A circular bioprocess for the sustainable conversion of polyethylene terephthalate to muconic acid with an engineered *Pseudomonas putida*

Pan Liu^a, Yi Zheng^a, Yingbo Yuan^a, Tong Zhang^a, Qingbin Li^a, Quanfeng Liang^a, Tianyuan Su^a, *, Qingsheng Qi^a, *

^aState Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.

*Corresponding authors:

Tel & Fax: +86-532-58632580; Email: qiqingsheng@sdu.edu.cn (Qingsheng Qi); sutianyuan@sdu.edu.cn (Tianyuan Su)

A circular bioprocess for the sustainable conversion of polyethylene terephthalate to muconic acid with an engineered *Pseudomonas putida*

- 4 Pan Liu^a, Yi Zheng^a, Yingbo Yuan^a, Tong Zhang^a, Qingbin Li^a, Quanfeng Liang^a,
- 5 Tianyuan Su^{a,} *, Qingsheng Qi^{a,} *
- 6 ^aState Key Laboratory of Microbial Technology, Shandong University, Qingdao

7 266237, China.

- 8 *Corresponding authors:
- 9 Tel & Fax: +86-532-58632580; Email: qiqingsheng@sdu.edu.cn (Qingsheng Qi);
- 10 sutianyuan@sdu.edu.cn (Tianyuan Su)

11 Abstract

12	Many studies have highlighted the role of biosynthetic pathway for the
13	valorization of polyethylene terephthalate (PET) waste. However, the existing chemical
14	or enzymatic methods employ additional catalyst to degrade polymer before
15	biotransformation of the degradation products, leading to the increase in process cost
16	and complexity. In this study, we created a circular bioprocess for the sustainable
17	upcycling of PET to high-value added product muconic acid (MA) with regeneration
18	of biocatalyst. We constructed a multifunctional Pseudomonas putida KT2440 by
19	metabolic engineering to simultaneously secret PET hydrolase LCC and synthesize MA
20	from terephthalate in the same fermentation process. Ingeniously, MA and extracellular
21	enzyme LCC can be separated from the fermentation fluid by ultrafiltration, and the
22	latter was re-used for the next round of PET hydrolysis. Another PET hydrolysate
23	ethylene glycol can support the cell growth during fermentation, which further
24	improves the resource utilization of PET waste. 0.50 g MA was produced from 1 g PET
25	in each cycle, reaching 68% of the theoretical conversion. This biological and circular
26	process with the reproduced PET hydrolase should have advantageous over existing
27	PET upcycling processes and may applied in the valorization of other plastics or
28	biomass resources such as lignin.

- 29 Keywords: plastic upcycling, metabolic engineering, enzymatic hydrolysis,
- 30 bioconversion, ultrafiltration
- 31

1. Introduction

33	Polyethylene terephthalate (PET) is one of the most commonly used plastics and
34	widely exists in single-use beverage bottles, textiles and food packaging (Tsironi et al.,
35	2022). However, post-consumer PET accumulated in the environment and unmanaged,
36	resulting in serious environmental pollution and a significant loss of valuable resources
37	(Kubowicz and Booth, 2017; Xu et al., 2021). Therefore, an innovative plastic recycling
38	strategy is imperative to achieve the resourceful utilization of PET (Nikolaivits et al.,
39	2021; Sardon and Li, 2020).
40	PET can be depolymerized to monomers and oligomers by physical and chemical
41	methods, such as pyrolysis, ammonolysis, hydrolysis, methanolysis, and glycolysis
42	(Barnard et al., 2021; Ghasemi et al., 2021; Ghosal and Nayak, 2022). Many chemo-
43	bioprocesses have been developed to synthesize high-value chemicals from the
44	monomers or oligomers after chemical or physical treatment of PET (Qi et al., 2021).
45	PET pyrolysis under high temperature causes complete depolymerization into
46	monomeric terephthalate (TPA) and ethylene glycol (EG) (Ikenaga et al., 2016;
47	Yoshioka et al., 2004). Using PET pyrolysis products as the feedstock, Kenny et al.
48	synthesized bioplastic polyhydroxyalkanoates (PHA) employed Pseudomonas strains
49	isolated from PET-exposed soil (Kenny et al., 2008), and Kim et al. engineered

