the scaling of the OpenMP implementation is poor, even for the relatively large 
ORCA025 dataset. Investigation of this aspect with profiling tools shows that it is the thread 
synchronisation required for the calls to the halo-swap routines that is the cause – see Figure 
Figure 17. Once the number of OpenMP threads reaches 16 the profile is dominated by the 
do_sigwait and sched_yield routines. This indicates that the threads are spending most of their 
time checking on locks rather than actually executing; a consequence of the number of halo-
swap calls which only the master thread performs. 

 
Figure 15: Speed-up of the OpenMP version of tra_ldf_iso w.r.t. its performance on an NVIDIA Tesla 
GPU. In each case the no. of cores utilized is the same as the no. of OpenMP threads. Results are the 
averages of three runs for the ORCA2_LIM case. 
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Figure 16: Scaling performance of the OpenMP version of the lim_rhg kernel on a Nehalem compute node 
for the ORCA2 and ORCA025 datasets. 

 
Figure 17: Profile of the OpenMP version of the lim_rhg kernel as the number of OpenMP threads is 
increased. Results are for the ORCA2 dataset run on HECToR IIb. 

Future Strategy 

The performance of the kernels discussed here on both GPU and CPU combined with the 
amount of work/changes to the source code required to port to GPU strongly suggests that it is 
worth pursuing the use of OpenMP within NEMO rather than continue porting to GPU. The 
ocean code ROMS and atmospheric code WRF both use a “coarse-grain” approach to 
OpenMP parallelism. In this technique, the section of the simulation domain allocated to each 
MPI process is further subdivided into a (configurable) number of 'tiles' that are then 
distributed amongst the OpenMP threads.  The number of tiles need not be the same as the 
number of threads. This scheme has been shown [55] to be essential for WRF to scale well as 
the number of cores per node on a machine is increased.   

NEMO Consortium member Centro Euro-Mediterraneo per i Cambiamenti Climatici 
(CMCC) have previously introduced OpenMP parallelism over the vertical levels in a model 
configuration used to study the Mediterranean Sea. As part of their work for the NEMO 
Consortium in 2012 they are planning to extend this work by parallelising the 
longitude/latitude dimensions with OpenMP. This work will be done on version 3.4 of 
NEMO, due for release in February 2012. 
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We therefore propose to extend the NEMO test harness developed so far to use the coarse-
grained approach to OpenMP parallelism. The design for this implementation will be done in 
collaboration with CMCC to avoid duplication of effort.  

At present, all 3-dimensional fields in NEMO are stored in arrays such that the longitude 
index varies contiguously in memory, e.g. field(ii, jj, kk) where ii is the longitude index, jj is 
the latitude index and kk is the depth index (recall that NEMO is a Fortran code). Since the 
model uses a domain decomposition in latitude/longitude, this scheme means that as the 
number of processes/threads is increased, the size of the contiguous regions of memory that 
they have to work on decreases.  On modern CPUs that rely on memory caching and 
vectorisation, this really damages performance. We will therefore implement a version of the 
test harness where the array indices are permuted such that the depth index varies 
contiguously in memory.  In this approach, even if the number of OpenMP threads matches 
the number of ocean points in a domain, each of them will still have a column of ocean to 
work on which should improve scalability of the code.  We will test this by comparing with 
the hybrid version of NEMO produced by CMCC where original array index ordering is 
retained. 

Testing and Validation Procedure 

The test harnesses developed so far compare the computed output of a subroutine with that 
produced by the original code running within NEMO for the ORCA2_LIM configuration 
(which is a part of the standard NEMO distribution). We also propose to begin testing with 
the regional AMM configuration, due to be released with version 3.4 of NEMO. These tests 
will include model stability as well as comparison of final output fields such as sea surface 
temperature and sea surface height. 

3.4.2 Work plan (NEMO) 

STFC will spend six person-months effort on NEMO in this part of the work package. Note 
that this 2nd phase of WP8.1 runs over 14 months from 01/03/2012 until 30/04/2013. 

Work plan: 

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Effort               

Milestones MS1      MS2       MS3

Where the project milestones are: 

Milestone Date Description 

MS1 End of M 7 Design coarse-grain OpenMP implementation in 
consultation with CMCC. 

MS2 End of M 13 Complete implementation in test harness with array 
indices ordered level-index first. 

MS3 End of M 20 Performance comparison with version from CMCC 
with standard array index ordering. 

3.4.3 Fault-Tolerant NEMO 

As systems move to exascale, it is important that climate models become fault-tolerant. At 
CERFACS work has started on a fault-tolerant implementation of NEMO. This is designed to 
survive failures in the MPI communications and node failures during runs. A fault tolerant 
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version of MPI, OpenMPI-FT is being developed, which enables MPI runs to tolerate node 
failures, but NEMO needs to be adapted to use these features. 

Within PRACE-2IP WP8, IPB will work to describe a strategy to repair communications after 
failure of one or several NEMO ocean model MPI-connected subdomains, ensure 
downgraded calculations on remaining resources and re-create missing information on failed 
subdomain area variables during the standard checkpoint/restart procedure. 

 
Figure 18: GANTT chart for Fault Tolerant NEMO 
 

3.4.3 Overview of Fluidity-ICOM 

Fluidity-ICOM [49] is an open source partial differential equation simulator build upon 
various finite element and finite volume discretisation methods on unstructured anisotropic 
adaptive meshes It is being used in a diverse range of geophysical fluid flow applications. 
Fluidity-ICOM uses three languages (Fortran, C++, Python) and uses state-of-the-art and 
standardised 3rd party software components whenever possible. 

The change of shifting from using faster processors to using multi-core processors is as 
disruptive to scientific software as the shift from vector to distributed memory 
supercomputers decades ago. The shift to multi-core systems will require applications to 
exploit many more fine-grain level parallelisms and overcome significant reductions in the 
bandwidth and volume of memory available to each CPU. This “scalability challenge” driven 
by the exponential increase in the amount of parallelism in the system affects all aspects of 
the use of high performance computing. 

For modern supercomputers with NUMA nodes, hybrid OpenMP/MPI offers new possibilities 
for optimisation of numerical algorithms beyond pure distributed memory parallelism. For 
example, scaling of algebraic multigrid methods is hampered when the number of subdomains 
is increased due to difficulties coarsening across domain boundaries. The scaling of mesh 
adaptivity methods is also adversely effected by the need to adapt across domain boundaries. 

Previous performance analysis [3] has already shown that the two dominant simulation costs 
are sparse matrix assembly (30%-40% of total computation), and solving the sparse linear 
systems defined by these equations. The Hypre library’s hybrid sparse linear system 
solvers/preconditioners, which can be used by Fluidity-ICOM through the PETSc interface, 
are competitive with the pure MPI implementation [4]. Therefore, in order to run a complete 
simulation using OpenMP parallelism, the sparse matrix assembly kernel is now the most 
important component remaining to be parallelised using OpenMP. The finite element matrix 
assembly kernel is expensive for a number of reasons including: significant loop nesting, 
where the innermost loop increases in size with increasing quadrature; many matrices have to 
be assembled, e.g. coupled momentum, pressure, free-surface and one of each advected 
quantity; indirect addressing (a known disadvantage of finite element codes compared to finite 
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difference codes); and cache re-use (a particularly severe challenge for unstructured mesh 
methods). 

For a given simulation, a number of different matrices need to be assembled, e.g. continuous 
and discontinuous finite element formulations for velocity, pressure and tracer fields for the 
Navier-Stokes equations and Stokes flow. Each of these have to be individually parallelised 
using OpenMP. Parallelism can be realised through well-established graph colouring 
techniques, where the graph defines the data dependencies in the matrix assembly. This 
approach removes data contention, so called critical sections in OpenMP, allowing very 
efficient parallelisation.  

The current procedure for constructing sparse matrices in Fluidity uses an element-by-element 
approach. This is the case for all the different matrices assembled e.g. continuous Galerkin 
(CG), discontinuous Galerkin (DG), continuous volume (CV) and higher order finite element 
formulations. Sparse matrices are stored in PETSc’s CSR containers (these includes block-
CSR for use with velocity vectors for example and DG) in order to avoid unnecessary 
memory-memory data copies, or having to write specialised matrix-vector operator call back 
routines. While the general principle behind threading finite element assembly using 
colouring will remain the same, the implementation details will change. In particular, the data 
dependency graph for different finite element formulations will change significantly. For 
example, while the data dependencies in DG advection are only between the nodes local to 
that element and those on the matching face of the adjacent elements, different diffusion 
operators can have much wider data dependencies. Thus, the first stage of the work is to 
itemise each of the formulations in use and construct their data dependency graphs.  

To parallelise matrix assembly using colouring, a loop over colours is first added around the 
main assembly loop. The main assembly loop over elements will be parallelised using the 
OpenMP parallel directives with a static schedule. This will divide the loop into chunks of 
size ceiling (number_of_elements/number_of_threads) and assign a thread to each separate 
chunk. Within this loop an element is only assembled into the matrix if it has the same colour 
as the colour iteration. 

3.4.5 Performance improvement. 

While improving I/O is not a direct objective of this work plan, significant benefit can be 
expected from using mixed-mode parallelism. For example, only one process per node will be 
involved in I/O (in contrast to the pure MPI case where potentially 24 processes per node 
could be performing I/O on Phase 2b of HECToR), which will significantly reduce the 
number of metadata operations on the file system at large process counts. In addition, the total 
size of the mesh halo increases with number of partitions (i.e. number of processes). It can be 
shown empirically that the size of the vertex halo in a linear tetrahedral mesh grows as 
O(P1.5), where P is the number of partitions. Therefore, the use of hybrid OpenMP/MPI will 
decrease the total memory footprint per compute node, the total volume of data to write to 
disk, and the total number of metadata operations given Fluidity’s files-per-process I/O 
strategy. 

The momentum equation assembly kernel using Discontinuous Galerkin methods (DG) has 
been parallelised with the above-mentioned procedures. Several thread safe issues have been 
solved which result of a performance gain. 

Local assembly v.s. nonlocal assembly 

In PETSc, when adding elements to a matrix, a stash is used. For parallel matrix formats this 
provides one particularly important benefit, namely that elements can be added in one process 
that are to be stored as part of the local matrix in a different process. During the assembly 
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phase the stashed values are moved to the correct processor. We name it as nonlocal 
assembly, which causes thread safe issues within the momentum_dg assembly loop. 

Luckily, when parameter MAT_IGNORE_OFF_PROC_ENTRIES is set, any MatSetValues 
accesses to rows that are off-process will be discarded, and the needed value will be computed 
locally, named by local assembly. Figure 19 shows that local matrix assembly is much faster 
than nonlocal assembly as no communications are needed. This makes assembly an inherently 
local process, therefore we can focus on optimising local (to the compute node) performance. 

 

Figure 19: Speedup comparison between matrix local assembly and nonlocal assembly 

Thread Safe Issues of Memory Reference Counting 

For any defined type objects in Fluidity being allocated or deallocated, the reference count 
will be plus one or minus one. If the objects counter equals zero, the objects should then be 
deallocated. In general, the element-wise physical quantities should not perform allocation or 
deallocation in the element loop, but this is not the case in the kernels. The solution could be 
to either add critical directives around reference counter or move allocation or deallocation 
outside of element loop. We have implemented both solutions and performance comparison 
has been made in Figure 20. The results show that the mutual synchronisation directives (eg. 
‘critical’) should be avoided. Moving allocation or deallocation outside of element loop has 
also improved the pure MPI version’s performance (see 24M1T in Figure 20). 

Optimisation of memory bandwidth 

One of the key performance considerations for achieving performance on ccNUMA nodes is 
memory bandwidth. In order to optimise memory bandwidth, the following methods have 
been employed to ensure good performance: 

 First-touch initialisation ensures that page faults are satisfied by the memory bank 
directly connected to the CPU that raises the page fault; 

 Thread pinning to ensure that individual threads are bound to the same core 
throughout the computation. 
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Figure 20: Comparison between using critical directive and without critical directive 

Thread pinning has been used through Cray aprun with all benchmarking tests. Compared the 
12-thread runs, the time has been reduced from 45.127 seconds to 38.303 seconds after 
applying the first-touch policy. But even after applying the first-touch policy, there is still a 
sharp performance drop from 12 threads to 24 threads. This problem has been investigated by 
profiling with CrayPAT (Table 6). 

 
 Samp%  | Samp  | Imb.  |  Imb.  |Group 
        |       | Samp  | Samp%  | Function 
        |       |       |        |  PE=HIDE 
 
 100.0% | 75471 |    -- |     -- |Total 
|--------------------------------------------------------------------------------------------- 
|  95.8% | 72324 |    -- |     -- |ETC 
||-------------------------------------------------------------------------------------------- 
||  14.6% | 11002 |  0.00 |   0.0% |_int_malloc 
||  13.8% | 10417 |  0.00 |   0.0% |__lll_unlock_wake_private 
||   9.7% |  7284 |  0.00 |   0.0% |free 
||   9.5% |  7172 |  0.00 |   0.0% |__lll_lock_wait_private 
||   6.4% |  4862 |  0.00 |   0.0% |malloc 
||   6.2% |  4674 |  0.00 |   0.0% |__momentum_dg_MOD_construct_momentum_element_dg 
||   4.0% |  3046 |  0.00 |   0.0% |_int_free 
||   3.2% |  2439 |  0.00 |   0.0% |__momentum_dg_MOD_construct_momentum_interface_dg 
||   3.0% |  2272 |  0.00 |   0.0% |_gfortran_matmul_r8 
||   3.0% |  2251 |  0.00 |   0.0% |__sparse_tools_MOD_block_csr_blocks_addto 
||   2.8% |  2090 |  0.00 |   0.0% |malloc_consolidate 
||   2.1% |  1574 |  0.00 |   0.0% |__fetools_MOD_shape_shape 
Table 6   CrayPAT sample profiling statistic 

The culprit appears to be the use of fortran automatic arrays in the Momentum_DG assembly 
kernel for support of p-adaptivity. There are a lot of such arrays in the kernel. Since the 
compiler can't predict its length, it allocates the automatic arrays on the heap. The problem is 
solved by using the NUMA-aware heap memory manager tcmalloc from gperftools [50], 
which makes pure OpenMP version’s performance better than pure MPI version within 
compute node. The speedup of 24 threads is 18.46 compared with using 1 thread for the 
Momentum_DG kernel. 
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Conclusions 

The Momentum_DG has been parallelised with OpenMP successfully. The above results 
indicate that node optimisation can be done mostly using OpenMP with the efficient 
colouring method. Improving memory bandwidth usage through NUMA optimisations (eg: 
first-touch) and using a NUMA aware heap memory manager can get the best performance 
for pure OpenMP within the NUMA node. 

  

 
Figure 21: Performance comparison between pure MPI version and pure OpenMP versions 

Future Strategy 

We are going to continue work on parallelisation of other assembly kernels for different 
equations with different methods, e.g., CG, CV, based on the three benchmark test cases, 
GYRE, 3D Backward Facing Step, and Collapsing Water Column. We will also optimise  
Hypre library usage for linear preconditioners/solver for large core counts, and this will 
essentially make Fluidity-ICOM become a fully hybrid code. Fluidity-ICOM’s user interface 
will be extended to expose Hypre options for parallel linear preconditioners/solvers. 
Performance analysis will determine the optimal choice of preconditioner / linear solver / 
multigrid settings on HECToR Phase2b. The analysis will focus on both parallel efficiency 
and the effectiveness of the methods in driving convergence. AMCG have their own AMG 
preconditioner implemented within PETSc, which outperforms BoomerAMG and 
Prometheous for pure MPI. Detailed analysis will be required to see how this needs to be 
enabled for mixed-mode parallelism. The matrix coarsening might not need to be threaded 
because it has a very low cost. However, matrix-matrix multiplications are likely to be the 
highest cost and will need to be threaded. 

Testing and Validation procedure 

All models require rigorous validation/verification. A continuous automated approach is 
required as the code base changes, Fluidity-ICOM use the open-source buildbot [51] software 
to fulfil this requirement. There are more than 1000 test cases in the test directory. All code 
base changes are required to pass all test cases in the test directory before committing to the 
main trunk. Besides these tests, there are three benchmark test cases, namely GYRE, 3D 
Backward Facing Step, Collapsing Water Column, which are used specifically for different 
assembly kernels using different discretisation methods, eg: DG, CG and CV. 
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3.4.6 Work plan (Fluidity-ICOM) 

STFC will spend six person-months effort on Fluidity-ICOM in this part of the work package. 
Note that this 2nd phase of WP8.1 runs over 14 months from 01/03/2012 until 30/04/2013. 

Work plan: 

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Effort               

Milestones MS1      MS2       MS3

Where the project milestones are: 

Milestone Date Description 

MS1 End of M 15 Optimised benchmark “3D Backward Facing Step” 

MS2 End of M 16 Optimised benchmark “Collapsing Water Column” 

MS3 End of M 19 Optimizing hybrid Hypre Library usage for linear solvers 
with preconditioners for large core counts 
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4 Material Science 

4.1 ABINIT 

4.1.1 Overview  

ABINIT [34] is a package, available under the GNU General Public Licence (GPL), whose 
main program allows one to find from first principles the total energy, charge density, 
electronic structure and miscellaneous properties of systems made of electrons and nuclei 
(molecules and periodic solids) using pseudo-potentials and a plane-wave or wavelet basis. 
The basic theories implemented in ABINIT are Density-Functional Theory (DFT), Density-
Functional Perturbation Theory (DFPT), Many-Body Perturbation Theory (MBPT: the GW 
approximation and Bethe-Salpeter equation), and Time-Dependent Density Functional Theory 
(TDDFT). 

Historically, ABINIT uses plane-waves to describe the electronic wave functions; in recent 
years, a development of wave functions utilising a wavelet basis has been introduced (for the 
ground state calculations). The implementation of wavelets has been achieved in a library 
named "BigDFT". This library is an inseparable part of the ABINIT project. 

ABINIT parallelisation is performed using the MPI library for the current stable version. In 
the last version, several time-consuming code sections of the ground-state part have been 
ported to GPU (beta stage); also several sections of the excited-state part have been 
parallelised using the OpenMP shared memory scheme. 

The “Performance analysis” [3] and “Performance improvements exploration” [4] phases 
were divided in three sections: 1-ground-state calculations using plane waves, 2-ground-state 
calculations using wavelets, 3-Excited states calculations. In this “Plan for code refactoring” 
phase, we have added a new section: 4-Linear response calculations. 

4.1.2 Plan for code refactoring: ground–state calculations using plane waves  

During the performance analysis phase [3], we identified the critical parts of the code; 
then during the performance improvements exploration phase [4] we investigated three 
promising approaches that could substantially improve the parallelism in ABINIT: 

 Introduce activation (choice) thresholds for the use of a parallel eigensolver 

 Improve load balancing (“band” and “plane wave” distributions) 

 Introduce shared memory parallelism level using OpenMP 
These three approaches have been tested by writing prototype codes or by modifying some 
selected small sections of ABINIT. We report here the results of these tests and collate 
obtained information to build a simplified performance model for the ground-state part. 

In the following, all mentioned tests have been performed on TGCC-CURIE PRACE French 
supercomputer (using large or hybrid CPU/GPU nodes). They all have been performed on a 
107 gold atoms simulation cell (a gold vacancy in a 108 atoms cell). 
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1- Parallel eigensolver activation thresholds 

Concerning the introduction of activation thresholds for selected code sections, we have 
tested the procedure for the eigenvalue problem in the (small) wave functions subspace. When 
executing this code section without distributing the work load, it becomes rapidly time 
consuming. We have tested the possibility to do this diagonalisation 1-using MPI 
(ScaLAPACK), 2-using GPU (MAGMA). In both cases we find that it is not profitable to 
parallelise if the work load is too small (i.e., if the studied physical system is too small). 

Figure 22 shows how the CPU time needed to diagonalise a square matrix of size 512 (resp. 
1024, 2048) evolves with the number of CPU cores using different versions of ScaLAPACK. 
We can deduce from these results that, if the matrix is too small, the use of ScaLAPACK is not 
profitable : the yellow curve (matrix of size 512) shows an increase above 16 cores although it 
is not the case fort the blue curve(matrix of size 2048);  it also appears that, even if the code 
runs over a large number of CPU cores, ScaLAPACK should be called (several times) for a 
smaller number of cores (between 15 and 20). 

 
Figure 22: CPU time (sec.) per process needed by a single call to ZHEEV ScaLAPACK routine with 
respect to number of MPI process for several sizes of square matrix (512, 1024, 2048)  and several 
ScaLAPACK implementations 
 

As concerns the use of the MAGMA GPU eigensolver, we find that (on the TGCC-CURIE 
supercomputer) we do not take advantage of the Graphics Processing Unit if the matrix has a 
size lower than 128 (double precision). It is obviously related to the 
communication/computation ratio. 

For the 107 gold atoms test case executed on TGCC-CURIE we can deduce a ScaLAPACK 
activation threshold and a maximum number of CPU cores usable for ScaLAPACK as well as 
a MAGMA activation threshold. Of course, these activation thresholds have to be adapted to 
the computer architecture. The goal is to write some small threshold automatic determination 
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routines that could be called at the beginning of each run (only if ScaLAPACK and/or 
MAGMA use is requested). 

2- Bands and plane waves charge balancing  

As written in deliverable D8.1.3 [4], we also have tested the possibility to improve the load 
balancing (which is sometimes highly unfavourable: some cores can have a load 1.75 times 
larger than others). 

We found that bands can be much better distributed among processors than in the current 
ABINIT implementation. Only a minor modification at the level of the distribution routine is 
required, and we plan to do it. With this modification each CPU core will treat exactly the 
same number of bands as the others or only one band more. The expected improvement 
depends on the physical system under investigation. 

We also tested methods to better distribute the plane wave vectors. The charge imbalance (in 
the current version) is due to the fact that plane wave vectors have to be distributed according 
to one of their coordinates (x, y or z) to be usable by the FFT routines. If one cuts the plane 
wave space among the z-axis and apply the plane wave selection rule (norm<cut-off^2) one 
necessarily obtains a different number of plane waves per z layer. We have written a 
prototype code to test different plane wave distributions in a parallel FFT call (using several 
FFT versions). It appears that the distribution among one axis is mandatory (parallel FFTs 
cannot run without this distribution), but it also appears that we could have different z-layer 
thickness per process. By adopting the latter solution it may be possible to balance the work 
load. 

We plan to introduce such a variable z-layer thickness for the FFT distribution in ABINIT. 
But this necessarily implies a full refactoring of each code section where the plane wave 
vectors are distributed, and this affects a lot of routines in addition to the FFTs. 

3- Hybrid MPI/OpenMP parallelisation 

In the present ABINIT official version, only distributed-memory parallelism is used for 
electronic ground-state calculations. After having distributed the work load over MPI 
processes several code sections remain time consuming (i.e., linear algebra in iterative 
eigensolver LOBPCG). Apart from diagonalisation, two sections of code appear to be 
bottlenecks; they are mainly due to communications (MPI_REDUCE on the full band/plane-
wave communicator). This can be seen in the Figure 23 below (the corresponding sections are 
yellow and red). These two sections could take benefit from a shared-memory parallelisation 
scheme. Of course, communications will not disappear: 1-intra-node bandwidth will 
necessarily be a limitation; 2-distribution of work load will not be possible over a large 
number of CPU cores (as in the MPI case); we necessarily will have to use a hybrid scheme, 
mixing MPI and OpenMP parallelism. 

We have tested the feasibility of using an OpenMP version of the matrix orthogonalisation on 
a prototype code. For that purpose we have used the multi-threaded version of the Intel MKL 
library. On our architecture (TGCC CURIE supercomputer) we have found that a speedup of a 
factor 10 could be reached using a 16-cores node per orthogonalisation/diagonalisation. 

We plan to introduce OpenMP directives in the whole ground-state part of ABINIT, 
especially in the linear algebra and matrix algebra sections of the parallel eigensolver. 
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Figure 23: CPU time distribution for the ABINIT parallel eigensolver (standard test case: 107 gold atoms) 
with respect to the number of “band” cores (npband) and “FFT” cores (npfft). 

4- Simplified performance model 

We propose here a performance model for a typical ground-state calculation with ABINIT. 
This model includes MPI and OpenMP parallelisation and deliberately excludes the use of 
GPU (for simplification purpose). As it is very difficult to conceive a performance model 
valid for all physical systems, we choose to build such a model for our standard test case (107 
gold atoms). This is a typical test case (typical simulation cell size, chemical specie from the 
middle of the periodic table, non-negligible forces …). 

Most of our hypotheses will be drawn from the following strong scaling graph (Figure 24) 
already presented in 8.1.2 and 8.1.3 deliverables. 

 
Figure 24: Repartition of CPU time in ABINIT routines varying the number of CPU cores. 

 

For the following we define: 

NMPI = number of MPI cores 

TTOT,1, TTOT,MPI = total wall clock time using 1 (or NMPI) MPI processes 

TEIGEN,1, TEIGEN,MPI = wall clock time using 1 (or NMPI) processes spent in eigensolver 
(violet in the graph) 

THAM,1, THAM,MPI = wall clock time using 1 (or NMPI) processes spent in Hamiltonian 
application (blue, green and red in the graph) 
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TOTHER,1, TOTHER,MPI = wall clock time using 1 (or NMPI) processes spent in other routines 
(~15% of total CPU time, according to above graph) 

SOMP,16 = OpenMP speedup of the kernel on 16 cores (~10) 

SEIGEN-MPI = MPI speedup of the eigensolver on NMPI cores (0.8 NMPI)  

SZEEV-MPI = MPI speedup of the ZEEV ScaLAPACK routine on NMPI cores 

 As previously mentioned we can estimate TZEEV-MPI≈20 if NMPI>20 

Let us consider that we are running ABINIT over a number of MPI processes in the range 
ensuring a linear scaling of the Hamiltonian application (NMPI <500). Let us also consider that 
the sizes of matrixes are large enough to be above the ScaLAPACK activation threshold. 

As shown by the previous graph we can estimate the total CPU time needed for a typical run: 

TTOT,MPI ≈ TOTHER,MPI + TEIGEN,MPI + THAM,MPI ≈ (TEIGEN,MPI + THAM,MPI)/0.85 

As assumed, the Hamiltonian application scales linearly: 

THAM,MPI ≈ THAM,1 / NMPI 

Meaning that: 

TTOT,MPI ≈ TTOT,1/NMPI + (TEIGEN,MPI – TEIGEN,1/NMPI)/0.85 

Now, for the eigensolver, let us divide the time in 3 parts (diagonalisation, orthogonalisation 
and communications) according to the Figure shown in the section 3-: 

TEIGEN,MPI ≈ TDIAGO,MPI + (TORTHO,MPI + TCOMM,MPI) 

The last two times are communications times. 

 For the diagonalisation, we can use ScaLAPACK (MPI) or a multithreaded (openMP) 
version of LAPACK. Assuming that the diagonalization is exclusively made by the 
processors of a single node, we can have (ScaLAPACK): 

TDIAGO,MPI = TDIAGO,1/SZEEV-MPI/SEIGEN-MPI 

Or (openMP): 

TDIAGO,MPI  = TDIAGO,1/SOMP,16/SEIGEN-MPI 

 For the communications, it is difficult to evaluate exactly what could be the 
performance improvement induced by the use of openMP. If we look carefully inside 
the LOBPCG algorithm we can roughly estimate the amount of communications as 
inversely proportional to the size of the eigenvalue problem in wave functions 
subspace. In other words, if the wave functions subspaces (blocks) are large they do 
not need to be orthogonalized to each other. 

If we assume that the diagonalization step can be reduced by one or two order of magnitude 
using Scalapack or openMP, we can choose to diagonalize blocks of larger size (one single 
block of maximum size is possible) and thus make the communications disappear. In 
conclusion, a speed-up of diagonalization as described previously will probably suffice to 
significantly accelerate the code. 

5- Validation procedure 

The ABINIT package comes with a collection of automatic tests to verify the correctness 
of the results (~450 tests). ABINIT has to give exactly the same results according to the 
sensitivity (in terms of digits) defined for each test. 
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Then the 107 gold atoms test (“standard” test) will be used to measure the performance 
improvement. 

4.1.3 Plan for code refactoring: ground–state calculations using wavelets (BigDFT)  

The main part of the plan is to improve the optimisation of BigDFT running it on one node. 
The idea is to build an automatic generation of code to test different strategies of optimisation 
for CPU first and then GPU.  

BigDFT has more than 25 kernels to optimise and has no hot-spot operations. Optimising 
these kernels becomes problematic with the increasing numbers of new architectures. Another 
problem is that optimising a kernel on one core is not the right solution, because the main 
limitation is the bandwidth memory. We need to optimise kernels using all cores of one node 
or one socket. 

1- Hybrid MPI/OpenMP test 

The test is the ground-state calculation of a cluster made of 80 bore atoms done on CCRT-
Titane (CCRT French centre, Intel processors) on one node (8 cores). There are 120 orbitals. 
This means that we can use 120 MPI processes as an upper limit. It is a rather small system. 
Figure 25 illustrates the efficiency and the speedup with respect to the number of MPI 
processes and threads. We can see that using 2 threads slightly changes the efficiency and is 
almost equivalent to using 2 times more MPI processes. 

The different convolutions – which are the basic operations with wavelets functions – 
represent the main part of the calculation.  

 

 
Figure 25: BigDFT on Titane-CCRT supercomputer: efficiency (solid blue curve) and speedup (dashed 
red line) with respect to the number of MPI processes and threads. 

Now if we use a computer using AMD cores (CSCS-Palu, see Figure 26 below), then the 
results are different: the efficiency strongly decreases when all cores are used (24 cores). But 
we can use more threads (up to 4) with a small decrease of the efficiency. 
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Figure 26: BigDFT on Palu-CSCS supercomputer: efficiency (solid blue curve) and speedup (dashed red 
line) with respect to the number of MPI processes and threads. 

In Figure 27, we compare one node of both computers (24 AMD cores and and 8 Intel cores) 
using the best MI+threads configuration (i.e. only MPI processes).. We can see that 16 AMD 
cores are equivalent to 8 Intel cores. 

 
Figure 27: Computer of time spent in convolutions on two different architectures (Titane-CCRT and  
Palu-CSCS) 

2- Hybrid MPI/OpenMP and GPU test 

If we combine OpenMP + MPI and GPU usage (OpenCL or CUDA) then we have different 
behaviours (see Figure 28). The main conclusion is that the use of GPU always gives a 
speedup (sometimes small). The best performances are obtained using OpenCL, CUBLAS for 
linear algebra and MPI processes. Comparing to CPU+mkl+MPI, we can have a speedup of 2 
by adding only one GPU. 

All these tests are very dependent on the considered system, namely the number of atoms and 
boundary conditions. It is possible to have a speedup of more than 10 when considering 
periodic boundary conditions with k points. 
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In conclusion, it is really important to have optimised routines. 

 
Figure 28: Speedup of BigDFT using GPUs 

 

3- Automatic code generation 

In order to simplify the maintenance of the optimised kernels, we tried to find a solution to 
automatically generate routines with different optimisation strategies: the number of unrolling 
loops, different patterns for the memory accesses, etc.. 

We have tested a first version based on the script language Ruby to generate different 
strategies of optimization. This is an elegant and easy to use language; our first results are 
promising. The main advantage is the ease to make changes and add new features. On this 
first example we prove the feasibility of the implementation. 

In conclusion, the plan for BigDFT refactoring is to implement a complete solution of 
automatic code generation. 

4.1.4 Plan for code refactoring: excited states calculations 

The performance analysis done in [4] allowed us to identify the most critical parts of the code. 
On the basis of these results, we proposed four different modifications that should 
substantially improve the scalability of the GW code: 

 Implementation of a hybrid MPI-OpenMP approach 
 Use of ScaLAPACK routines for the inversion of the dielectric matrix 
 Implementation of a new MPI distribution scheme of the orbitals in order to 

improve the load balancing during the computation of the exchange part of the 
self-energy 

 Use of MPI-IO routines to read the orbitals and the screening matrix from file 

In order to assess the efficiency and the feasibility of these four different approaches, we have 
developed prototype codes that have been benchmarked using realistic parameters. 

Subsequently we report the results of these tests, including an estimate of the parallel 
efficiency of the new implementation. Finally, a simplified performance model, whose 
parameters are estimated from the results of these preliminary tests, is presented and 
discussed. 
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1- Hybrid OpenMP-MPI implementation 

We have generalised the FFTW3 routines used in ABINIT so that the transforms can be executed in 
parallel with OpenMP (OMP) threads.  

 
Figure 29 shows the parallel efficiency of the new implementation for different number of 
threads employed. 

The benchmarks are performed using the FFTW3 interface provided by the MKL library. 
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Figure 29: Parallel efficiency of new FFTW implementation in ABINIT-GW using multithreaded FFTW3 
library 

The threaded version of fourdp shows a very good parallel efficiency, whereas the results 
obtained with fourwf are somehow less satisfying. A point worth noting is that fourwf 
transforms the wave functions by employing a pruned FFT to reduce the number of 1D-sub-
transforms (about 1/8 of the input Fourier components are non-zero), whereas fourdp 
performs 3D FFT transforms using the standard algorithm for “dense” arrays. For this reason, 
the sequential version of fourwf is faster than fourdp but, according to our results, reducing 
arithmetic cost does not necessarily imply better parallel efficiency when OMP is used. 

The inefficiency of the parallel version of fourwf calls for a better understanding of the 
algorithms employed by MKL to parallelise multiple 1D-sub-transforms. In particular, we 
suspect the presence of false sharing when multiple FFT sub-transforms along the y- and the 
z-axis are distributed among the threads. We are presently testing different OMP algorithms in 
order to improve the efficiency of the threaded version of fourwf. 

The other kernels that have been parallelised with OMP instructions are:  

 The computation of the polarisability with the Hilbert transform method  
 The evaluation of the self-energy corrections with the contour deformation 

technique 

These two algorithms are well suited for the OMP paradigm since they both involve very 
CPU-intensive loops over (nomega) frequencies and/or the (npweps) plane waves used to 
describe the dielectric function. Figure 30 illustrates the parallel efficiency of these two 
kernels as function of the number of threads. 
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Figure 30: Parallel efficiency polarisability and self-energy kernels in ABINIT-GW using openMP 

For these tests, we employed nomega=70 and npweps=531. Note that the parallel efficiency 
improves when larger values of npweps are used (not shown). 

2- Computation of the inverse dielectric matrix with ScaLAPACK 

The CPU time needed for the inversion of the dielectric matrix scales as npweps**3, hence 
this section of the code represents an important bottleneck in the case of systems with large 
unit cell. For this reason, a new kernel in which the inversion is done in parallel with 
ScaLAPACK routines has been implemented and benchmarked. Figure 31 shows the 
performance of the new implementation for different dimensions of the dielectric matrix.  

 
Figure 31: Performance of the new implementation of the inversion of the dieletric matrix using 
ScaLAPACK 

As already stressed in the ground-state section, the use of ScaLAPACK is beneficial only 
when the size of the matrix is larger than a threshold value that strongly depends on the 
architecture, the network, and the library used. Moreover, as shown in the figure, a brute force 
increase of the number of processors does not necessarily lead to faster computations. The 
forthcoming version of the GW code will accept a new input variable that specifies the 
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maximum number of processors to use for the matrix inversion (see also the discussion in 
section 5 below). 