50	Escherichia coli and Gluconobacter oxydans to synthesize higher-value products such
51	as gallic acid, pyrogallol, muconic acid (MA), vanillic acid and glycolate (Kim et al.,
52	2019). PET ammonolysis is generally carried out with ammonium hydroxide at 70-180
53	°C, producing bis(2-hydroxyethyl) terephthalate (BHET), mono(hydroxyethyl)
54	terephthalate (MHET), TPA, and EG. Zhang et al. employed Taonella mepensis WT-6
55	to synthesize bacterial cellulose from PET ammonolysis products (Zhang et al., 2021).
56	During the glycolysis of PET, different catalysts and excess amount of EG are used to
57	break the ester bonds, generating BHET, which can be hydrolyzed and converted to
58	value-added compounds such as protocatechuate, β -ketoadipic acid and glycollate by
59	engineered strains (Kim et al., 2021; Werner et al., 2021). These studies demonstrated
60	the great potential for bioconversion of the PET hydrolysates to higher-value chemicals.
61	Recently, many efforts have been done to improve the activity and stability of PET
62	hydrolases (Kawai, Fusako, 2021; Kawai, F., 2021; Zhu et al., 2022). The protein
63	variants derived from PET hydrolases such as Thermobifida fusca cutinase (Tfcut2) (Li
64	et al., 2022; Then et al., 2015; Then et al., 2016), leaf-branch compost cutinase (LCC)
65	(Tournier et al., 2020) and Ideonella sakaiensis PETase (Cui, Y. et al., 2021; Yoshida
66	et al., 2016) benefit from improved thermostability and activity, making enzymatic
67	hydrolysis of PET more efficient and applicable. The most promising variant LCC ^{ICCG}

68	can efficiently hydrolyze PET with the TPA productivity up to 16.7 g L^{-1} h ⁻¹ at 72 °C,
69	providing the possibility to create a fully biological process for PET recycling. Sadler
70	et al. used semi-purified LCC from E. coli BL21(DE3) to hydrolyze PET, and the
71	hydrolysates were then converted to vanillin by whole cell catalysis with another
72	engineered E. coli RARE_pVanX (Sadler and Wallace, 2021). Similarly, Tiso et al.
73	used the purified LCC to hydrolyze PET and then converted the hydrolysates to PHA
74	by Pseudomonas umsongensis GO16 (Tiso et al., 2021). In our previous study, we have
75	proposed a co-cultivation system using the engineered Yarrowia lipolytica and
76	Pseudomonas stutzeri to achieve the coupling of PET degradation and
77	polyhydroxybutyrate (PHB) production (Liu et al., 2021a). However, due to the low
78	efficiency of PETase, it was only able to convert the BHET but not PET into PHB at
79	that time (Liu et al., 2021a).
80	Muconic acid (MA) is an important unsaturated dicarboxylic acid, which can be
81	used to produce commodity, new functional resins, pharmaceuticals and agrochemicals
82	(Yoshikawa et al., 1990). Studies have demonstrated MA production from aromatic
83	compounds by directing carbon flux to catechol(Xie et al., 2014). The aromatic

84 compound TPA from PET hydrolysate can also be converted to catechol via

85 protocatechuate and as an example for upcycling, is highly suitable for the biosynthesis

86	of MA (Kim et al., 2019). In this study, we designed a sustainable and circular
87	bioprocess (Fig 1) that continuously convert PET to MA using an engineered
88	multifunctional P. putida KT2440 that can simultaneously secrete LCC and metabolize
89	PET monomers. PET was first enzymatically hydrolyzed to produce TPA and EG
90	employing the LCC crude enzyme from culture supernatant. Subsequently, TPA was
91	converted to MA in the next round of fermentation and another hydrolysate EG was
92	used to support cell growth. MA and LCC in the culture supernatant can be separated
93	by ultrafiltration. The reproduced LCC can continue to hydrolyze PET and start a new
94	cycle, allowing continuous production of MA from PET.
95	2. Materials and methods
95 96	2. Materials and methods2.1. Strains and cultivation
96	2.1. Strains and cultivation
96 97	 2.1. Strains and cultivation <i>E. coli</i> DH5α used for plasmids construction and clone was cultivated in LB (10
96 97 98	2.1. Strains and cultivation <i>E. coli</i> DH5α used for plasmids construction and clone was cultivated in LB (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl) at 37 °C and 220 rpm. Primary and
96 97 98 99	2.1. Strains and cultivation <i>E. coli</i> DH5α used for plasmids construction and clone was cultivated in LB (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl) at 37 °C and 220 rpm. Primary and conventional cultivation of <i>P. putida</i> KT2440 and derived strains was performed in LB
96 97 98 99 100	2.1. Strains and cultivation <i>E. coli</i> DH5α used for plasmids construction and clone was cultivated in LB (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl) at 37 °C and 220 rpm. Primary and conventional cultivation of <i>P. putida</i> KT2440 and derived strains was performed in LB at 30 °C and 220 rpm. Mineral medium (MM) used in this study contains 34.74 g/L