3- New distribution of the orbitals 

A new distribution scheme, in which all the occupied states are stored on each node, has been 
made available in ABINIT. This approach is more memory demanding than the standard 
algorithm, but it allows one to achieve an almost optimal distribution of the workload during 
the computation of the exchange part of the self-energy when the number of processors is 
larger than the number of occupied bands. Preliminary tests (not shown), performed on a 
relatively small number of processors (<32), confirmed the better scaling of the new 
implementation. 

4- MPI-IO for the reading of the orbitals. 

We have added the possibility of reading the orbitals and the screening function using 
collective MPI-IO routines. The new version has been tested on a relatively small number of 
processors. Additional tests are needed to assess the scalability of this part for large number of 
processors. 

5- Validation procedure 

In order to validate the new FFT kernels, we have written a small tool (fftprof) that tests the 
efficiency and the correctness of the different FFT libraries interfaced with ABINIT (FFTW3, 
MKL, Goedecker's library). The results produced by fftprof can be plotted with a Python script 
so that the user can select the optimal set of parameters (FFT library, number of threads, 
cache size) for a given FFT mesh.  

The hybrid OpenMP-MPI implementation can be validated by running the standard GW tests 
available in the ABINIT test suite. 

The parallel inversion can be validated with the new utility tool LAPACKPROF that runs 
selected ScaLAPACK routines for a given number of processors. lapackprof checks the 
correctness of the results and the efficiency of ScaLAPACK implementation so that one can 
find an optimal setup (number of processors, ScaLAPACK block size) for a given matrix size. 

6-Simplified performance model 

In what follows, we present a simplified performance model for a typical GW calculation 
based on norm-conserving pseudo-potentials and plane waves. The polarisability is evaluated 
for NOMEGA frequencies using the Hilbert transform method while the self-energy matrix 
elements are computed with the contour deformation technique. 

This simplified model includes both the MPI and the OpenMP parallelisation. Most of our 
assumptions are derived from the strong scaling analysis presented in 8.1.2 [3] and 8.1.3 [4] 
deliverables, and from the results for the OpenMP version presented in the previous sections. 

The total wall time of a sequential GW run (screening + sigma) is approximately given by: 

 T_TOT = T_FFT + T_GW + T_INV + T_OTHER 

Where  

 T_TOT   = total wall-clock time  

 T_FFT  = wall-clock time spent in the FFT routines.  

 T_GW  = wall-clock time spent in the GW kernels 

 T_INV  = wall-clock time needed for inverting the dielectric matrix 

 T_OTHER = remaining portions of the code (MPI communications, IO, etcetera) 
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To discuss the scaling of parallel implementation, we introduce the following quantities: 

 NMPI  = number of MPI processes 

 NOMP  = number of OMP cores 

 NOMEGA  = number of frequencies in the screened interaction 

We use T(NMPI,NOMP) to denote the total wall-clock time of the code executed with NMPI 
MPI processes and NOMP threads. According to this notation, the elapsed time of the 
sequential code will be indicated by T_TOT(1,1). 

Since the orbitals are almost equally distributed among the MPI processes, we have: 

 T_FFT(NMPI,NOMP) = T_FFT(1,1)  /  (NMPI * σ_FFT_OMP(NOMP) )     

Where σ_FFT_OMP(NOMP) is the OpenMP speedup of the FFT transforms with NOMP 
cores. According to our tests σ_FFTOMP(NOMP) ~ 0.9 NOMP when fourdp is employed.  

The pure MPI implementation of the GW kernels scales as 

 T_GW(NMPI,1) = T_GW(1,1) / NMPI 

The linear scaling (confirmed by the analysis performed in the precedent deliverables) is due 
to the fact that the number of calls to the GW kernels is proportional to the number of states 
that are almost equally distributed among the nodes. For the hybrid MPI-OpenMP 
implementation, one thus obtains: 

 T_GW(NMPI,NOMP) = T_GW(1,1)/( NMPI * σ_GWOMP(NOMP) ) 

Where σ_GWOMP(NOMP) is the OpenMP speedup of the GW kernels. Our preliminary 
results indicate that σ_GWOMP(NOMP) ranges between 0.7 NOMP and 0.9 NOMP when 
NOMP <= 4 

The scalability of the algorithm that inverts the dielectric matrix strongly depends on the 
number of frequencies computed. In the previous implementation, the matrix inversion was 
distributed over frequencies and then performed in sequential. As a consequence, this section 
of the code was not scaling anymore when NMPI > NOMEGA. The new version based on 
ScaLAPACK routines presents a much better scaling given by  

T_INV(NMPI) = T_INV(1,1)/(NOMEGA*σ_SLK(NSLK)) (NMPI > NOMEGA) 

Where σ_SLK(NSLK) is the ScaLAPACK speedup with NSLK processors (the additional 
level of parallelisation due to OMP has been neglected, for the sake of simplicity). Our tests 
reveal that, for the typical size of the dielectric matrices used in our applications, 
σ_SLK(NSLK) ~ NSLK if NSLK < 8. 

As stated, T_OTHER includes the wall-clock time spent in the MPI sections and in the IO 
routines. The previous tests shown that the GW code is not communication bounded (at least 
up to NMPI<512) and the introduction of the additional level of parallelism based on OMP 
will help reduce the number of communications. The use of MPI-IO routines should lead to 
better scaling of the IO sections with respect to the previous implementation based on Fortran 
IO, in particular when many processors are used. 

4.1.5 Plan for code refactoring: linear response calculations 

The linear-response part of the ABINIT code plays a specific, but important, role, allowing 
computing efficiently phonons, electric field responses, etc. However, due to lack of human 
time, it was not analysed in D8.1.2 [3] or D8.1.3 [4]. Appendix B to the present deliverable 
fills the gap. It provides a performance analysis, and presents four strategies for the 
improvement of linear response calculations.  
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The performance analysis allowed us to identify the most critical parts of the code. For the 
test case (a barium titanate slab with 29 atoms), it was shown that the most time-consuming 
parts of the calculation have been parallelised efficiently over k-point and bands. These parts 
scale linearly, well beyond 256 cores. However, for a smaller number of cores, two 
bottlenecks appear: the first bottleneck is at the level of the initialisation of the ground state 
wave functions (reading from file, and spreading the data), the second is at the level of the 
routines that cannot be parallelised over k-point and bands, typically the treatment of density 
and potential. Moreover, the amount of memory that is needed for each processor scales as 
the number of bands times the number of plane waves, that is, quadratically with respect to 
the size of the system. 

On the basis of these results, we propose in Appendix B four different modifications that 
should substantially improve the scalability of the linear response calculations: 

 Remove the IO-related initialisation bottleneck. In particular, use of MPI-IO 
routines to read the ground-state wave functions from file. 

 Parallelise several sections that cannot be parallelised over k-point and bands. 
These sections scale like the number of plane waves and/or the number of FFT 
points. 

 Distribute the ground state wave functions over the bands and/or the plane waves. 
 Parallelise over the outer loop on perturbations. 

We have made a first assessment of the efficiency and the feasibility of these four different 
approaches. This work has been started end of November 2011, and will be subject to further 
refinement. We base our assessment on the analysis of similar approaches implemented in 
other parts of ABINIT. 

1- Remove the IO-related initialisation bottleneck 

The initialisation is not satisfactorily parallelised over k-point, and does not take advantage of 
the band parallelisation. In the ground-state plane-wave part of ABINIT, the reading of wave 
functions has been parallelised using MPI-IO routines. It was observed that this wave function 
initialisation is very effective, such that the time needed is now negligible with respect to the 
other parts of the calculation. Although the reading and distribution is more complex in the 
case of the linear response calculation initialisation, we expect a similar behaviour for the 
ground-state plane-wave part of ABINIT. 

2- Parallelise several sections that are performed sequentially 

The operations done in the fourdp, vtorho3 and vtowfk3 do not have a workload that scales as 
the number of k-points times the number of bands. Of course, in the sequential mode of 
linear-response calculations, the associated time is completely negligible. However, as seen in 
the test, with more than 100 processors, they start to be important.  

These sections scale as the number of plane waves (or the number of FFT grid points). They 
can be parallelised over these quantities. A similar parallelisation has already been done in the 
ground-state plane-wave as well as the excited state parts of ABINIT. They rely on OpenMP 
or MPI. With OpenMP, it will be possible, with little coding effort,  to decrease the time by a 
factor of ten (as shown by unitary testing, see section 4.1.4). The MPI coding effort would be 
larger, but is not to be ruled out at this stage. 

3- Distribute the ground state wave functions over the bands and/or the plane waves.  

Although this task is not impacting the execution time, it will address an important limitation 
of linear response calculations for larger number of atoms. At present, all the processors 
treating the same k-point must store a copy of the wave functions for all states for that k-
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point. Thus, the memory requirement for one compute core increases with the size of the 
problem. One should distribute the ground-state wave functions among the processors, and 
treat the scalar product of ground-state and first-order wavefunctions accordingly. An 
OpenMP solution might be limited, so that MPI is to be preferred. The correct analysis of this 
strategy is to be refined, and actually this must be considered at the same time as the final 
choice of strategy for task 2 and perhaps even task 1. Again, a similar parallelisation has 
already been done in the ground-state plane-wave part of ABINIT, and proven effective. 

4- Parallelise the outer loop on perturbations  

When the bottlenecks addressed by tasks 1-3 will be removed, the possibility to parallelise 
over perturbations will be open. The number of perturbations can be quite large (on the order 
of 50 for our test case - however this test case is restricted at present to only one perturbation). 
The amount of communication is very small. The number of sequential parts with respect to 
this parallelisation is also very small. However, there is a load balancing problem, described 
in the appendix. For large systems, non-symmetric (the most time-consuming), more than one 
order of magnitude improvement of the execution time should be attainable. 

5- Simplified performance model 

Subsequently we sketch a simplified performance model for the test case presented in 
Appendix B. We rationalise the available data. 

The total wall time of a sequential linear-response (LR) run is approximately given by: 

 T_TOT = T_INIT + T_WF + T_DENPOT + T_OTHER 

Where  

 T_TOT  = total wall-clock time  

 T_INIT = wall-clock time spent in the initialisation of the run  

 T_WF  = wall-clock time spent in the operations done on the wave functions, after 
the initialisation 

T_DENPOT = wall-clock time spent in the operations done on the density and                   
             potential, after the initialisation 

 T_OTHER = remaining portions of the code  

To discuss the scaling of parallel implementation, we introduce the following quantities: 

 NP_KB = number of MPI processes on which the k-point and band load is distributed 

 NP_G = number of processes on which the plane waves / FFT load is distributed 
(could be OpenMP or MPI) 

In the present test case, the communication time is negligible in most sections of the code, 
except in the initialisation section.   

We use T_X(N_KB,N_G) (where X is TOT, INIT, WF or DENPOT), to denote the total wall-
clock time of the code executed with NP_KG MPI processes and NP_G MPI processes or 
OMP threads. According to this notation, the elapsed time of the sequential parts of the code 
will be indicated by T_X(1,1). 

In the present implementation, only the KB parallelisation is used, with: 

 T_INIT(NP_KB,1) = T_INIT(1,1)* f(NP_KB) 

 T_WF(NP_KB,1) = T_WF(1,1)/NP_KB 

 T_DENPOT(NP_KB,1) = T_DENPOT(1,1) 
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 T_OTHER(NP_KB,1)  = T_OTHER(1,1) 

The time T_WF(1,1) being a very large fraction (more than 99%) of the total time 
T_TOT(1,1), the speed up can reach about 80 on the test case.  

The detrimental factor f(NP_KB) is larger than 1. It is actually close to 1 for a small number 
of processes NP_KB, until NP_KB increases beyond about 64. The presence of this factor has 
the aim to indicate roughly the behaviour of the initialisation times, whose scaling is not well 
characterized at present. 

Following strategy 1, that is, using MPI-IO to initialize the wave functions, one expect to get 
rid of the bad scaling behaviour of the communications. The initialisation time can be 
predicted to change to 

 T_INIT(NP_KB,1) = T_INIT(1,1)/NP_KB 

   (without the presence of a detrimental factor f(NP_KB)). 

 

Following strategy 2, the T_DENPOT time can be predicted to change to  

 T_DENPOT(NP_KB, NP_G) = T_DENPOT(1,1)/ σ_G(NP_G) 

Where σ_G(NP_G) is the efficiency of use of the NP_G cores to speed-up the density and 
potential sections of the code. Note that most of the operations on the density and potentials 
sections of the code are done in sections in which the wave functions are not present. Thus, 
without increasing the number of cores, a speed-up of these parts can be realized. In case of 
OpenMP, taking the unitary tests done for the excited state calculations (see section 4.1.4), 
one can expect a fair speed up, up to 6 or 8, without problem. MPI coding will allow more 
speed-up, but at the expense of a more difficult coding. Still, this would also solve the 
distribution of array problem. 

Explicitly, supposing a maximum number of cores NP, the execution time should be 

 T_TOT(NP,NP) = T_INIT(1,1)/NP +  

          T_WF(1,1)/NP +  

          T_DENPOT(1,1)/ σ_G(NP) + 

          T_OTHER(1,1) 

The first goal of strategy 3 is not to decrease the execution time, but to allow to use more 
efficiently the memory. Still, this might impact the scaling of different sections of the code. 
 

Finally, the strategy 4 addresses a larger demand, for which the test case is to be modified, by 
using more than one perturbation. Introducing the number of perturbations N_PERT, the time 
of a run with N_PERT, compared to the time for only 1 perturbation, will be 

 T_TOT(NPERT) = T_INIT + N_PERT*(T_WF + T_DENPOT + T_OTHER) 

This level of perturbation will allow to use a maximal number of NP_PERT * NP processes. 
The load balancing of this level of parallelisation is to be addressed, though. 

6- Validation procedure 

In addition to the test case that has been used to make the performance analysis for PRACE-
2IP, there is (a) another test case presented in the ABINIT tutorial on the parallelisation of the 
linear response section of ABINIT, (b) numerous non-regression tests for the linear response 
case present in the ABINIT automatic test suite (about 100), and (c) even more non-
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regression tests for the other aspects of ABINIT. So, as soon as the modifications of the code 
are committed to the ABINIT worldwide repository, they will be tested and validated. 

4.2 Quantum ESPRESSO 

4.2.1 Introduction      

Quantum ESPRESSO is an integrated suite of computer codes based on density-functional 
theory, plane waves, and pseudo-potentials. The acronym ESPRESSO stands for opEn Source 
Package for Research in Electronic Structure, Simulation, and Optimisation.  

Two are the main goals of the project: 1) to enable state-of-the-art materials simulations, and 
2) to foster methodological innovation in the field of electronic structure and simulations by 
providing and integrating highly efficient, robust, and user-friendly open source packages 
containing most recent developments in the field. 

The Quantum ESPRESSO distribution offers users a highly portable and uniform installation 
environment. The web interface, qe-forge, provides to potential developers an integrated 
development environment, which blurs the line separating development and production codes 
and engages and nurtures developers by encouraging their software contributions.  

Quantum ESPRESSO is freely available under the terms of the GNU General Public License 
(GPL).  

4.2.2  Target a general refactoring of the suite 

Quantum ESPRESSO is actually structured as a suite of many packages, each of them is 
devoted to a particular kind of calculation. The basic are the two DFT engines, PWscf (plane-
wave DFT self-consistency calculations) and CP (Car-Parrinello molecular dynamics). Inside 
the suite different levels of dependencies exist. For instance, some packages such as PHonon, 
TDDFPT or GIPAW are linked to the same computational kernels used by PWscf and CP, 
while others, such as PLUMED or YAMBO not.  

The overall structure is already organised to take advantage of Fortran 90 modularisation 
features, and developers already took care of avoiding the replication of similar portions of 
code in different parts of the suite. Nonetheless, a recent developers meeting1 with 
representative computational scientists from CINECA and ICHEC came to the conclusion 
that it is still necessary to work on this direction to functionally refactoring the deepest part of 
the distribution.  

A refactorisation work should be performed in order to rewrite some of the most used 
subroutines, belonging to the DFT engine PWscf and the linear response package PHonon, as 
low level libraries. The creation of such libraries would give a higher level of modularity that 
could help to maintain most of the packages and to sustain further developments. 

A particular case of refactoring needs is the proper implementation of hybrid functionals. The 
use of Hybrid functionals, i.e., inclusion of a portion of exact-exchange (EXX) inside 
traditional functionals, is nowadays the better compromise between physical meaning and 
computational cost. The user community is, indeed, strongly pushing in this direction. At this 
moment, the possibility of adding an exact-exchange fraction is already present in some 
packages, PWscf and CP, for some specific calculations. However, it is absolutely necessary 
to re-engineer and extend it, as many of the advanced features are only available with 
traditional functionals.  

                                                 
1 Quantum Espresso developers workshop, Trieste, 24 January 2012 
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4.2.3 OpenMP enhancement  

The new developments of computer architectures are mainly towards systems that either 
contain many-cores and/or are accelerated. In both cases, for ab-initio codes a simple 
parallelism based on MPI is no longer sufficient.  Many community codes still implement 
parallelisation strategies that were implicitly imposed by the previous generation of HPC 
architectures. 

The basic parts of the Quantum ESPRESSO suite, PWscf and CP, have already been 
parallelised on many levels, including a low-level parallelisation using OpenMP. The 
performance modelling on both PWscf and CP has shown that a multi-thread approach allows 
almost linear scaling over the number of threads (4 or 6). According to the needs of the 
material science community, it is very important to extend this level of parallelisation even to 
those parts of the distribution where it is not yet used. Good candidates are the linear response 
package PHonon and the stresses/forces calculations in PWscf. A global inspection of the 
distribution might be useful to discover specific non-optimised routines that certain scientific 
cases may trigger. 

A refactorisation of the kernel packages aimed at further incorporating OpenMP to other 
relevant codes will permit the codes to run on upcoming new architectures by better 
exploiting the available memory. This, in turn, will make possible to run simulations of 
extended systems without big loss of efficiency. Focusing on the PRACE ecosystem, a 
particular case where the multi-threading approach becomes crucial is the new Blue Gene/Q 
architecture. In this case, compute nodes are built out of a single 4-way SMT CPU with 16 
compute cores sharing 16 GByte RAM. Moreover, using more than one thread on each core 
makes it possible to exploit the capabilities of all FPU units embedded in each die. This 
obviously reflects the need to run jobs in a hybrid mode, using well-know mixed parallelism 
strategies (coupling MPI for inter-node communications and OpenMP for intra-node 
parallelism).  

4.2.4 Parallelism over bands 

A further possible improvement that involves the high-level parallelism already in place in 
two portions of PWscf and GIPAW is the addition of a new parallelisation level over bands.  

This can be implemented by splitting loops that looks like: 

do i = 1, nbands 

 … (independent operations over the i index) 

end do 

in a way that groups of bands are processed independently and only at the end reduction or 
collect operations are performed. These new synchronisation points could introduce costs, but 
in the end a relevant increase in scalability of the overall calculation might be obtained.  

Within PRACE-1IP project, inside the WP 7.2, an exploratory work has been performed on 
two computational-intensive EXX routines: vexx and exxen2. Linear scalability has been 
obtained with a high parallel efficiency. Up to now, data structures were replicated across the 
new level of parallelism. In order to decrease the memory footprint of the calculation, a full 
distribution of the data is now needed. 

4.2.5 Improve common computational kernels: linear algebra and Fast Fourier Transforms 

Linear algebra (matrix-matrix multiplications and eigen-solvers) and Fast Fourier Transforms 
represent a set of basic dominant operations across most of the packages of the suite. In 
PWscf, varying with the scientific case, matrix-matrix operations consume up to 40% of the 
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overall wall-time. In the CP package, computation is usually dominated by distributed 3D-
FFT transformations.  

Linear algebra operations and FFT transformations now rely on external libraries. LAPACK 
and BLAS represent standard de-facto and CPU vendors usually provide their own 
implementation that targets their specific hardware (i.e. Intel MKL, AMD ACML, IBM 
ESSL, CRAY libSCI and others). 

In addition to these libraries, several new open-source projects exist. PLASMA, developed by 
the Innovative Computing Laboratory (ICL) at the University of Tennessee, addresses the 
critical and highly disruptive situation engendered by the introduction of multi-core 
architectures. As first step, investigating where and how to plug the PLASMA library inside 
most of the Quantum ESPRESSO packages might help to assess (and then improve) the 
efficiency of the multi-threading. 

On the other hand, the same research group develops and maintains another package called 
MAGMA. The MAGMA project aims to develop a dense linear algebra library similar to 
LAPACK but for heterogeneous/hybrid architectures, starting with current "Multi-core+GPU" 
systems. MAGMA has been already used to accelerate the serial eigensolvers used by PWscf 
to solve for the specified number of states using iterative (Davidson) diagonalisation. 
Diagonalisation can be very expensive in a parallel computation if a serial approach is used. 
For this reasons recently a parallel algorithm based on ScaLAPACK has been introduced. The 
measured scalability of this approach is good, but it cannot be increased too much (especially 
if the future scenario is to run simulations over thousands of cores distributed across hundreds 
of nodes). This potential bottleneck can be resolved by keeping a low number of MPI 
processes and accelerated local computations. This can be achieved by re-writing the 
diagonalisation routines or by a distributed version of MAGMA (D-MAGMA  is currently 
under development). Both strategies should be pursued to keep a level of freedom and 
independence from third-party high-specialised libraries. 

Speaking about the FFT, the activity undertaken to accelerate it with GPUs has already 
produced some benefits. Gathering and redistributing all the distributed data in such a way to 
perform the computation locally is a winning strategy, because, unlike in linear algebra where 
the amount of computation is usually O(n3), the computational cost of the FFT is usually O(n 
log n). Both  CPU and GPU performance benefits from this approach. Further step aims to 
optimise the code as much as possible by implementing a reliable and portable mixed 
parallelism that couple MPI and OpenMP or MPI and GPU code. 

4.2.6 Outlook to OpenACC 

Within PRACE-1IP WP 7.5 the acceleration of PWscf has been completed. The accelerated 
code targets NVIDIA GPGPU using both explicit CUDA kernels and CUDA-enabled 
libraries.  

Performance analysis underlined that the self-consistency loop (see Fig.13, Deliverable 8.1.3 
[4]) is usually computationally more expensive than the calculation of stresses, forces and 
new atomic positions. Since real scientific simulations perform the high-level structure 
optimisation loop many times, the stresses and forces calculations become relevant. In the 
case of the CP code, the situation is even worse. In fact, the computation of stresses almost 
doubles the computational cost of each time step. Accelerating the computation of these 
contributions using GPUs will have a significant impact to on the overall performance.  

Due to the complexity of the code, a large amount of effort may be required to port those 
kernels with CUDA. The new direct-based paradigm OpenACC will allow programmers to 
create high-level host+accelerator programs by defining specific “regions” that can be off-
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loaded to the accelerator. The use of OpenACC has several potential advantages: removing 
the need to explicitly initialise the accelerator, managing transparently data transfers between 
the host and accelerator, portability across several compilers and environment, and, last but 
not least, the automatic recognition and utilisation of other types of accelerators in the future. 

It is reasonable that a first exploration and evaluation phase can be performed using a direct-
based paradigm consistent with the OpenACC standard. Moreover, the gradual adoption of 
OpenACC will push the developers’ community to work on the current code to make it more 
OpenMP-friendly. As soon as more compilers will support OpenACC, the transition to the 
new paradigm will be smooth. This activity will perfectly couple the improvement of the 
multi-threading capabilities at CPU side. 

4.2.7 Conclusions 

The work of refactoring on the Quantum ESPRESSO suite could be summarised in the 
following actions: 

1) improvement of the linear algebra part, taking into account the development oriented to 
new architectures such as GPUs and, more generally, accelerators; 

2) OpenMP extension and parallelism on bands on other parts of the distribution where it is 
not yet implemented; 

3) general and deep refactoring with special regards to modularisation techniques, obtained by 
removing any redundant portions of code. 

The first one of these actions is aimed at obtaining a measurable improvement in the 
performance of the computational kernels. These kernels, once the work described in action 3 
will be accomplished, would be linkable to any of the dependent packages of the Quantum 
ESPRESSO distribution. 

The second of the above-mentioned actions will permit the enlargement of physical systems 
to study, by removing the limiting constraint on RAM memory. In particular, this 
improvement will benefit the usage of particular kinds of architecture where a hybrid 
MPI+OpenMP approach is more desirable. This action is really mission-critical, if the current 
roadmap to reach deployed exa-scale systems with hundreds of thousands of cores will 
continue as expected. 

The third action is probably the most radical one. If a modularisation of the DFT engine 
PWscf and the linear response package PHonon is successfully achieved, this will change and 
improve of the numerical algorithms in the near future. Modularisation helps the process of 
including into the public code new developments by research groups that are not core 
developers. An example in this sense is the implementation of hybrid functionals, which is 
strongly pushed by the user community since it allows more realistic simulations of large 
systems of interest. 

The Quantum ESPRESSO distribution includes a wide sample of short examples that are 
intended for testing of the codes. Such examples will be a useful tool to validate the above-
mentioned improvements that will be made to the code. Furthermore, the test cases showed in 
the D8.3.2 and D8.3.3 will remain the baseline to establish how code performance changes 
during the work of refactoring. 

4.2.8 Work plan 

The work on Quantum ESPRESSO will involve CINECA, ICHEC and DEMOCRITOS. The 
work on the three above described macro-areas is almost independent and can be, using 
versioning tools such as SVN, performed in parallel. 
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The effort will be shared, between CINECA, ICHEC, CSCS and the DEMOCRITOS 
community. 

Releases of the codes will be made available after successful testing. We set two milestones: 

MS 1: January 2013 presentation of the work performed and report at the Quantum 
ESPRESSO developers workshop 

MS 2: October 2013 release of a version implementing the improvements described above.  

 

4.3 Yambo 

Yambo [33] is an ab initio code for calculating quasiparticle energies and optical properties of 
electronic systems within the framework of many-body perturbation theory (MBPT) and 
time-dependent density functional theory (TDDFT). Quasiparticle energies are calculated 
within the GW approximation for the self-energy. Optical properties are evaluated either by 
solving the Bethe–Salpeter equation or by using the adiabatic local density approximation. 

The main performance problem of Yambo resides in the inversion of the response function, 
for which ScaLAPACK seems not to bring any scaling improvements. We will start by 
analysing the developers’ implementation of ScaLAPACK and fine-tuning it. Following this, 
we propose MAGMA for the LU factorisation and also to replace LU-factorisation based 
Gaussian elimination by Gauss-Jordan elimination. If the problem is solved earlier than 
expected, we propose to improve the code further by implementing ELPA as eigensolver for 
the Bethe-Salpeter equation.  

We expect to devote 6 months to this task, according to the following timeline: 

 
Figure 32: GANTT chart for Yambo 

The validation of the modifications will be done using the input files in the current tutorial of 
the program. They are already being used by the developers for this purpose. 

 

4.4 Siesta 

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is both a 
method and its computer program implementation, to perform electronic structure 
calculations and ab initio molecular dynamics simulations of molecules and solids. 

The analysis presented in deliverables D8.1.2 [3] and D8.1.3 [4] pointed out that the most 
costly code section is the diagonalisation, so that the best approach for increasing the parallel 
performance is finding a better scaling method for solving the generalised eigenvalue problem 
than the currently used ScaLAPACK library.  

March 2012 May 2012 July 2012 September 2012 November 2012 January 2013 March 2013

Implementation of a LU factorization based on MAGMA

May 1, 2012 – Jul 31, 2012

Benchmarking, validating and fine-tuning of the Gauss-Jordan 
implementation

Nov 1, 2012 – Jan 31, 2013

ScaLAPACK benchmarking, validating and fine-tuning

Feb 1, 2012 – Jun 30, 2012

Replacement of LU-factorization based Gaussian elimination by 
Gauss-Jordan elimination

Sep 1, 2012 – Nov 30, 2012

Benchmarking, validating and fine-tuning of the MAGMA 
implementation

Jul 1, 2012 – Oct 31, 2012



D8.1.4 Plan for Community Code Refactoring 
 

PRACE-2IP - RI-283493  24.02.20122 
 

60

The Sakurai-Sugiura (SS) method has the potential for using many processors efficiently, 
because it offers a multilevel parallelisation in a very natural way. Furthermore one can 
exploit the sparsity of the matrices to diagonalise.  

To provide better performance also for small platforms, it would also be valuable to examine 
the potential of recent developments in the field of eigenvalue solvers on GPUs.  

4.4.1 Sakurai-Sugiura Algorithm 

This method is meant to find eigenpairs in a given domain of the spectrum. The number of 
eigenvalues that can be found is limited, depending on some parameters of the algorithm. If a 
big fraction of the spectrum has to be calculated, the range of interest has to be divided into 
subdomains.  

From a computational point of view the algorithm consists of the following basic steps (for 
each subdomain): 

1. Constructing and solving a set of complex-valued linear equations of the original 
matrix size, each with multiple right hand sides.  

2. Summing up the solutions of the systems for getting a transformation matrix Q. 

3. Projecting the original matrices H and S to a smaller subspace by matrix-
multiplications QTHQ and  QTSQ 

4. Finding the eigenpairs of the smaller system and doing a back-transformation of the 
results. 

5. Selecting the correct eigenpairs from the results 

The first step is supposed to be the most costly since many linear systems of the original size 
have to be solved. So basically the SS algorithm shifts the problem of finding eigenpairs to 
solving linear systems, which is much easier to handle. So the total performance depends on 
the linear solver used and the efficiency of the parallelisation.  

Parallelisation can be implemented at three different levels: 

1. The most coarse-grained level is the division into subdomains. They are totally 
independent of each other, so there is no communication overhead. The total running 
time will be given by the most expensive domain. The efficiency depends on the load 
balance, but since all costly operations do not depend on the domain, the load 
balancing is expected to be good.  

2. In each subdomain, the linear systems can be solved in parallel. Also this 
parallelisation does not need any communication, but when solving systems 
consecutively some data can be reused. Due to the similarity of the linear systems a 
very good load balancing is expected.  

3. Also a parallel linear solver can be implemented. This might be useful, since only on 
this level can the original matrix be split for saving memory on one process.  

 



D8.1.4 Plan for Community Code Refactoring 
 

PRACE-2IP - RI-283493  24.02.20122 
 

61

 
Figure 33: Visualisation of the outer two levels of parallelisation. The first level is the division of the 
domain. The first step in each domain is solving the linear systems, which can be done in parallel. 
Afterwards all processors can be used for doing the following computations in parallel. 

While for the first two levels an MPI parallelisation is preferable, one might use different 
technologies for the linear solver. One possibility would be using one node with a 
multithreaded linear solver. Another idea is to use a GPU-based solver. Since many of the 
following operations are matrix-matrix and matrix-vector multiplications, GPUs might be 
used efficiently also for these tasks. This offers an opportunity to use many GPUs in parallel.  

The computational effort depends strongly on some internal parameters of the algorithm. 
Those, in turn, are related to the desired accuracy on one hand, and on the other hand also on 
the available information about the spectrum. Since the diagonalisation is done in an iterative 
loop, information from previous iterations can be reused.  

Work plan: 

The work plan for this part accounts for the following steps. 

1. Developing a prototype for examining the potential of the method and for finding an 
efficient sparse linear solver (a detailed work plan for this part is given in figure 
Figure 34. Milestones are:  

M 8:  Showing functionality and stability of method 

M 14:  Deciding on linear solver to implement 

M 17:  Significant performance data before going to final parallelization and 
  implementation 

2. Implementing the new eigensolver into Siesta and examining data-reuse and 
parameterisation, to try to obtain a "black-box" method that works automatically. 

3. Final optimisation 

This can be done for several linear solvers based on different technologies. 

 
Figure 34: GANTT chart for the work on SS algorithm. 
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4.4.2 Using GPU-based eigenvalue solver 

Due to the efficient basis set of Siesta, many physically interesting problems can be computed 
on a single workstation. Thus reducing the computation time by implementing the newest 
GPU-based eigensolvers (e.g., the MAGMA library) can be interesting for many users.  

Work plan: 

1. Exchanging ScaLAPACK by MAGMA in serial mode. 

2. Implementing the using of all cores of a hybrid (CPU/GPU) node or workstation. 

4.4.3 Testing and Validation procedure 

The Siesta distribution has a whole directory of feature-related tests that can be run 
automatically. These tests are typically small, so they are useful for correctness testing but not 
for performance testing. 

The test examples water_pt, DNA, and Hemoglobina, presented in deliverables D8.1.2 [3] 
and D8.1.3 [4], represent systems with different features and sizes, and will thus be used for 
analysing performance and also correctness for larger systems.  

 

4.5 Octopus 

Octopus is an implementation of Time-Dependent Density Functional Theory (TDDFT) on a 
real-space grid. Octopus performs real-time propagation of the TDDFT equations in order to 
simulate the dynamics of electrons and nuclei under the influence of external time-dependent 
fields.  

There are two main run modes in Octopus: ground-state calculations and time-propagation. 
The former is a pre-requisite of the latter, which is the main run mode of Octopus. There are 
two main performance problems to be tackled, one in each run mode.  

For ground-state calculations, we will address the problems of the LOBPCG eigensolver 
when running parallel in states. An implementation within ScaLAPACK was already started 
by the code developers, but it is still very crude and was neither benchmarked nor fine-tuned. 
We plan to finish this implementation and refine it according to the results of benchmarks. If 
the performance gain is insufficient, we will try to develop a very thin reimplementation of 
BLACS on top of MPI with topologies (BLACS assumes a 2D topology), in order to allow 
for the use of a subset of the processors in ScaLAPACK. 

For the time-propagation runs, the main bottleneck is the Poisson solver, as, in this run mode, 
the main physical operation is just the propagation in time of the Kohn-Sham wavefunctions 
computed in a previous ground-state run. At each time step, this propagation amounts to a 
multiplication of each wavefunction by the Hamiltonian matrix, followed by the re-computing 
of the Hamiltonian. Parallelisation in real-space domains and wavefunctions is trivial except 
for the “Hamiltonian recomputing” part. And in that part, the Poisson solver is the main 
bottleneck. The developers are already working on this problem and the proposed solution is 
to implement a parallel FFT (PFFT) Poisson solver and to also code an implementation of the 
fast multipole method (FMM). PFFT would be used for medium-size runs and FMM for very 
large runs. We plan to work on the grid re-partitioning that occurs after each call to PFFT. 
This is a communication-intensive step that can degrade the performance to the point of 
rending PFFT impracticable. We will also collaborate with the developers on testing and 
improving both implementations. 

We expect to devote 6 Ms to these tasks, according to the chart in Figure 35. 
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Figure 35: GANTT chart for Octopus. 

In order to validate and benchmark the code modifications we will use the testing procedure 
already implemented by the developers of the code. This consists of a testsuite currently 
encompassing 300 different runs. We will only use the testsuite runs directly affected by the 
modifications. The benchmarking will be done using the runs included in PABS, as Octopus 
is part of it. 