104	5.0 g/L FeSO ₄ ·7H ₂ O, CuSO ₄ ·5H ₂ O 1.5 g/L, 1.61 g/L CoCl ₂ ·5H ₂ O. The fermentation
105	was performed in MM or LB with simulated or actual PET hydrolysates. Glucose was
106	appropriately added as a carbon source during the cultivation process to support the
107	growth. If necessary, kanamycin antibiotic was added as the working concentration of
108	25 mg/L. The content of agar in the solid medium was 20%.
109	2.2. Plasmid construction and strain engineering
110	Codon-optimized aroY (GenBank: ADF61496), ecdB (GenBank: ADF63617)
111	(Johnson et al., 2016) and LCC ^{ICCG} (hereafter referred to as LCC)(Tournier et al., 2020)
112	genes were synthesized by GeneralBio, China. The <i>tph</i> operon genes <i>tph</i> R (GenBank:
113	QTF59206), tphA1 (GenBank: QTF59202), tphA2 (GenBank: QTF59205), tphA3
114	(GenBank: QTF59204), <i>tph</i> B (GenBank: QTF59203) and <i>tpa</i> K (GenBank: QTF59201)
115	were cloned from a TPA degrading <i>P. stutzeri</i> isolated from PET waste in our previous
116	study (Liu et al., 2021b). Polymerase chain reaction (PCR) was performed with Phanta
117	Max Super-Fidelity DNA Polymerase (Vazyme). Oligonucleotides used in this study
118	were synthesized by TsingKe, China and shown in Table S1. The plasmid backbone
119	and DNA fragments were assembled using MultiF Seamless Assembly Mix (ABclonal)
120	according to the manufacturer's instructions. The assembled products were directly
121	transformed into E. coli DH5a chemically competent cell (TsingKe, China) for plasmid

122	maintenance. Colony PCR was performed with 2×Taq Plus Master Mix II (Dye Plus)
123	(Vazyme) and plasmid inserts were confirmed with Sanger sequencing performed by
124	TsingKe, China. The genes replacement and deletion of P. putida KT2400 were
125	performed via two-step recombination using the vector pK18mobsacB. Initial
126	recombination into the chromosome was selected based on kanamycin resistance gene
127	on LB plates containing 25 mg/L kanamycin, and the second recombination was
128	selected based on sucrose lethal gene (sacB) on LB plates containing 20% sucrose. The
129	final correct strains were confirmed by colony PCR and Sanger sequencing. The
130	detailed information of plasmids and strains was shown in Table 1.

131 **Table 1**

Relevant properties	Sources
	Lab Stock(Yu et
Allelic exchange vector, <i>ort</i> ColE1 Mob ⁺ , <i>sac</i> B, Km ⁴	al., 2015)
Protein expression vector, pBBR1 replicon, Mob ⁺ ,	Lab Stock(Zhang
Km ^r	et al., 2018)
LCC expression driven by IPTG-induced lac promoter	
on pBBR1MCS-2	This study
	Allelic exchange vector, <i>ori</i> ColE1 Mob ⁺ , <i>sac</i> B, Km ^r Protein expression vector, pBBR1 replicon, Mob ⁺ , Km ^r LCC expression driven by IPTG-induced lac promoter

132 Strains and plasmids used in this study.

	F– φ80lacZΔM15 Δ(<i>lac</i> ZYA-argF)U169 <i>deo</i> R <i>rec</i> A1	
	endA1 hsdR17(rK–, mK+) phoA supE44 λ – thi-1	Lab Stock
E. coli DH5α	gyrA96 relA1, used for plasmids construction and	Lab Stock
	clone.	
P. putida KT2440	Wild-type	Lab Stock
	P. putida KT2440 (∆pcaHG::tph), genomic	
P. putida KT2440-t	replacement of <i>pca</i> HG with tph cluster	This study
	(<i>tph</i> RA2A3A1BK).	
	P. putida KT2440 (∆pcaHG::tph::aroY:ecdB),	
P. putida KT2440-ta	additional insertion of codon-optimized aroY and	This study
	ecdB follow tph cluster.	
	P. putida KT2440 (∆pcaHG::tph::aroY:ecdB	
P. putida KT2440-tac	∆ <i>cat</i> RBC::Ptac: <i>cat</i> A), additional genomic replacement	This study
1. pulluu K12++0-tae	of <i>cat</i> RBC with tac promoter, which enabled	This study
	constitutive expression of <i>cat</i> A	
P. putida KT2440-tacR	P. putida KT2440 (∆pcaHG::tph::aroY:ecdB	This study
	$\Delta cat RBC::Ptac: cat A \Delta gcl R$), additional gcl R deletion.	This study

P. putida KT2440 (Δ*pca*HG::*tph*::*aro*Y:*ecd*B

P. putida KT2440-tacRD	Δ <i>cat</i> RBC::Ptac: <i>cat</i> A Δ <i>gcl</i> R::Ptac: <i>glc</i> DEF), additional	This study
	promoter replacement of <i>glc</i> DEF wih tac promoter.	
	<i>P. putida</i> KT2440 (Δ <i>pca</i> HG:: <i>tph</i> :: <i>aro</i> Y: <i>ecd</i> B	
<i>P. putida</i> KT2440-tacRDL	$\Delta catRBC::Ptac:catA \Delta gclR::Ptac:glcDEF)$ (pBBR-	This study
	LCC), additional LCC expression on pBBR1MCS-2	

133 **2.3. Preparation of LCC crude enzyme**

134	P. putida KT2400-tacRDL was inoculated from the overnight cultivated seeds into
135	50 mL LB containing 25 mg/L kanamycin, and cultivated at 37 °C and 220 rpm for 4
136	h. And then 0.5 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) was added to
137	induce the expression of LCC for another 20 h. Cells were removed by centrifugation
138	at 12, 000 rpm and the cell free supernatant was filtered with a 10 kDa ultrafilter
139	(Millipore) and concentrated to obtain 1 mL LCC crude enzyme. Cells were disrupted
140	with an automatic sample rapid grinder (Jingxin Technology, China) (Cui, Z. et al.,
141	2021) and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis
142	(SDS-PAGE) as with the cell free supernatant before and after concentration. Total
143	protein concentration of the crude enzyme was determined with the folin phenol reagent

144 (Lowry et al., 1951), and the content of LCC was determined by image analysis using

145 online ImageJ (Alonso Villela et al., 2020) (https://cnij.imjoy.io/).