 
4.6 Exciting/ELK 

4.6.1 Overview  

Exciting 

A full-potential all-electron density-functional-theory (DFT) package based on the linearized 
augmented plane-wave (LAPW) method. It can be applied to all kinds of materials, 
irrespective of the atomic species involved, and also allows for the investigation of the 
atomic-core region. The code particularly focuses on excited state properties, within the 
framework of time-dependent DFT (TDDFT) as well as within many-body perturbation 
theory (MBPT). The code is freely available under the GNU General Public License.  

Elk 

An all-electron full-potential linearized augmented-plane wave (FP-LAPW) code with many 
advanced features. Written originally at Karl-Franzens-Universität Graz as a milestone of the 
EXCITING EU Research and Training Network, the code is designed to be as simple as 
possible so that new developments in the field of density functional theory (DFT) can be 
added quickly and reliably. The code focuses on ground state properties with some effort 
devoted to excited state properties. The code is freely available under the GNU General 
Public License.  

Both Exciting and Elk codes are successors of the original EXCITING FP-LAPW code and 
thus bear a lot of common algorithms and functionality. Both codes have a major bottleneck 
of poor scalability with respect to a number of atoms in the unit cell. Thus the “Performance 
analysis” [3] and “Code improvement” [4] phases are aimed at identification and elimination 
of this bottleneck and the goal of the code refactoring is set to create a fast and scalable 
ground-state LAPW solver.    

4.6.2 Plan for code refactoring  

The analysis of Exciting/Elk codes shows that the straightforward optimizations of the 
existing implementations would not be efficient without a fundamental change of the wave-
functions representation. The proposed representation is based on the explicit knowledge of 
the radial basis functions for each azimuthal quantum number and is already implicitly used in 
some parts of the Exciting code. The change of the wave-function representation will impact 
the following major parts of the code: construction of the first- and second-variational wave 

March 2012 May 2012 July 2012 September 2012 November 2012 January 2013

(Re)implementation of PFFT

Feb 1, 2012 – Mar 31, 2012

Benchmarking, validating and fine-tuning of the PFFT 
implementation

Apr 1, 2012 – Jun 30, 2012

Benchmarking, validating and fine-tuning of the FMM 
implementation

Aug 1, 2012 – Oct 31, 2012

ScaLAPACK benchmarking, validating and fine-tuning

Apr 1, 2012 – Aug 31, 2012

BLACS reimplemenation

Sep 1, 2012 – Jan 31, 2013
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functions, setup of the charge density and magnetization, calculation of matrix elements of 
any operator in the basis of first- or second-variational states (including setup of the second-
variational Hamiltonian).  The analysis also reveals a lot of functionality that should be 
common to all LAPW-based codes. 

Thus, the following objectives are set: 

1. Isolate generic algorithms of the linearized augmented plane-wave (LAPW) method 
into a separate reusable library, independent of a particular LAPW code 
implementation. This effort has a purpose of splitting code development into a 
“physics” part (maintained by a particular LAPW code community) and a common 
backbone (maintained by advanced code developers). 

2. Design new scalable LAPW library with the capability of handling large unit cells 
with hundreds of atoms and running on hundreds to thousands of nodes on modern 
hybrid/multicore systems. The maximum number of atoms that the library can run 
should depend on the capabilities of the underlying generalized eigenvalue solvers 
only. 

3. At the same time the experience of other community codes (for example ABINIT) 
could be used to set up an automated test suite for a constant check of code revisions. 
A lot of attention has to be paid to various compilation and runtime possibilities (MPI 
single threaded, MPI+OpenMP, MPI+OpenMP+GPU) on several platforms. Thus the 
support of a computing center providing the hardware for such a test-farm is needed. 
Also, “canonical” tests (for example, equilibrium lattice constants obtained in LDA) 
should be set up for the purpose of testing the “physics” part of the code.   

The following steps are proposed to achieve the required objectives: 

4. Create a prototype LAPW library. At this stage a new wave-function representation 
will be adopted, which will serve as a foundation for further algorithmic 
optimizations. 

5. Together with (1): introduce changes to the Exciting code to work with the prototype 
library. Make initial crosschecks and validations.  

6. Guarantee that the basic Exciting functionality (L(S)DA+(U)+(SO) ground-state 
calculations, collinear and non-collinear magnetic configurations, structure relaxation 
and forces) are reproduced. At this stage it should be possible to compute unit cells 
with ~100-200 atoms. Perform a structure optimization test run for a system with ~100 
atoms. 

7. Make use of parallel, generalized eigenvalue solvers based on different technologies 
(shared memory systems, GPUs). This will be a qualitative step towards “103 atoms” 
calculation. 

8. Parallelize the other parts of the library, with particular respect to data distribution and 
generation, which is closely related on the selected eigenvalue solver(s). 

9. Switch to high-performance I/O libraries such as HDF5 for the purpose of fast reading 
and writing of large data structures (for example, eigen-vectors or eigen wave-
functions). 

10. Complete with the ground-state optimizations and debugging of the LAPW library. 
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The following last two items will be part of the phase after M19-24.  

1. Show that the new library can be linked (after some inevitable modifications) to other 
LAPW codes, such as Elk. This will prove that at least two of the available LAPW 
codes can benefit from the proposed development model. 

2. Check if excited states branch of the Exciting code can also be incorporated into the 
LPAW library. 

4.6.3 Performance and scaling analysis of the core algorithms 

The following notation is adopted: 

N – number of atoms in the unit cell 

NMPI – total number of MPI ranks 

NMPI-k – number of MPI ranks for a given k-point 

Nthread – number of threads (or cores) per MPI rank 

T(..) – time for a task in brackets 

O(..) – algorithm or data complexity 

At each iteration of the ground state calculation the following steps are performed: 

Step complexity time to solution notes 

setup radial 
integrals 

O(N) 
T(O(N)) / (min(N, NMPI) * 
Nthread) 

involves MPI reduction 
of arrays with O(N) 
size 

setup first-
variational 
Hamiltonian and 
overlap matrices 

O(N3) T(O(N3)) / (NMPI-k * Nthread) 

possible candidate for a 
GPU implementation 

diagonalize first 
variational secular 
equation  

O(N3) T(O(N3)) / NMPI-k 

depends strongly on 
particular 
implementation of a 
parallel eigen-value 
solver 

setup first-
variational wave-
functions 

O(N3) T(O(N3)) / (NMPI-k * Nthread) 
involves MPI reduction 
of arrays with O(N2) 
size across NMPI-k nodes 

setup second-
variational 
Hamiltonian 

O(N3) T(O(N3)) / (NMPI-k * Nthread) 

second variational 
matrix is small and not 
considered for MPI 
parallelization; involves 
MPI reduction of 
matrix with O(N2) size 
across NMPI-k nodes 

diagonalize 
second-variational 
Hamiltonian 

O(N3) T(O(N3)) / Nthread 

because the matrix size 
is small the threaded 
LAPACK or GPU 
implementation is 
considered for 
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Step complexity time to solution notes 

diagonalization; 
involves MPI broadcast 
of matrix with O(N2) 
size across NMPI-k nodes 

setup second-
variational wave-
functions 

O(N3) T(O(N3)) / (NMPI-k * Nthread) 
 

setup charge 
density and 
magnetization 

O(N2) T(O(N2)) / (NMPI * Nthread) 

includes MPI reduction 
of density matrix with 
O(N) size across all 
NMPI nodes 

setup Hartree 
potential 

O(N2) T(O(N2)) / (NMPI * Nthread) 

includes MPI reduction 
of Hartree potential 
with O(N) size across 
all NMPI nodes 

setup exchange-
correlation 
potential 

O(N) 
T(O(N)) / (min(N, NMPI) * 
Nthread) 

includes MPI reduction 
of XC potential with 
O(N) size across all 
NMPI nodes 

 

4.6.4 Work plan 

The objectives identified above will be pursued by ETH according to the timeline presented in 
Figure 36. 

 
Figure 36: GANTT chart for Exciting/ELK 
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5 Particle Physics 

Lattice QCD is a computationally demanding approach for studying the theory of the strong 
nuclear force known as Quantum Chromo Dynamics. QCD is believed to be the fundamental 
theory of the strong interaction which describes the interaction between quarks and gluons. 
Because of the large coupling at low energies, analytical computations using perturbation 
theory is not possible. The goal of lattice QCD is to make ab-initio calculations in QCD and 
compute physical observables such as the Hadron spectrum starting from this fundamental 
theory. In this approach, the space-time continuum is replaced by a discrete hyper-cubic 
volume with periodic boundary conditions, i.e., a 4-dimensional torus.  Quark fields are 
described by what is called a spinor field ψ(x) at each lattice site x while gauge fields are 
described by what is called links U(x,ν) for each site x and direction ν. A spinor ψ(x) is a 12 
component complex vector arranged as 4 structures (for 4 spin components) each is a 3 
component complex vector (for 3 colours). The gauge (gluon) links U(x,ν) is 3 by 3 complex 
unitary matrix which is a member of the SU(3) gauge group. U(x,ν) connects spinor fields at 
sites x and ݔ   direction. In ߥ is a unit vector in the ߥ̂ where a is the lattice spacing and ߥ̂ܽ
Figure Figure 37 a schematic representation of the lattice setup is shown.      

                                                                                                                            

 
Figure 37: A schematic presentation of the Lattice setup in 2 dimensions 

In this deliverable, we summarise our performance study results for the prototype lattice QCD 
code chosen, tmLQCD, and our improvement and testing work plan for this code. We also 
give more performance results that complement our earlier results described in the previous 
deliverables [3, 4].   

5.1 Target codes, algorithms, and architectures 

5.1.1 Target Code 

We will focus on the tmLQCD code for Twisted-Mass Wilson fermions. tmLQCD is a lattice 
QCD package for performing hybrid Monte Carlo simulations to generate gauge field 
configurations with the quark fields represented as Wilson type fermions with a twisted mass 
term. In particular, we’ll focus on what is called the Dirac operator. The Dirac operator is a 
linear operator which depends on the gauge field and the quark mass that acts on a spinor 
field as 

                                          ߶ ൌ   .ሺܷሻ߰ܦ

For tmLQCD, we have 

 

 ߶ሺݔሻ ൌ ൫݉  4   ሻݔହ൯߰ሺߛߤ݅

െ ଵ

ଶ
∑ ሾܷሺݔ, ሻሺ1ߥ  ݔఔሻ߰ሺߛ  ሻߥ̂ܽ  ܷறሺݔ െ ,ߥ̂ܽ ሻሺ1ߥ െସ

ఔୀଵ ݔఔሻ߰ሺߛ െ  ሻሿ,       (1)ߥ̂ܽ
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where  are quark mass parameters,  are 4 by 4 constant spin matrices and 

 . The first part of the result comes from a simple scaling of the input spinor while 
the second part, known as the hopping matrix, is more expensive to compute. Application of 
the hopping matrix requires the multiplication of spinor fields with gauge links. In addition, it 
is non-local and requires communication between neighbouring processes when MPI is used.  

In a typical lattice simulation, the Dirac operator needs to be applied hundreds of thousands of 
times and optimisation of the hopping part is very fundamental for high performance.  For 
illustration, we show in Figure 38 the profile of the CG solver as studied in [3] for our 
performance benchmarks. The results showed that about 65% of the time spent on user 
defined functions was used by the hopping matrix function.  It also showed that 
communication with MPI was about 20% of the total time. 

 

                                                         

 

 

                                                                                                          

 
Figure 38: Profiling of the twisted mass CG solver code on 24 nodes. Center for User and MPI functions 
with respect to the total time. The right chart is a break-down of the User functions (percentages are with 
respect to the total time spent in User functions) and the left chart is a break-down of the MPI functions 
(percentages are with respect to the total time spent in MPI functions). Run was performed on Cray XE6 
at NERSC for a lattice with 48 sites in the spatial directions and 96 sites on the time direction. 

5.1.2 Target architectures 

The architectures targeted for code refactoring are multi-core machines. Most current 
machines have multiple cores per node, and the future trend is to have more cores per node in 
addition to GPUs. For this work package, we will focus on multi-cores and leave GPUs for 
possible future work. For multi-core machines, we plan to refactor the code to be have a 
hybrid parallel implementation using MPI+OpenMP. Our motivation for this approach is to 
obtain a better scaling as the number of cores increases and to reduce the memory footprint of 
the code allowing for simulations of much larger lattices than with pure MPI. Our strong 
scaling test of the code on a Cray XE6 machine up to 45,000 cores showed a degradation of 
performance as the number of cores increases (see Figure 39). 
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5.1.3 Performance Results 

In order to justify improvement and code refactoring plans for the code it is important to 
summarise our main conclusions from performance benchmark tests we have performed. We 
first discuss the single core performance and then the single node with results  for multi-cores 
and many nodes. 

5.1.3.1 Single core performance 

Even though it is almost always that lattice QCD simulations will be running on many cores, 
optimising the single core performance is important. Note that the MPI communication is 
about 15-20% of the overall time. An important parameter here is the arithmetic intensity of 
the hopping matrix (ratio of floating point operations/ bytes read and written to DRAM).  

 
Figure 39: Strong scaling test of the twisted mass CG solver on a CrayXE6. The points labeled “Time 
restricted to node” refer to scaling tests carried out where care was taken so that the spatial lattice sites 
where mapped to the physical 3D torus topology of the machine’s network, which restricts the time-
dimension partitioning to a node. 

The number of floating point operations per site is about 1320 and if we assume an ideal 
memory access situation in which every link and spinor at each site is loaded only once from 
memory, we need to read and write 960 bytes (assuming double precision and counting that a 
spinor will be written back to memory). This gives an arithmetic intensity of about 1.4. So, 
one key parameter to improve performance is to increase the arithmetic intensity of the 
hopping matrix. In addition, memory prefetching should be used to hide memory latency as 
much as possible. Prefetching is currently implemented in the code, but it is mainly optimised 
for Intel architectures. Optimisation of memory prefetching could have a considerable effect 
on the single core performance. In our performance tests, we devised a benchmark in which 
no memory was read or written and compared the floating-point performance in both cases. 
On a single core of a Cray XE6, we obtained about 3GFlops/s when no memory is read or 
written, while we got about 1GFlops/s when reading and writing to memory.  This shows the 
big impact of memory access. In addition, to realistically model the single core performance 
we measured the peak floating point performance that should be expected as well as memory 
bandwidth. The vendor provided peak performance is 8.4 GFlops/s. This however is based on 
MADD type of operation. The floating point operations in the hopping matrix are mixture of 
MULPD (multiply packed double) and ADDPD (add packed double) with more 
multiplication operations. So, the peak floating point performance which one should use 
should be based on operations similar to those performed in the code. This gives about 3 
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GFlops/s (note that for MULPD operations the peak performance is about 4.2 GFlops/s, 
however, operations used in the Dirac operator are unbalanced mix of ADDPD and MULPD 
operations). For the peak memory bandwidth we also devised a benchmark. In Figure 40, we 
show the results of the benchmark as a function of the buffer size. The figure shows that one 
expects to get about 7GB/s on a single core when only a single core is used per socket (each 
socket on the Cray XE6 machine has 6 cores). This result however, suggests that the hopping 
matrix should be floating-point performance bound rather than memory bandwidth bound as 
we have found. This needs to be investigated further and could be related to inefficient 
memory prefetching.  

Another important aspect of the single core operation is that the implementation of the 
hopping matrix uses the SIMD x86 instructions SSE, SSE2, and SSE3. All the arithmetic 
operations are written in terms of inline assembly functions. Similar optimisation is also used 
for the Blue Gene architectures.   

 
Figure 40: measuring the effective memory bandwidth for single core on a Cray XE6 as a function of the 
buffer size. 

5.1.3.2 Single node and many node performances 

For this part, the interesting aspect is the communication cost. Our performance tests showed 
that a call to MPI_waitall() entailed about 60% of the total time used by the MPI functions 
(see Figure 38 and [3]). The reason is that exchanging the boundaries is not overlapped with 
computation inside the hopping matrix.  Even though communications are done using non-
blocking MPI calls, it is done in a way which is in effect blocking. Currently, the 
implementation of the hopping matrix is as follows (more details can be found in [57]) 

 Compute  and  for all 
sites  and directions  This part doesn’t require any communications. Note also that 
only the upper 6 components of  and  need to be computed since the other 
components are automatically inferred. 

 Exchange the boundaries of   and  . 

 Construct the final result using  
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This schedule is non-optimal as indicated by the large wait time used by MPI_Waitall() 
function.  

The other aspect of the communication part is using a hyprid MPI+OpenMP approach. We 
wrote a first version of the hopping matrix in which for loops are done using OpenMP. Our 
current tests focused only on comparing pure MPI to pure OpenMP floating point 
performances. For the Cray XE6 machine where we performed our test, each node has 24 
cores. However, the most efficient memory sharing is only between groups of 6 cores. Results 
showed a factor of 20% increase in the floating point performance using OpenMP versus MPI 
on 6 cores. According to other performance tests on the same machine it is recommended for 
the hybrid code to use 6 threads for every MPI process to get the best performance. Further 
tests are needed for the hybrid approach.  

We also provide a Roofline model plot using both effective and vendor given peak floating 
point performance and memory bandwidth (Figure 41).  

 
Figure 41: Rooflines (coloured) for attainable floating point performance for a node of the Cray XE6 
machine at NERSC. Each node has 4 sockets with 6 cores each. Both vendor and measured data are 
shown 

In a Roofline plot, one combines peak floating point performance with a peak memory 
bandwidth to put boundaries on the maximum floating point performance for the system 
under consideration. Given the rooflines (coloured lines in the plot) and the arithmetic 
intensity of the code one can find the attainable floating point performance from the relation: 

Attainable GFlops/sec = min (PeakFP performance, Peak memoryBW x Arithmetic intensity). 

5.2 Workplan 

Given the previous discussion of the performance of the code, we plan to improve the code as 
described in the following subsections. 

5.2.1 Improving the single core performance 
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 The links U are 3 by 3 unitary matrices. Normally, all the nine complex matrix 
elements are stored and read from memory. However, the third row can be 
reconstructed given from the first and second rows. This will increase the arithmetic 
intensity of the code leading to a higher floating point performance. Another reduction 
approach in which U is defined in terms of 8 real numbers which has been used for 
GPUs [58] which will also be considered. 

 Using cache-blocking for better cache reuse.  
 Investigation of better prefetching strategies. 
 Applying the hopping matrix to more than one input spinor simultaneously. This will 

increase the arithmetic intensity as we need to read the gauge links only once. Initial 
tests showed encouraging results with floating-point performance increasing by 20% 
when applying the hopping matrix to two input spinors simultaneously. This will be 
useful when using standard solvers such as CG or when using block solvers. 

 Implementing a new version using AVX (Advanced Vector Extensions)  extensions to 
the x86 instructions. This is a recent technology in which the SIMD registers are 256 
bytes instead of 128 bytes in addition to other new instructions [59]. Even though 
these extensions are not available on most machines now, they are likely to be 
available in the future. These extensions will increase the arithmetic intensity of the 
code by up to a factor of 2 as they will allow simultaneous operations on 4 doubles 
instead of 2. 

5.2.2 Improving parallel performance 

 Overlapping communication and computation as described in [4]. 
 Developing a hybrid MPI+OpenMP version. 
 Using NUMA-aware optimisations on the hybrid MPI-OpenMP code for exploiting 

the memory-bandwidth in the most efficient way. 

5.2.3 Algorithmic improvements 

In this part we implement new algorithms that are currently under development in the code as 
described below: 

 Linear solvers 
The main solver used now is CG. However, there exist other solvers such as deflated 
CG and BiCGStab that could be much faster. We have tested for example deflated CG 
(using another code) and found it to lead to large speed-up of the solution. This will be 
integrated into the tmLQCD code. 

 Using Poisson brackets to tune Hybrid Monte Carlo integrators 
Here we address the improvement of the molecular dynamics (MD) step of the Hybrid 
Monte Carlo (HMC) method. This is the most time-consuming part of HMC, since the 
system is evolved using some approximate integrator. For dynamical lattice 
simulations, this HMC step implies several inversions of the fermionic matrix. Since 
the MD integrator has, in general, free parameters, these can be optimised such that 
the acceptance rate is maximised while using a step size as large as possible. This 
allows a decrease in the CPU time needed for a single HMC trajectory, making the 
generation of dynamical lattice configurations faster. 

 Landau Gauge fixing 
We address the Landau and Coulomb gauge fixing on the lattice, which is usually 
performed using a local optimisation method, such as Steepest Descent. A Fourier-
accelerated version allows to suppress critical slowing down, making it suitable for 
larger lattice volumes. The target architecture is parallel machines running MPI. The 
standard FFTW package only provides routines for data distributed along one 
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dimension. Other possible packages can be explored, such that the data can be 
distributed along two or three dimensions, which allows the use of more processors. 

 

5.2.4 Testing and Validation 

Most planned improvements can be tested by comparing to the results with those using the 
original code. This is due to the deterministic nature of the computation. Final results should 
agree. This is the case for all mentioned improvements except for the part related to the HMC 
integrator because of the stochastic nature of the calculation and the different level of 
accuracy. Validation of this improved integrator in comparison to the current integrator will 
require computing a physical observable measured on equilibrium distribution of 
configurations generated using the old and new integrator. This is a very expensive 
calculation to be performed on realistic lattice sizes. Alternatively, one can test the scaling 
behaviour as a function of the step size and compare it to the original integrator.   

5.2.5 Work plan schedule 

A tentative schedule (gantt chart) is given below for implementing the mentioned 
improvements. 
 03/12 

M7 

04/12 

M8 

05/12 

M9 

06/12 

M10 

07/12 

M11 

08/12 

M12 

09/12 

M13 
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11/12 

M15 

12/12 

M16 

01/13 

M17 

 

OpenMP + MPI            

Overlap 
Communication and 
Computation 

           

Single Core 
Improvements 

           

Linear solvers            

Gauge Fixing Code            

Poisson Bracket 
Integrator tuning  
Code 

           

           

            Implementation                     Testing and Optimization 

 

  



D8.1.4 Plan for Community Code Refactoring 
 

PRACE-2IP - RI-283493  24.02.20122 
 

74

6 Conclusions and next steps 
In this document, we have presented the results of the performance modelling methodology 
applied to a number of codes selected in collaboration with four scientific communities, 
namely Astrophysics, Material Science, Climate, and Particle Physics, to be subject of re-
design and refactoring in order to be enabled to the efficient and effective usage of the coming 
generation of HPC architectures.  

These results have been used to define the specific objectives of code re-design. For each 
code those architectures (e.g. GPUs or multi-core NUMA systems) appearing to be the most 
promising for the refactoring work were chosen. Furthermore, among these architectures, only 
those that appeared to be most suitable to the community and the expected users’ usage for 
high-end simulations, were considered. 

A broad spectrum of applications, architectures, programming models, parallel paradigms, 
will characterise the implementation phase, starting at M7 and ending at M20. A huge amount 
of expertise and effort is required to successfully accomplish all the expected work. These are 
provided and guaranteed by the strong involvement and contribution of highly motivated 
scientific communities, with the commitment of their developers, that, working in close 
collaboration with the HPC experts, provide all the necessary skills and man power to 
successfully reach the envisaged goals. 

The variety of applications considered in WP8 is further enhanced by the inclusion of a fifth 
community, Engineering, that represent a relevant target both for their scientific objectives 
(mainly focusing on computational fluid dynamics) and for the links to industrial applications, 
which can create interesting synergies with PRACE-2IP WP9. The synergy between the two 
WPs is on-going since the beginning of the project in the framework of Pillar 3, in order to 
ensure an effective approach to this community. Specific care is devoted in focusing on 
different target applications in order to avoid any duplicate effort, the focus of WP8 being 
essentially open source academic codes, mainly devoted to scientific targets. Furthermore, an 
effective exchange of information and contacts can contribute to increase the impact of the 
two WPs toward the corresponding communities. Periodic conference calls are organized in 
order to coordinate such action together with workshops involving users and stakeholders, 
that are expected to be held periodically (the first expected by the end of March 2012). 

In the Engineering framework a number of codes have been selected and two main topics 
have been identified as relevant for the community: efficient parallel mesh generation and 
acceleration of fluid dynamics solvers. Detailed analysis will be performed in the coming 
weeks in order to produce the corresponding performance models and to start the refactoring 
work as soon as possible. 

All the details of this work and guidelines for software usage will be reported step-by-step in 
a dedicated web site that, starting from M12, will be available to the communities and whose 
snapshot at M20 will serve as deliverable report including software description and measured 
performance gains. 
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Appendix A. Engineering Community 
(Note that references in Appendix A all refer to the A5 “Relevant Bibiography” section) 

Engineering represents a major research and technological innovator within the European 
Union and contributes substantially to its economic success. A major factor for ensuring that 
today’s and tomorrow’s product portfolio remains at the international forefront is the 
increased use of high fidelity simulation to reduce cost, time to market, minimise risk, and 
meet increasingly stringent global environmental challenges. The efficient use and successful 
exploitation of modern High Performance Computing (HPC) will therefore play a significant 
role in delivering increased understanding of complex phenomena associated with the 
simulation of geometrically realistic engineering problems. However, although European 
engineering companies have achieved remarkable success, the computational community 
remains fragmented. 

In contrast to other scientific disciplines, there are no “community” codes, and institutions 
make use of both in-house and commercial software developed by ISVs (although there is an 
encouraging trend towards open-source software). However, it is clear that engineering 
research has a major impact, both at academic and industrial level. 

In PRACE, Engineering plays an important role, too. As already pointed out in deliverable 
D8.1.1 [2], 16% of the projects which have been supported through DEISA DECI Calls and 
PRACE Early Access Calls have been from the Engineering field. In addition, 17% of the 
projects preparing for accessing PRACE Tier-0 systems, so called “Preparatory Access 
Projects”, are coming from this area, too. 

A.1 Scientific Challenges 

The topics covered by computational engineering are extremely diverse and cover, for 
example, aeronautical engineering, automotive engineering, chemical engineering, nuclear 
engineering etc. Many of these fields have interlinked challenges such as energy. It has been 
suggested that the global demand for energy over the next 25 years will grow dramatically. 
Reports, such as the International Energy Outlook 2010, suggest total energy demand rising 
from 495 quadrillion BTUs in 2007 to 739 quadrillion BTUs in 2035 (see Figure 42). This 
represents a 49% increase in demand, with much of this increase arising from non-OECD 
countries. Although precise numbers differ in various reports, there is no doubt that global 
energy demand will increase considerably. To address and meet these challenges in industry, 
access to high fidelity simulations is required that will allow companies to optimise current 
capability and to maximise the lifetime performance of their facilities. We also need to 
understand the role of renewable energy sources and simulation is critical to the efficient use 
of bio-fuels in combustion (such as syngas) and the optimum placement of marine turbines to 
maximise energy production and socio-economical impact and understand any potential 
environmental consequences. 

The broad objective of the PRACE engineering work package is to identify challenges and 
bottlenecks and re-factor high fidelity software for informing critical design and operational 
decisions. This will require an understanding of hardware trends (Intel’s emerging multi-core 
technology, the use of GPGPU architectures), in order to exploit the capability offered by 
petascale and exascale computing, which requires a number of key issues to be addressed.  

For engineering, there are generally three distinct stages, which are: 

 Pre-processing (creating the computational mesh) 
 Solution (discretising equations and implementing the numerical algorithm) 
 Post-processing (displaying numerical results) 
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Figure 42: World marketed energy consumption, 1990-2035 (source: International Energy Outlook 2010) 
A lot of time and effort has been invested in developing efficient numerical algorithms that 
have brought great benefits to scientists and engineers. Many of these sophisticated 
techniques have been successfully parallelised but, without doubt, there is a lot more to do. 
What now has to be considered is the challenge of getting these developments to scale up to 
many thousands of processors, something that has received only limited attention so far. 

 

Figure 43: Increase of number of cores in fastest European HPC systems 

The pre-processing stage is perhaps unique to engineering but the creation of a good quality 
computational mesh is crucial to the success of any grid-based numerical algorithm. If the 
grid is of poor quality e.g., the grid fails to accurately represent the geometrical features of 
interest or the mesh is too distorted, the numerical algorithm could either fail to converge, 
have poor convergence properties, or produce results that either lack the accuracy required or 
are simply wrong. A further complication is that most software for grid generation is 
developed by ISVs and remains sequential. This represents a potentially serious bottleneck to 
generating the size of meshes necessary to exploit hardware using 100,000 cores and beyond. 
For example, EDF (Electricite de France) have estimated that to perform a detailed 
investigation of a Pressurised Water Reactor and allow the study of deformation and fretting 
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of the fuel assemblies, including conjugate heat transfer, more than 10 billion computational 
cells would be needed. This challenge can be tackled in two main ways: (i) the first would be 
to investigate parallel grid generation; (ii) the second could focus on mesh refining techniques 
through either adaptive mesh refinement or by employing cell subdivision. In both cases, load 
balancing becomes an important issue. 

In common with many of today’s scientific disciplines, the majority of the numerical 
algorithms used to solve the problem have been successfully parallelised using MPI. 
However, the new generation of multi-core and GPGPU processors present formidable 
challenges to engineering software, which has been developed and validated over many years.  

Data analysis relating to results obtained from a petaflop or exaflop computer presents some 
formidable challenges. Again, like pre-processing, it may not have received the attention but 
is clearly going to play an important role in interpreting the data produced. It is also an area 
where ISVs are very strong and are starting to offer parallel versions that are capable of 
handling very large data sets. However, there is a lot of interest in the open-source package, 
ParaView, which has been specifically designed to handle extremely large data sets on 
distributed memory systems. This fits naturally with the aspirations of petaflop computing. 
Visualisation will be the key to understanding the large amounts of data being generated and 
more research is needed to develop intelligent feature extraction algorithms. 

A final challenge facing engineering is code coupling. This is required in both a horizontal 
fashion, where we need to couple continuum-based software such as structural mechanics, 
acoustics, fluid dynamics, and thermal heat transfer. For small clusters this can be done in an 
ad hoc manner but for large numbers of cores, with a complex memory and accelerator 
hierarchy, much work needs to be done. In addition, there is growing interest in coupling 
codes in the vertical direction i.e. from continuum to mesoscale to molecular dynamics to 
quantum chemistry. This requires bridging length and time scales that span many orders of 
magnitude. 

A.2 Method to approach the Community 

It is recognised that the engineering community is not as organised as other scientific 
communities and, in general, lacks any obvious structure. In contrast to other scientific 
disciplines, there is no organisation or scientific cooperation that can be easily approached. In 
addition, there are no “community” codes which would clearly define a target for efforts in 
this work package.  

However, as the engineering community plays an important role in Europe, the partners in the 
work package were looking for ways to approach the community and identify current issues 
which would help the community in leveraging future computing systems for further success. 
Due to the already described diversity and fragmentation of the community, it was clear from 
the beginning, that not the whole community can be approached. Therefore it was decided to 
approach the segments of the community, which are visible to the different partners. To get in 
touch with the stakeholders of these segments and to get a common picture of the situation, it 
has been decided to approach the known contacts of the partners in a synchronised way. For 
this, a questionnaire has been developed (see section A.6) which has been used in phone calls, 
where the stakeholders and main contacts have been interviewed. As a result, the partners in 
the work package got a good overview over the used applications and the important issues in 
the visible segments of the community. 

With the interviews, institutes of the following institutions have been approached: 

 Tampere University 
 Universidad Politécnica de Madrid 
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 University of Manchester 
 University of Liverpool 
 NCSA 
 German Research School for HPC 
 RWTH Aachen 
 University Stuttgart 
 Aristotle University of Thessaloniki 

The results of the interviews are summarised in the following tables. Table A.1 shows the 
results of Open Source Codes and similar developments. Table A.2 shows the summary of 
codes which are locally developed in some of the interviewed institutes. As it can be seen, 
even in the approached segments of the community, the used applications are quite diverse. 
We even have to deal with number of self developed codes. Nevertheless, these codes are of 
importance, too, as they are typically used for method development and simulation of special 
effects. In addition, these codes are typically well suited for HPC systems as they are often 
used on cutting edge machines for several years already. Obviously, working just on one or 
two of the named applications would not help the community in general. Therefore, the 
interviews have been further investigated to identify topics of general interest where several 
interviewed institutions would benefit from work in the related field. In the interview, there 
has been a question about the most important problem to be solved for the respective 
application when running on future HPC systems, the answers are summarised in the 
following tables. 

 

ISV 
/OpenSource 

Contact to 
developers 

Modules 
used 

Typical 
problem size 

Extensions Limiting 
factor 

Elmer mailinglist 
/support 
contact 

Elmer solver 4,5M DOFs minor Clustersize; 
code 
scalability 

Elmer phone 
/direct 
contact 

modules 
related to 
fluid 
mechanics 
and thermal 
problems. 

2-4M DOFs some Clustersize 
(small); code 
scalabilty  

Code_Saturn direct whole 
package 

40M cells 
regular; 
107M on 
Jugene, 
2000M 
shown 

yes lack of 
resources 

TeleMac direct tomawac, 
telmac2d, 
telmac3d, 
sisyphe 

3M regular, 
up to 200M 
on 32k proc 

yes I/O handled 
process locally 

WRF5/X5 no NA NA fire model NA 
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ISV 
/OpenSource 

Contact to 
developers 

Modules 
used 

Typical 
problem size 

Extensions Limiting 
factor 

Code_Aster yes preprocessing 
and solver 

5M DOF fixes available 
memory; 
efficiency of 
domain 
decomposition 
--> new 
communication 
scheme? 

Table A.1: Information from the interviews concerning Open Source and equivalent codes 

 
Code Name Methods used Problem size Limiting factors 

Musubi Standard Lattice-Boltzmann, 
extension with 
multicomponent. Op-Trees, 
Space filling curves, local 
refinement 

68000M elements Size of available HPC 
systems size 

Ateles FV-high order, Weno; 
compressible flow with shock 
capturing, space filling curves 

16M elements core number as 1000 
elements run in cache  

TFS Block structured solver, 
implicit and explicit integration 
methods; multigrid; coupling 
of different turbulence models 

Up to 100M dots 
on 150 SX-9 
processors 

available computing time; 
generation of adequate 
block structured meshes 

ZFS Unstructured solver; FV-solver 
+ Lattice-Boltzmamm Kernel 
with Level Z (with 2 grids); 
functions for chemistry and 
moving surfaces; in addition 
handling of particle collisions. 

smaller 
production runs 
on 200 x86 cores. 
Larger core 
number in 
preparation 

parallel mesh generation; 
problems with 1000M cells 
claculated on 50000 to 
100000 cores expected; 
load balancing for dynamic 
meshes 

Piano Linearized Euler solver, block 
structured FE, explicit, I/O-
intensive 

run with up to 
5000 cores 

I/O issues 

N3D FastFourierT (1D); Sparse 
linear equation systems; 
Multigrid for incompressible 
cases; DNS without turbolence 
model; high order FD and high 
order spectral methods 
AR-pack –library for 
eigenvalue calculation; Hybrid 
code (OpenMP + MPI); 
Structured mesh. 