146 **2.4.** Enzyme assays on bis(2-hydroxyethyl) terephthalate (BHET)

- 147 BHET particles were purchased from Sigma and the emulsion (4 g/L BHET) was
- 148 prepared in 100 mM phosphate buffer (34.74 g/L Na₂HPO₄ \cdot 12H₂O, 0.408 g/L KH₂PO₄)
- 149 by ultrasonic pretreatment for 2 min and magnetic stirring for 30 min. For BHET
- 150 hydrolysis, 300 μL 100 mM phosphate buffer, 200 μL LCC crude enzyme and 500 μL

151 BHET emulsion were mixed and reacted at 40 °C for 1 h. The reaction was stopped by

152 mixed with an equal volume of acetonitrile. The samples were analyzed using high

153 performance liquid chromatography (HPLC) after centrifugation and filtration. Three

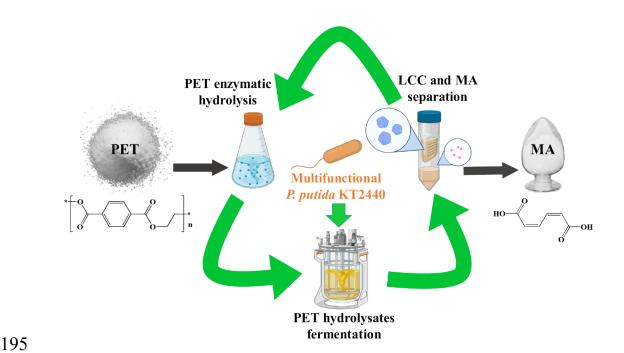
- 154 parallel experiments were carried out in each assay.
- 155 2.5. PET enzymatic hydrolysis

Amorphous PET film (Goodfellow) was micronizated under the condition of liquid nitrogen freezing. The particle size of the PET powder was limited to 425 μm by a 35 mesh screen. 0.125 g PET powder and 1 mL LCC crude enzyme prepared from 50 mL culture supernatant was added to 100 mM phosphate buffer (pH 8.0) to a total volume of 10 mL. The catalytic reaction was carried out at 72 °C and 150 rpm in a water bath shaker (Yijing Technology, China). Samples were taken every 12 h and the pH of the reaction system was adjusted to 8.0 with NaOH. The sample was treated with an equal volume of acetonitrile to stop the reaction and analyzed using HPLC after centrifugation and filtration. Two parallel experiments were carried out in each assay.

165 2.

2.6. Separation of LCC and MA

166 Cells were removed from the fermentation broth by centrifugation at 12, 000 rpm 167 to obtain the cell free supernatant containing extracellular LCC and MA. LCC and MA 168 were separated by filtration with 10 kDa ultrafilter (Millipore), wherein LCC was in the 169 concentrate and MA was in the exudate. Concentrated LCC crude enzyme was used 170 again for PET hydrolysis. MA was separated and purified from the exudate according 171 to the method reported by Beckham(Vardon et al., 2016). The specific steps include: 1, 172 remove color compounds with 5 wt% activated carbon powder; 2, crystallize at pH 2 173 and 5 °C. 3, redissolve the crystals in ethanol and filtered to remove insoluble salts. 174 Finally, the recovered MA was dried and determined the purity by HPLC.


175 **2.7. Substrate and product analysis**

EG was detected by a refractive index detector using HPLC system equipped with
a Bio-Rad Aminex HPX-87H column (7.8×300 mm) as previously (Liu et al., 2021a).
Enzymatic hydrolysates including BHET, MHET and TPA were detected by a
photodiode array detector at 240 nm using HPLC system equipped with an Agilent

180	ZORBAX Extend-C18 column (4.6×150 mm) as previously (Liu et al., 2021a).
181	Products in the fermentation broth including TPA, protocatechuate, catechol and MA
182	were detected by a photodiode array detector at 230 nm using HPLC system equipped
183	with a longer column Discovery HS C18 (4.6×250 mm). The mobile phase was a
184	solution containing 0.1% (v/v) trifluoroacetic acid and 10% (v/v) acetonitrile. The flow
185	rate and column temperature were set to 0.8 mL/min and 40 $^\circ$ C, respectively.
186	3. Results and discussion
100	
187	3.1. Construction of a multifunctional <i>P. putida</i> KT2440
187	3.1. Construction of a multifunctional <i>P. putida</i> KT2440
187 188	3.1. Construction of a multifunctional <i>P. putida</i> KT2440 To set up a full biological process, a multifunctional host that can degrade PET
187 188 189	3.1. Construction of a multifunctional <i>P. putida</i> KT2440 To set up a full biological process, a multifunctional host that can degrade PET powder and at the same time convert the degraded TPA and EG to high-value

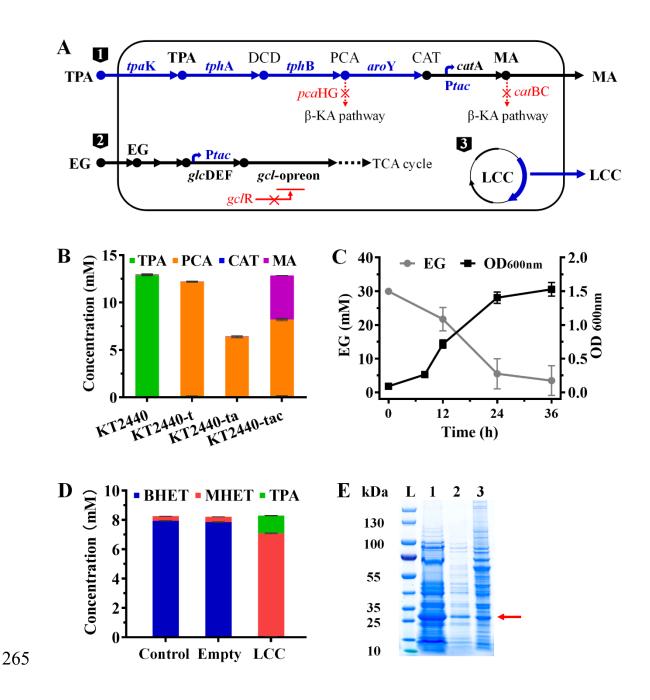
193 metabolize a variety of aromatic compounds was selected as the host chassis (Ray et

194 al., 2013).

196 Figure 1. A sustainable circular bioprocess that converts PET to muconic acid 197 (MA) with an engineered multifunctional Pseudomonas putida. A leaf-branch 198 compost cutinase (LCC) crude enzyme prepared from the fermentation broth 199 hydrolyzes PET and produces the EG and TPA monomers, which can be directly used 200 as substrates for the following fermentation to produce MA and reproduce LCC. The 201 final product MA can be separated from the LCC crude enzyme by filtration. The 202 remaining concentrated LCC crude enzyme was collected and used for the next round 203 of PET hydrolysis with a stable activity, forming a circular bioprocess. 204 It has been shown that MA can be produced from lignin-derived aromatic 205 compounds through a pathway involves the intermediates protocatechuate and catechol 206 by P. putida KT2440 (Johnson et al., 2016). Whereas protocatechuate is also an

207 intermediate product of TPA metabolism (Sasoh et al., 2006), we presume that MA can

208	be synthesized from TPA via protocatechuate by introducing TPA 1,2-dioxygenase
209	(TphA) and 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase
210	(TphB) into P. putida KT2440 (Fig 2A). In our previous study, we identified a tph
211	cluster containing genes encoding the transcriptional regulator (TphR), TPA transporter
212	(TpaK) and TphAB from a TPA degrading <i>P. stutzeri</i> , which was isolated from waste
213	(Liu et al., 2021b). To utilize TPA and simultaneously block the metabolic branch of
214	the intermediate protocatechuate in P. putida KT2440, we replaced protocatechuate
215	3,4-dioxygenase encoding genes (pcaHG) with the tph cluster identified in P. stutzeri.
216	Then the codon-optimized protocatechuate decarboxylase gene aroY and
217	decarboxylase enhancer gene ecdB from Enterobacter cloacae was introduced to
218	convert protocatechuate to catechol (Werner et al., 2021). Finally, MA biosynthesis
219	pathway was set up by deletion of the downstream metabolic genes catBC (Salvachúa
220	et al., 2018; Vardon et al., 2015) (Fig 2A).
221	To prove the function of the host chassis, the engineered P. putida KT2440 was
222	cultivated in LB medium containing TPA in a 24-well plate at 30 °C. Samples were
223	took at 24 h for HPLC detection to determine the convertion of substances involved in
224	the mdified metabolic pathway. As expected, TPA was almost not consumed by wild-
225	type P. putida KT2440, whereas in P. putida KT2440-t expressing tph cluster, TPA


226	was almost fully converted to protocatechuate (Fig 2B). After introducing aroY and
227	ecdB, protocatechuate was catalyzed into catechol and further metabolized, resulting in
228	a reduction of protocatechuate to 6.4 mM. When the catRBC genes were further
229	replaced with the tac promoter to constitutively express dioxygenase CatA, the resulting
230	strain P. putida KT2440-tac produced 4.63 mM MA from 12.86 mM TPA (Fig 2B). In
231	the entire MA pathway, the accumulation of the intermediate product protocatechuate
232	was detected, indicating that protocatechuate decarboxylase activity is the catalytic
233	bottleneck (Curran et al., 2013; Sonoki et al., 2014; Weber et al., 2012). But even so,
234	the final engineered strain P. putida KT2440-tac has been able to convert TPA to
235	produce MA.
236	EG, another hydrolysis product of PET, can be sequentially oxidized to glyoxylate,
237	and then supported the growth of <i>P. putida</i> KT2440 via the glyoxylate carboligase (gcl)
238	pathway (Fig 2A) (Franden et al., 2018). However, wild-type P. putida KT2440 cannot
239	grow on EG because the gcl-operon was repressed by a specific transcriptional
240	regulator (gclR) (Li et al., 2019). To make <i>P. putida</i> KT2440 grow on EG, we knocked
241	out glcR and overexpressed glycolate oxidase (glcDEF) via the strong, constitutive tac
242	promoter as described by Werner (Werner et al., 2021). The resulting P. putida