100 M cells constantly available 
resources 

Table A.2: Information from the interviews concerning self developed institute codes 
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Code Name Most important problem to be solved for using future HPC systems 

Elmer Solving method efficiency and scalability 

Code_Saturne Scaling of the solving method; Interest to test OpenMP features on new 
architectures 

Telemac Coupling of codes; OpenMP feature; Telmac3d needs to be tested at scale; 
sysphie needs to be coupled to telmac3d 

WRF Improvement of scalability on manycore systems  

Code Aster Efficient large sparse linear solvers (Focus; Memory improvements; DD) 
-->mainly on direct sparse solvers 

Eventually more efficient domain decomposition method(FETI) 
 

APES/Musubi Parallel Mesh generation 

APES/Ateles Parallel Mesh generation  
Improved communication hiding for better scalability 

ZFS Efficient parallel mesh generation 

ZFS load balancing for dynamic meshes 

N3D Solving of large scale elliptic equations --> better domain decomposition for 
large wscale systems 

Table 6.3: Answers given to the question about the most important problem to be solved for using future 
HPC systems with the applications 

The most important problems to be solved on future HPC systems named by the scientists 
show a kind of a different picture, compared to the diversity in used applications. From the 
named important problems one can identify several topics of common interest. With a deeper 
analysis and discussion within the partners, two main cross cutting topics have been 
identified: scalability issues in the different solvers and parallel mesh generation. With work 
on these topics of general interest, a high impact to the community can be expected. In 
addition, the shown interest would enable the necessary forces in the community to support 
the effort in this PRACE work package accordingly. Learning the direction in which the 
engineering community in WP8 is moving, developers of an additional community code 
“Alya” have shown interest to work on that, too.  

The following chapter will provide more information on the codes and the cross cutting topics 
of interest. 

A.3 Numerical Approaches and Community Codes 

The engineering community is represented in PRACE-2IP by computational fluid dynamics 
(CFD) and computational solid dynamics (CSD) codes. These codes belong to the 
Computational Mechanics (CM) category. Although very similar from the numerical point of 
view, CFD and CSD have not followed the same evolution. The maturities of CFD codes 
have benefited during the last four decades from their highly technological and CPU 
demanding mother industry: Aeronautics. In terms of large scale computing, the evolution of 
CSD has been slower, mainly because of the lack good parallel iterative solvers. This project 
is therefore a great opportunity for CSD codes. CFD is represented by Code_Saturne, 
Telemac, Alya, WRF, TFS, VFS, Musubi, Ateles and N3D. CSD is represented by 
Code_Aster and Elmer. 
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These codes can be classified roughly in the following categories: 

 Finite Volume (FV), Finite Element (FE), Lattice-Boltzmann (LB); 

 Implicit / Explicit; 

 Matrix based (BCSR format) / Matrix free (Edge-based, etc); 

 Monolithic / Fractional step: unsymmetric / unsymmetric+symmetric algebraic 
systems (usually positive definite). 

 
As they rely on a sort of explicit time scheme, the case of LB codes is different (unless a 
turbulence model is used). The two great challenges that have been identified in the context of 
this work package are: algebraic solvers and parallel mesh generation. 

A.3.1 Algebraic solvers 

The matrix assembly, which consists of a loop over the elements, is usually not a problem as 
mesh partitioners are able to efficiently balance the load per subdomain. The main common 
challenge of CM codes is therefore the solution of the algebraic systems, no matter if they are 
matrix-based or matrix-free.  The typical matrices in play are unsymmetric and/or symmetric 
positive definite matrices (coming from a weighted Poisson equation). The main algebraic 
solvers are: 

 Parallel solvers: Schur complement, FETI or Schwarz + coarse solvers; 

 Parallelised iterative solvers: GMRES, CG, AMG, deflated CG, deflated GMRES, 
deflated BICGSTAB, preconditioners (diagonal, linelet, ILU, etc.). Here, matrix-
vector and scalar products are parallelised; 

 Parallelised direct solvers (also used as preconditioners). 

It is not clear which are the candidates for very large-scale applications in terms of scalability. 
The situation is even more complex as the preconditioning of the matrices  becomes worse as 
the number of elements/cells increases. The problem is therefore not only a computer science 
one but also an algorithmic and numerical one. 

The great opportunity for CM codes when considering future multi-core architectures is that 
algebraic solvers will benefit from efficient OpenMP based parallelisation. Techniques for 
shared memory computers are therefore closely linked to the solvers in the engineering 
community. This work package will gather the efforts of different groups with diverse 
experiences that cover a great number of solvers.  

A.3.2 Meshing issues 

The other common challenge is the parallel mesh generation. In the context of petascale or 
exascale, the simulation process must be addressed as a whole, including the pre- and 
postprocessing. That is, the simulation per-se can no longer be isolated with regard to the 
other two. This is due to the extremely large data set in play and to the inherent connection 
between the mesh, the solution obtained on it, and what valuable information is extracted 
from the simulation. 

In this project, focus will be on the pre-processing, which consists mainly of the mesh 
generation. In the present context, mesh generation should be understood in a broader sense 
than “generating a volume mesh from a CAD”.  In fact, it is not intended to deliver a parallel 
mesh generator with all the characteristics required by CFD applications: local refinement, 
boundary layers, anisotropy and considering all types of elements. The work package will 
rather focus on the following specific problems:  
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 Mesh generation for specific cases. Isotropic tetrahedral meshes or Cartesian meshes 
for LB. 

 Mesh multiplication. An initial “relatively” coarse mesh is recursively and uniformly 
subdivided in parallel. This is for now one of the fastest solution to obtain billions of 
elements in few seconds [9].  

 Mesh adaptivity and local remeshing. Only part of the original mesh is remeshed. 

 Chimera. Non-conforming sub-meshes are coupled in some way to form the global 
mesh. The coupling can by numerical (by interpolation) or geometrical (by extending 
one mesh to the other) [26].  

 Mesh joining. The whole geometry is meshed by parts, which are then joined to form a 
global conforming mesh by the simulation code. Joining the parts only lasts a few 
seconds, but generating all the parts might prove being very costly [25]. 

All this meshing tools can be implemented as pre-process stand-alone codes or as libraries to 
be linked to the CM codes. In this latter case, this would enable on the fly meshing operations, 
taking advantage of the original mesh partition. 

A.3.3 Community codes 

A3.3.1 Alya: high performance computational mechanics 

Developed at BSC-CNS, Spain 

http://www.bsc.es/computer-applications/alya-system 

The Alya System is a High Performance Computational Mechanics code [1][4][24] that 
solves complex coupled problems on massively parallel supercomputers. Among the 
problems it solves are: Convection-Diffusion-Reaction, Incompressible Flows, Compressible 
Flows, Turbulence, Bi-Phasic Flows and free surface, Excitable Media, Acoustics, Thermal 
Flow, Quantum Mechanics (TDFT) and Solid Mechanics (Large strain). The Alya module 
involved in PRACE-2IP solves the incompressible Navier-Stokes equations. A mesh 
multiplication strategy has recently been implemented within PRACE-1IP to recursively 
refine meshes in parallel. By doing so, billions of elements can be obtained on the fly, thus 
circumventing a very costly mesh generation. The incompressible module of the code has 
proven to scale on up to 16384 CPU’s on Juelich Blue Gene/P. 

The space discretisation is based on a variational multiscale finite element method. The 
equations are solved in a staggered way using Orthomin(1) for the pressure Schur 
complement. That is, at each time step, several momentum equation solves and continuity 
equation solves are carried out. For the momentum equations, the GMRES algorithm is used 
while a Deflated Conjugate Gradient is used for the continuity equation. Boundary layers are 
preconditioned using a linelets. In addition, Schur complement-based solvers are available 
with different preconditioners for the pressure interface unknowns. 
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Figure 44: (Code Alya): Free surface for flushing toilet (left), external aerodynamic, LES model (right) 

 

 

A.3.3.2 APES: Adaptable Poly-Engineering Simulator 

Developed at German Research School for Simulation Sciences, Germany 

The APES framework relies on a common data structure based on the octree. Its main goal is 
it to enable adaptable and flexible simulations on highly distributed systems and avoiding 
major bottlenecks in the complete simulation pipeline. It includes a mesh generator called 
"Seeder", which produces meshes with the octree information included; this allows later mesh 
adaptions, especially recoarsening during runtime, more easily. The linearised octree format 
with predefined space-filling curve sorting allows also for a fully distributed mesh handling 
with minimal information on remote partitions. For the simulation, there are two solvers with 
explicit time-integration available right now. "Musubi" is based on the Lattice-Boltzmann 
Method and well suited for weakly compressible flows in porous media. The second solver 
"Ateles" is based on the Finite-Volume Method and deploys a WENO reconstruction to 
capture shocks in compressible flows. Finally a postprocessing tool "Harvester" is available, 
which produces visualisable files from the octree mesh and attached data. The output relies on 
MPI-IO and is also completely distributed. Usual output files are those, which are also usable 
for restarting the simulation, but tracking of element subsets on different output-intervals is 
easily possible.   

The space discretisation is based on a Finite Volume method with WENO shock capturing, 
and Lattice Boltzmann Method for weakly compressible flows.  The solver is matrix free and 
the resulting system is solved explicitly [17][18].  

 

 
Figure 45: (Code APES) Flow through a spacer geometry of an electrodialysis device (left), 
 a foam used as a silencer, meshed with seeder (right) 
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A3.3.3 Elmer  

Developed at CSC, Finland 

http://www.csc.fi/elmer 

Elmer is an open source multiphysical simulation software developed by CSC - IT Center for 
Science in Helsinki, Finland [5][6]. Elmer development was started in 1995 in collaboration 
with Finnish Universities, research institutes and industry. Elmer includes physical models of 
fluid dynamics, structural mechanics, electromagnetics, heat transfer, acoustics, etc. These are 
described by partial differential equations, which Elmer solves by the Finite Element Method 
(FEM). Currently Elmer has more than 5000 worldwide users. Although only a small part of 
all Elmer work utilises HPC, Elmer has shown excellent scaling on appropriate problems up 
to thousands of cores. Ideally good scaling may be obtained as long as there are at least a few 
thousand dofs for each partition. Unfortunately, this does not apply to all problems, or to all 
phases of the workflow. Therefore Elmer’s developers focused on implementing a more 
robust solver, which would improve the scaling of the code. Recently, Elmer code has been 
extended by new FETI1 (Finite Element Tearing and Interconnecting)and TFETI domain 
decomposition solvers within WP7 of PRACE-1IP. This enables scalability and more robust 
solution of engineering applications up to thousands of CPUs. 

For approximation of partial differential equations Elmer offers stabilised finite element 
method, including adaptivity, particularly in 2D.  The Standalone tool ElmerSolver has 
implemented several types of solvers:  Direct linear system solvers (LAPACK & 
UMFPACK), iterative Krylov subspace solvers for linear systems (GMRES, CG), Multigrid 
solvers (GMG and AMG) for some basic equations, ILU preconditioning of linear systems 
and parallelisation of iterative methods. 

 
Figure 46: (Code Elmer) Cavity lid case solved with the monolithic Navier-Stokes solver 
(GMRES with IL0 preconditioner) 
 

A.3.3.4 Code_Aster 

Developed at EDF (Électricité de France) R&D, France 

http://www.code-aster.org/  

Code_Aster is a structural engineering and mechanics application used for multiphysics 
analysis and modelling methods. Code_Aster is developed by EDF (Électricité de France) 
R&D since 1989. It is an efficient software for engineering studies with a significant user base 
of more than 300 in-house users and thousands more worldwide. It offers a full range of 
multi-physical analysis and modelling methods such as static (linear and non-linear) and 
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dynamic (linear and non-linear) mechanics, modal analysis, harmonic and random response, 
seismic analysis, acoustics, fracture, damage and fatigue, multi-physics, drying and hydration, 
metallurgy analysis, soil-structure, fluid-structure interactions and geometric and material non 
linearities.  

A parallelisation method based on MPI is already applied within Code_Aster. In addition, the 
MUMPS computational library has been implemented as a linear system solver [11][12][13], 
an implementation that achieves the distribution of FEM elemental contributions and the 
parallel resolution of linear systems. Moreover, novel techniques are developed and currently 
evaluated at the solver level for large, sparse matrices, such as the domain decomposition 
FETI (Finite Element Tearing and Interconnecting) method [14].  

The models under study are discretised to a number of the order of millions of finite elements. 
Our main goal is to improve the scalability of the application in order to efficiently solve 
problem sizes of at least 5M degrees of freedom.  

The set of linear equations to be solved result to matrices that are symmetric positive definite 
and semidefinite. The matrix assembly procedure is distributed over the computational 
processes.  

 
Figure 47: (Code_Aster) SALOME-MECA: results display (left), Calculation of a combustion turbine 
compressor: bladed rotor and quarter compressor (right) 
 

A3.3.5 Code_Saturne 

Developed at EDF R&D, France 

https://code-saturne.info/products/code-saturne 

Code_Saturne (Archambeau et al, 2004) has been under development by EDF since 1997 
[7][8]. This open-source software (under GPL since 2007) provides the basis for simulating 
their current and next generation power stations. It is also extensively used for research, at 
University of Manchester (UK), for instance. Code_Saturne is a general purpose 
Computational Fluid Dynamics (CFD) solver based on a co-located finite-volume approach. 
The code uses an unstructured mesh strategy that can handle any type of computational cell 
and any type of grid input. It is written in Fortran90, C and python and relies on MPI for 
parallel simulations. Its basic capabilities enable the handling of either incompressible or 
expandable flows with or without heat transfer and turbulence. Modules are also available for 
specific multi-physics such as radiative heat transfer, combustion (gas, coal, heavy fuel oil 
etc.), magneto-hydro dynamics, compressible flows, two-phase flows (Euler-Lagrange 
approach with two-way coupling), and atmospheric flows for environmental studies. The 
potential for Code_Saturne to be scaled to very large core counts has been demonstrated, 
mainly through PRACE-1IP [8]. The space discretisation is FV based and involves a Poisson 
equation for the pressure. 



D8.1.4 Plan for Community Code Refactoring 
 

PRACE-2IP - RI-283493  24.02.20122 
 

86

 

Figure 48: (Code_Saturne) Flow in bundle of tubes (left), Air quality study of an operating theatre (right) 
 

A3.3.6 N3D 

Developed at “Institut für Aerodynamik und Gasdynamik“, University of Stuttgart, Germany 

 

Laminar-turbulent transition and unsteady flow separation are often crucial for the 
performance of fluid-dynamic devices, but due to their great complexity the phenomena are 
not yet fully understood. Since transition is a low to medium Reynolds-number problem (if 
based on physical local flow scales like, e. g., the boundary-layer momentum thickness), the 
relevant structures can be fully resolved in a direct numerical simulation (DNS) of the flow 
even at realistically high "global" Reynolds numbers [19][20][21][22][23]. 

N3D is a thoroughly verified and validated numerical method for the DNS of spatially and/or 
temporally developing instability and transition, based on the complete 3-D Navier-Stokes 
equations with a highly accurate finite-difference/spectral discretisation (up to 8th order 
accuracy). The method has been successfully ported to run on the high-performance 
computers of the hww GmbH, like the Cray T3E and the NEC SX series. Many simulations 
have been successfully run and the performance has been further improved for the SX-8 
within a joint teraflop project together with NEC GmbH. Most scientific projects behind these 
simulations are funded by DFG (Deutsche Forschungsgemeinschaft) within priority research 
programmes or as individual grants. The results already obtained were internationally 
acknowledged by the acceptance at international conferences and reviewed journals .  

The space discretisation is a Finite Difference method, using sparse and band matrix, using 
recursive Thomas algorithm, and LU decomposition. 
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Figure 49: (Code N3D) Illustration of laminar-turbulent transition in a flat-plate boundary layer (left), 
application of DNS to control laminar- turbulent transition on the wing of an airliner (right) 

A3.3.7 SFIRE  

Developed at University of Colorado, USA 

http://www.openwfm.org/wiki/SFIRE 

WRF-Fire combines the Weather Research and Forecasting model (WRF) with a fire code 
implementing a surface fire behaviour model, called SFIRE, based on semi-empirical 
formulas calculate the rate of spread of the fire line (the interface between burning and 
unignited fuel) based on fuel properties, wind velocities from WRF, and terrain slope [10]. 
The fire spread is implemented by the level set method. The heat release from the fire line as 
well as post-frontal heat release feeds back into WRF dynamics, affecting the simulated 
weather in the vicinity of the fire. The fire code is written in Fortran 90 following WRF 
coding conventions. It is integrated as a physics option, called from WRF as a subroutine. It 
calls WRF libraries for utilities such as I/O and communication between MPI processes. The 
fire code executes on a part of the domain, called a tile (in WRF nomenclature). All 
communication between the tiles is in the caller; thus, one time step requires multiple calls to 
WRF-Fire. 

A.3.3.8 TELEMAC 

Developed at EDF R&D, France 

http://www.opentelemac.org/ 

Initially built at Electricité de France, where it is still an important research project, 
TELEMAC is now managed by a consortium of core users: Bundesanstalt für Wasserbau 
(BAW, Germany) Centre d’Etudes Techniques Maritimes et Fluviales (CETMEF, France) 
STFC Daresbury Laboratory (United Kingdom) Electricité de France R&D (EDF, France) HR 
Wallingford (United Kingdom) Sogreah (now in Artelia group, France).  