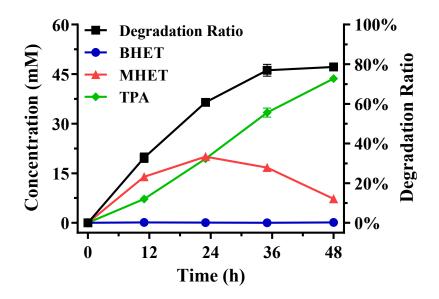
243 KT2440-tacRD (Δ*pca*HG::*tph*::*aro*Y:*ecd*B Δ*cat*RBC::Ptac:catA Δ*gcl*R::Ptac:*glc*DEF)

strain was confirmed to grow on EG (Fig 2C).

245 To further achieve the functional expression of a PET hydrolase in P. putida 246 KT2440-tacRD, LCC was expressed on pBBR1MCS-2 driven by IPTG-induced lac 247 promoter (Fig 2A). We found that the extracellular LCC was comparable whether with 248 and without the native signal peptide (Fig S1). The transfer of LCC from the cytoplasm 249 to the outside of the cell was probably attributed to the activity of phospholipid 250 hydrolyzing, resulting in membrane permeation (Shirke et al., 2018; Su et al., 2013). 251 After optimizing the secretory expression of LCC, the incubation temperature and the 252 inducer concentration of IPTG were determined as 37 °C and 0.5 mM (Fig S2). The 253 27.8 kDa protein band representing LCC was clearly shown on the SDS-PAGE (Fig 254 2E). To verify the activity of LCC, culture supernatant was collected to catalyze BHET 255 emulsion hydrolysis at 40 °C as decribed in methods. It was proved by HPLC that 256 BHET was almost completely hydrolyzed to MHET and TPA within 1 h by crude 257 enzyme from P. putida KT2440-tacRDL expressing LCC, while enzyme-free 258 phosphate buffer (Control) or the crude enzyme from P. putida KT2440-tacRD 259 containing pBBR1MCS-2 without expressing LCC (Empty) can not hydrolyze BHET 260 (Fig 2D).

Hereto, *P. putida* KT2440-tacRDL (Δ*pca*HG::*tph*::*aro*Y:*ecd*B
Δ*cat*RBC::Ptac:catA Δ*gcl*R Ptac:*glc*DEF) (pBBR-LCC) achieved our expectation,
namely secreting PET hydrolase LCC and simultaneous production of MA using PET
hydrolysates.

266	Figure 2. Construction of a multifunctional strain. A, P. putida KT2440 as the
267	chassis for metabolic engineering design. 1, engineering the metabolic pathway for
268	converting TPA to MA; 2, enhancing the endogenous EG metabolic pathway; 3,
269	secretory expression of LCC on pBBR1MCS-2. B, Bioconversion of TPA by the
270	derived engineered strains in LB containing TPA. KT2440-t refers to the expression of
271	<i>tph</i> -operon by replacing <i>pca</i> GH in KT2440; KT2440-ta refers to the further expression
272	of aroY-ecdB; KT2440-tac refers to the further deletion of catRBC and the promoter
273	replacement of catA with tac promoter. C, Growth and EG metabolism by P. putida
274	KT2440-tacRD with the further deletion of <i>gcl</i> R and the overexpression of glcDEF. D,
275	BHET hydrolysis by LCC crude enzyme from P. putida KT2440-tacRDL. Control
276	refers to enzyme free buffer and empty refers to crude enzyme from strain with an
277	empty vector. E, SDS-PAGE analysis of LCC crude enzyme from <i>P. putida</i> KT2440-
278	tacRDL with the further expression of LCC. 1, Concentrated cell free supernatant (10
279	×); 2, Cell free supernatant; 3, Cell lysis sample; TPA, terephthalate; DCD, 1,2-
280	dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate; PCA, protocatechuate; CAT,
281	catechol; MA, muconic acid; EG, ethylene glycol. TpaK, TPA transporter; TphA, TPA
282	1,2-dioxygenase; TphB, DCD dehydrogenase; AroY, PCA decarboxylase; CatA, CAT
283	1,2-dioxygenase; glcDEF, glycolate oxidase; gcl-operon, genes involved in glyoxylate

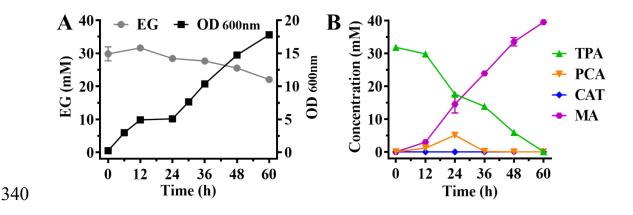

284 carboligase metabolic pathway; gclR, the transcriptional regulator that represses the 285 expression of *gcl*-operon; LCC, leaf-branch compost cutinase. Error bars indicate the 286 standard deviation based on triplicate parallels.

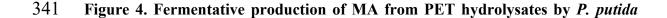
287

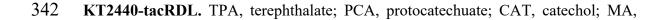
3.2. Enzymatic hydrolysis of PET using LCC crude enzyme

288 50 mL culture supernatant of P. putida KT2440-tacRDL was concentrated to 1 mL 289 LCC crude enzyme by filtration with a 10 kDa ultrafilter. The total protein 290 concentration was determined to be 5 mg/mL with the folin phenol reagent (Lowry et 291 al., 1951), and the content of LCC was determined to be 38.70% by image analysis 292 using ImageJ (Alonso Villela et al., 2020) (Fig S3). As a proof, 0.125 g amorphous PET 293 powder and 1 mL LCC crude enzyme (~15 milligrams of LCC per gram of PET) was 294 added to 100 mM phosphate buffer to a total volume of 10 mL. The enzyme was 295 considered to be sufficient relative to the substrate, because it was showed by Tournier 296 that a ratio of 3 milligrams of enzyme per gram of PET appeared to maximize the 297 depolymerization (Tournier et al., 2020). The catalytic reaction was carried out at 72 °C 298 in a water bath shaker. During the hydrolysis of PET, there was little accumulation of 299 BHET with the concentration less than 0.23 mM, while the amount of MHET increased 300 first and then decreased to produce TPA (Fig 3). The TPA productivity over the whole 301 reaction was about 0.15 g $L^{-1} h^{-1}$, demonstrating the feasibility of directly catalyzing

302	PET hydrolysis using LCC crude enzyme produced by P. putida KT2440-tacRDL.
303	However, the hydrolysis efficiency of PET was limited by the small-scale laboratory
304	conditions. It can be further improved by optimizing the concentration of substrate and
305	enzyme as well as finely controlling the pH of the reaction in the large-scale bioreactor
306	system. The reaction was stopped at 48 h as the degradation rate of PET reached 79%
307	and no longer increased (Fig 3). The incomplete degradation may be due to the partial
308	amorphous PET recrystallising at 72 $^{\rm o}{\rm C}$ during the reaction and no longer be hydrolyzed
309	by the LCC. The final concentration of TPA reached 43.66 mM (Fig 3), that is, at least
310	0.58 g TPA can be produced from 1 g PET in hydrolysis process catalyzed by LCC
311	crude enzyme produced from <i>P. putida</i> KT2440-tacRDL.

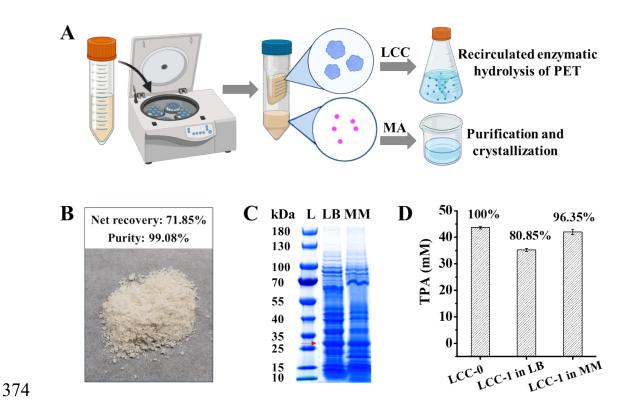

Figure 3. PET enzymatic hydrolysis by the LCC crude enzyme produced from *P*. *putida* KT2440-tacRDL. The data were presented as mean standard deviation of the duplicates.

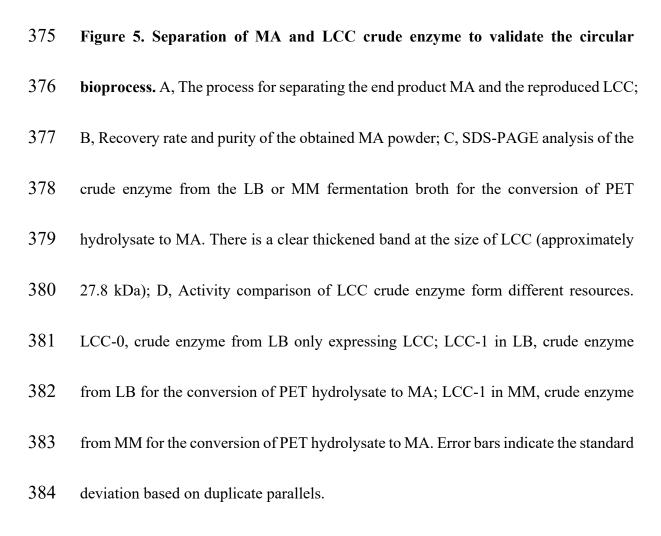

316 **3.3.** Bioconversion of the PET hydrolysates into muconic acid by the engineered