The hydrodynamic TELEMAC suite, has been under development by EDF since 1987 [15] 
(Hervouet, 2007, http://www.opentelemac.org/). It represents a powerful integrated modelling 
tool to simulate near-shore and river systems, and shallow lagoons and estuaries, and can 
model free-surface flows, including flooding, wetting and drying, and discharge and release 
of pollutants and freshwater. Telemac-2D solves the Shallow Water equations, Telemac-3D 
the Navier-Stokes (or non-hydrostatic) equations, whereas Sisyphe deals with sediment 
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transport and Tomawac with wave modelling. All four packages are based on a finite element 
approach. For Telemac-3D, the 2-D bottom surface is meshed by triangles and extrusion 
layers are used to represent the three-dimensionality, which enables the user to simulate the 
water elevation. The suite is written in Fortran 90 and relies on MPI for parallel simulations. 
Developments of the pre-processing stage within PRACE-1IP enables Telemac-2D to run on 
a large number of cores (200M elements on 32,768 cores of Argonne's BlueGene/P) [16].  It 
is a finite element code, using element-by-element or edge-based storage. It requires the 
solution of the Poisson equation for the pressure. 

 
Figure 50: (Code TELEMAC) Salinity distribution in the Berre Lagoon (TELEMAC3D) (left), Flow 
evolution after the Malpasset dam broke (TELEMAC2D) (right) 

 

A3.3.9 ZFS: Zonal Flow Solver: ZFS   

Developed at Institute of Aerodynamics, RWTH Aachen, Germany  

The Institute of Aerodynamics of RWTH Aachen has recently developed the flow  solver ZFS 
for three-dimensional compressible and viscous flows based on  Cartesian hierarchical 
meshes which can be adaptively refined or coarsened. Herein, a Lattice-Boltzmann method or 
a finite-volume method for the Navier- Stokes equations is applied to simulate the flow field. 
At boundaries, the use of cut cells renders the method strictly conservative in terms of mass, 
momentum, and energy. An accurate multiple level-set method is used to track an arbitrary 
number of moving boundaries or flame surfaces within the flow domain. Additionally, a 
Lagrange model for particles with finite mass has been added, in which also collisions of 
particles can be  detected. The ZFS code has been validated for a wide range of applications 
such as the simulation of the flow in internal combustion engines, the determination of 
particle depositions in the human respiratory system, or the analysis of  raindrop formation in 
clouds. Massively parallel runs with up to 32000 processors have been performed at several 
supercomputing sites including Juelich, Stuttgart, and Aachen.  The code is based on the 
Finite Volume Method and Lattice Boltzmann Method [27][28][29][30]. 
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Figure 51: (Code ZFS) Generated fully automatically lung: Mesh for the first 6 bifurcations of a human 
lung (left), Mesh for an internal combustion engine (right) 
 

A.4 Community involvement, expected outcomes and their impact 

The engineering community is different form the other scientific communities in the sense 
that many institutes develop their own codes. This is especially true in CFD and, to a lower 
extent in CSD. Historically, CSD developers have actually concentrated their efforts on 
complex constitutive models, e.g. on the engineering side, leaving the development of the 
kernels (assembly, algebraic solvers) to some general CSD codes like ABAQUS, for instance. 
On the other hand, CFD applications are generally much more demanding in CPU time than 
their CSD counterpart, and its community has dedicated a lot of efforts on the design and 
parallel implementation of algebraic solvers. The same is true for meshing. The CFD code 
requirements in terms of meshing are much more diverse than CSD's as many applications 
involve boundary layers, local refinement, and mesh anisotropy. However, in the last ten 
years, the CSD community has undertaken a severe evolution and aims at studying larger 
problems. One of the drivers is that large-scale engineering coupled problems (fluid-structure 
interaction) are now affordable and this opens doors for new applications, as for example the 
interaction between fluid and structure in a heart, areo-elasticity, etc. 

The engineering community has dedicated a lot of efforts in developing highly scalable codes. 
Examples can be found in PRACE-PP and PRACE-1IP actions where many CFD codes have 
proven to be scalable on thousands of CPU’s. The community is now ready to face new 
complex problems, involving for example: 

 Advanced turbulence modelling, as Large-Eddy Simulation (LES), or Hybrid 
RANS/LES in 'real life' situations; 

 Laminar/Turbulent transition; 
 LES turbulence modelling; 
 Complex geometries with possibly fluid-structure interactions; 

LES requires very fine grids, affecting the preconditioning of the matrices in play. Complex 
geometries with multiscale features require powerful mesh generators, which are most of the 
time serial, therefore requiring a lot of RAM and CPU time. 
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New bottlenecks have therefore emerged: the algebraic solvers and the pre-process, involving 
the meshing. 

The design of algebraic solvers is the first challenge of this WP. The community must be 
prepared to face ill-conditioned systems that will exist when increasing the size of the 
problems. Many candidate solvers exist and the diversity of the WP community will enable to 
test a great variety of them, as for example the Deflated Conjugate Gradient [2], Deflated 
GMRES, AMG, FETI. Apart from the design of new solvers, hybrid methods using 
MPI/OpenMP will be implemented, enhancing the performance of these solvers on multi-core 
architectures. Also, the acceleration of current solvers using GPU or MIC technology will be 
considered. For example, the FETI library may make some hybrid methods, such as the 
application of GPUs, also more feasible since in FETI the communication between local 
problems is reduced to the action of the projector onto the natural coarse space, which can be 
implemented in a very efficient way.   

Generating extremely large grids to feed the CM codes is the second challenge envisaged in 
PRACE-2IP. Though some work on parallel Delaunay mesh generation utilising the netgen 
library was done within WP7 of PRACE-1IP [3], parallel mesh generation for complicated 
geometries still remain a challenge. Thus mesh generation must be envisaged in the broad 
sense, considering all the aspects mentioned in the previous section: mesh multiplication, 
mesh joining, local refinement, local adaptivity and Chimera. 

The situation is somewhat different than the one of PRACE-PP, when the parallelisation of 
CFD and CSD codes was undertaken from a purely computer science point of view. This is 
due to the essence of the aforementioned bottlenecks. The developments of new and more 
efficient algebraic solvers require the involvement of mathematicians and numerical 
modelers. The solvers and the preconditioners must depend on the physics of the equations to 
be solved, as it has already been the case in the past. A good example is given by the linelet 
preconditioner [1], especially designed for the pressure equation in boundary layers.  

The success of the work package will therefore strongly depend on the interactions of the 
computer science and numerical modelling communities. 
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Appendix B. Description of the linear-response methodology of 
ABINIT, and performance analysis. 
 

B.1 Motivation 

The ABINIT code is one of the ETSF codes involved in the PRACE-2IP project from the very 
beginning. In previous deliverables, a global description of ABINIT, as well as specific 
descriptions and performance analysis were presented, for the following major methodologies 
of ABINIT: 

 Ground state / plane waves  
 Ground state / wavelets 
 Excited states (GW calculations) 

The linear-response methodology of ABINIT is also quite important. It implements the 
Density Functional Perturbation Theory, for phonon calculations and responses to electric 
field (among others). In D8.1.2, it was already presented as one of the functional units of 
ABINIT, in the "Global description section" of ABINIT. However, no specific description 
neither performance analysis was provided in D8.1.2. 

The goal of the present appendix is to provide an update of deliverables 8.1.2 and 8.1.3, with 
description of the linear-response part of ABINIT, the associated performance analysis, and 
the list of possible improvements. 

B.2 Performances of the linear-response part of ABINIT 

Description of the example 

This test consists in the computation of the response to only one perturbation (one atomic 
displacement) at wave vector (0.0, 0.375, 0.0) for a 29 atom slab of barium titanate, using 
density functional perturbation theory (DFPT - the formalism underlying linear response 
calculations in ABINIT). 

A plane wave basis is used, and many technical details of the calculations are quite similar to 
the ones for the ground state calculations using plane waves, explained in Section 4.1. In 
particular, the number of plane waves is determined by the cut-off energy Ecut. In the test 
case, it is chosen to be 20 Ha. The FFT grid is (32x32x270). A converged calculation would 
better use a large cut-off, e.g. 40 Ha, but the present choice is perfectly appropriate to explore 
the scaling. 

The k-point sampling of the Brillouin zone is typical of a production run (8x8x1 grid). The 
symmetry of the system and perturbation (four spatial symmetry operations are present) will 
allow to decrease this sampling to one quarter of the Brillouin zone, e.g., there will be actually 
16 k-points to be treated instead of 64. There are 128 bands.  

Structure of a DFPT calculation 

Before a DFPT calculation can start, a ground-state calculation must be done (separate 
parallelisation, see section 4.1.2, to generate the zero-order wave functions, Hamiltonian and 
eigen-energies. These quantities are denoted: 

 

In a DFPT calculation, one will start by reading these data from a quite large file (about 0.5 
GBytes in the chosen test case). This initialisation is independent of the number of 
perturbations to consider.  

 (0) , Ĥ (0) , 
(0)
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Then, one will consider each perturbation, in turn. The number of perturbations to be 
considered scales as the number of atoms. At maximum it is three times the number of atoms 
(in our example, 87), but it is usually decreased by a small factor, thanks to the use of 
symmetries (in our example, the number of irreducible perturbations is 58). 

For each perturbation, characterized by a first-order nuclear potential one has to determine the 
first-order wave functions self-consistently, with the following iteration loop: 

 

 

 

Schematically, the different steps in a DFPT calculation, relevant to understand the 
parallelisation, are represented by the following pseudo-code section: 
(1) Initialize (reading the ground-state quantities) 

 (2a) Loop on all the perturbations (up to 3*Natom perturbations) 

  (2b) Iterate to reach the self-consistency 

(2c) Loop on the electronic wave vectors (#k-points) 

       (2d) Loop on the electronic states (#bands) 

 [cgwf3] Compute the first-order wave function, for one state at one k-point.
  [accrho3] Accumulate the first-order density, contribution of one 
state at one k-point. 

       End loop (2d) 

     End loop (2c) 

[rhohxc] Perform selected work on the accumulated density 

     Decide to finish the self-consistency 

  End loop (2b) 

End loop (2a) 

There are different preparatory (resp. analysis) steps before (resp. after) each of the loops. 

In the sequential case, by far the largest amount of work is done in the section of the code 
shown in the box (loops 2c and 2d). 

Description of the present implementation of parallelism 

The present parallelisation relies on a distribution of the work for different k-point and bands 
on different cores (loops 2c and 2b). There is comparatively little communication between 
cores for this work to be done. 

For our example, if this work is fully distributed, the number of k points being 16, and the 
number of bands being 128, the number of cores that can be used at maximum is 2048. Of 
course, the speed-up will saturate below this value, as will be shown by the tests. Indeed, 
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some parts are not parallelized at that level (they might be sequential, or only parallelized 
over the k-points), and there will be communication overheads. 

Concerning the data distribution, we note that the most memory consuming quantities are the 
zero-order and first-order wave functions. The number of elements for these arrays is 
proportional to the number of plane waves, times the number of bands, times the number of k-
points. While both zero-order and first-order wave functions can be distributed over 
processors that treat different k-points, only the first-order wave functions is presently 
distributed over processors that treat different states. Thus the processors must store the full 
array of zero-order wave functions for one k-point, scaling as the number of plane waves 
times the number of bands. This shortcoming originates from the need to compute the scalar 
product between zero- and first-order wave functions for different bands, to impose  

 

 

This data distribution is the simplest one leading to the possibility of benefiting from a 
combined k-point and band distribution of the work. It might be improved, but this will go 
with a (limited ?) increase of the communications. 

Description of the most CPU demanding routines, in the sequential and parallel cases 

The relevant routines for the timing of the scaling are described now. 

 (A) projbd.F90: computes the projection of the trial first-order wave functions on the 
orthogonal space to the zero-order wave functions. In the present implementation, the work (a 
part of cgwf3.F90, inside loop 2d), is distributed over k points and bands. 

 (B) fourwf.F90 (pot): application of the zero-order local potential to a trial first-order wave 
function. In the present implementation, the work (a part of cgwf3.F90, inside loop 2d)  is 
distributed over k points and bands. 

 (C) nonlop.F90 (pot): application of the zero-order non-local potential to a trial first-order 
wave function. In the present implementation, the work (a part of cgwf3.F90, inside loop 2d)  
is distributed over k points and bands. 

 (D) inwffil.F90 and rwwf.F90: reading the ground-state and first-order wave functions from 
file, and distributing the data to the processing cores. Section (1). 

 (E) fourwf.F90 (G->r): Fourier transform (reciprocal to real space) of the zero and first-order 
wave functions, needed to accumulate the first-order change of density (in accrho3.F90, 
inside loop 2d). This is distributed over k points and bands. 

 (F) fourdp.F90: Fourier transforms for the density. This operation is done after the loop (2c) 
and (2d), and does not depend on k-points neither on bands. It is done in sequential in the 
present implementation. 

 (G) vtorho3.F90 (synchro): synchronisation of the processors after the loop (2c).  

 (H) vtowfk3.F90 (contrib): different contributions at the end of the loop (2c), done in 
sequential. 

 (I) cgwf3-O(npw) and nonlop.F90(forces): different operations that scale as the number of 
plane waves, inside cgwf3. In the present implementation, the work (a part of cgwf3.F90, 
inside loop 2d)  is distributed over k points and bands. 

 (J) vtorho3.F90:MPI:  the MPI calls after loop 2c, to synchronize the first-order density on all 
compute cores. 


(0) 

(1)  = 0
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 (K) pspini.F90: the initialisation of the pseudo-potential. It is done in sequential in the 
present implementation. 

Benchmarks results 

The following data was gathered on MareNostrum, an IBM Powerpc970 cluster with Myrinet 
network, located at BSC. To increase the amount of memory available only two processes per 
node were executed.  

It turned out that the routines cgwf3-O(npw), nonlop.F90(forces), vtowfk3.F90 (contrib),  
vtorho3.F90:MPI, and  pspini.F90 always take only a minor part of the computation time, so 
they were not included in the following analysis.  

 

 
Figure 52: Speedup of the most costly code sections that show good scaling. 

 

The total scaling and the speedup of the most cost important code sections are given in Figure 
52. The graphs shows very good scaling of fourwf(pot), nonlop(apply), and fourwf(G->r).  
The routine projbd scales not as good, but still well. The sequencial parts of the code cause 
the efficiency of the code to decrease rapidly beyond 64 processes, resulting in a total speedup 
that converges to a maximum value of about 100 already when using 256 processes. 
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Figure 53: Relative amount of wall clock time for the most costly code sections. 

The contributions of the individual code sections is depicted in Figure 53. One can see that 
the time-fraction of the well scaling routines (projdb, fourwf(pot), nonlop(apply), and 
fourwf(G->r)) reduces from over 90% for serial execution to 25% when using 384 processes. 
At the same time just reading the wave functions (rwwf and inwffil) takes over more than 
50% of the computation time.  

B.3 Performance improvement of the linear-response part of ABINIT. 

Different strategies for improvement of the parallelisation can be pursued, even concurrently. 

Strategy 1: Remove the IO-related initialisation bottleneck of the present parallelisation. 

The major bottleneck seen for scaling this part of ABINIT beyond 64 processors (for the test 
case described in section B.2 Performances of the linear-response part of ABINIT) lies in the 
I/O-related initialisation of the wave functions. Indeed, the inwffil.F90 and rwwf.F90 routines 
take about 10% of the time when 64 compute cores are used for the test case, and they scale 
badly with the number of cores. 

A prototype code is needed to identify whether the bottleneck is specifically due to the 
reading of the wave functions, or the subsequent distribution of the data already read on one 
processing core to the different processing cores. 

A refactoring of these routines might be needed, involving MPI-IO. MPI-IO is already used in 
inwffil.F90 / rwwf.F90 for the ground state calculations, and has been shown to allow large 
speed ups of the IOs, and the whole test cases. 

The performance gains that are expected for such a refactoring of inwffil.F90 and rwwf.F90 
are very large, because the present implementation leads to sequential execution. And even a 
stronger slow down than simple sequential execution. 

Strategy 2: The time spent in "fourdp","vtorho3" and "vtowfk3" (for the sections that are not 
parallelized over k-point and bands), should be examined as well. It is not as large as the one 
spent in inwffil.F90 and rwwf.F90.  

Here, the use of the computing cores in parallel should be made possible thanks to OpenMP 
directives and threads. Unitary tests on the routine "fourdp" have been performed for the 
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excited state (GW calculation) section of the present D8.1.4 deliverable. It is possible to 
speed-up these sequential bottlenecks by a factor of about 6 by using 8 cores.  

Strategy 3: Supposing the strategies 1 and 2 are successfully implemented, the distribution of 
the ground-state array should be improved. As remarked in section B.2 Performances of the 
linear-response part of ABINIT, at present, all the processors treating the same k point must 
store a copy of the wave functions for all states for that k-point. Thus, the memory 
requirement for one compute core increases with the size of the problem. One should 
distribute the ground-state wave functions among the processors, and treat the scalar product 
between ground-state and first-order wave functions accordingly. An OpenMP solution might 
be limited, so that MPI is to be preferred. The correct analysis of this strategy is to be refined. 

Strategy 4: Target an additional parallelisation of the full problem, namely, the loop over 
perturbations (although only one perturbation was treated in the example case, the real 
situation implies dealing with 58 perturbations). This loop is labelled 2a in the pseudo-code 
analysis of section B.2 Performances of the linear-response part of ABINIT. Such a 
parallelisation has obvious advantages but also drawbacks: 

Adv 1:  the amount of communication is very low; 

Adv 2: the scaling with the size of the system is good (the number of perturbations grows 
with the number of atoms), hence this level of parallelization can bring easily one order of 
magnitude more parallelism; 

Drawback: the load balancing is not equal among the different perturbations, and only part 
of the unbalance can be predicted beforehand. 

The load balancing should be tackled by constituting several pools of processors (each pool 
allowing k-point and band parallelisation), each taking in charge one perturbation at a time, 
according to a "waiting list". A "best" estimation of the unbalance should be done before 
hand, to tackle first the biggest chunks. 