317 multifunctional strain

318 The bioconversion of muconic acid (MA) was performed by directly mixing the 319 cooled PET hydrolysates with concentrated LB for fermentation by P. putida KT2440-320 tacRDL at 37 °C. The initial concentration of TPA and EG in the medium were both 321 about 30 mM. The fermentation process lasted for 60 h until TPA was completely 322 converted to MA. The EG was consumed about 11.8 mM (Fig 4). However, when 323 fermented at 30°C, it only required 36 h to completely consume the 18 mM EG (Fig 324 S4A). We believe the main reason is that the optimum growth temperature for *P. putida* 325 KT2440 is at 30 °C, which is more suitable for the endogenous EG metabolic pathway. 326 Nevertheless, the yield of MA at 30°C was significantly less than that at 37°C, while 327 protocatechuate accumulation increased (Fig S4), suggesting that aroY and ecdB 328 derived from E. cloacae, which catalyzes protocatechuate convert to catechol, is more 329 active at 37 °C.

343	muconic acid; EG, ethylene glycol. The data were presented as mean standard deviation
344	of the triplicates.


345 3.4. Simultaneous separation of MA and preparation of LCC crude enzyme for
346 recirculation


- 347 During the fermentative production of MA, PET hydrolase LCC was produced at
- 348 the same time. Therefore, during the separation of MA, LCC should also be separated.
- 349 To achieve this purpose, culture supernatant containing extracellular LCC and MA was
- 350 collected by centrifugation at 12, 000 rpm to remove cell debris. And then the
- 351 supernatant was then filtrated with a 10 kDa ultrafilter, wherein LCC was in the
- 352 concentrate and MA was in the exudate (Fig 5A).
- 353 MA was extracted at a recovery of 71.85 % from the exudate by crystallization

and purification referencing the reported process (Vardon et al., 2016). In brief, the

- 355 exudate was first treated with activated carbon powder to remove color compounds.
- 356 Then, MA was crystallized from the colorless solution at pH 2 and 5 °C. Finally, the
- 357 MA crystals were dissolved in ethanol and filtered to remove insoluble salts. After
- 358 drying, MA powder was collected, and the purity was determined by HPLC to be
- 359 exceeded 99%. (Fig 5B, Table S3).

360	As for PET hydrolase LCC, SDS-PAGE showed a protein band consistent with
361	the size of LCC both in mineral medium (MM) and LB culture, indicating the
362	fermentation using the PET hydrolysate didn't affect the expression of LCC (Fig 5C).
363	Concentrated LCC crude enzyme was used again for PET hydrolysis to recirculate the
364	process. The activity of the collected crude enzyme from 50 mL MM and LB
365	fermentation broth were evaluated for PET hydrolysis, 42.06 mM and 35.30 mM TPA
366	can be produced within 48 h respectively (Fig 5D). In contrast to expressing LCC alone,
367	LCC was also produced in the LB and MM fermentation broth while simultaneously
368	converting PET hydrolysate to MA, and retaining up to 96% and 81% of PET
369	hydrolysis activity, respectively. Moreover, when the reaction lasted for 60 h, there was
370	almost only TPA in the products, which increased to 45.20 mM and 38.26 mM
371	respectively (Fig S6). These results indicated that the yield and activity of LCC crude
372	enzyme during the bioconversion cycle process were stable and can be sustained for
373	recycling and used for PET hydrolysis.

385 4. Conclusion

386	In this study, we designed a sustainable circular bioprocess convert PET to MA.
387	The well-designed multifunctional strain enables continuous hydrolysis of PET and
388	synthesis of the high-value compound MA through a fully circular bioprocess. By
389	optimizing the entire recycling process, we achieved an efficient continuous
390	bioconversion of PET into MA. According to the current process conditions, 0.50 g
391	MA can be produced from per gram PET. Although additional nutritional supplements
392	are required as limited utilization of EG released from PET hydrolysis, the circular
393	bioprocess still reduces the costs compared to conventional two-step processes, in
394	which twice cultivations are needed for the production of PET hydrolase as well as the
395	bioconversion of PET hydrolysates. Future studies will focus on the process
396	optimization including enhancing the metabolic of EG, optimizing the hydrolysis of
397	PET using automated bioreactors and rational time apportioning for PET hydrolysis
398	and fermentation. This process reduces cost and environmental impact, increases
399	sustainability and economic benefits compared to existing conceptually feasible
400	solutions. In conclusion, this study provides a sustainable and circular biological
401	scheme for realizing PET circular economy.

402 CRediT authorship contribution statement

403	Pan Liu: Investigation, Formal analysis, Resources, Data curation, Writing -
404	original draft, Visualization. Yi Zheng: Formal analysis, Visualization. Yingbo Yuan:
405	Formal analysis, Visualization. Tong Zhang: Investigation, Formal analysis. Qingbin
406	Li: Visualization. Quanfeng Liang: Supervision. Tianyuan Su: Review & Editing,
407	Visualization. Qingsheng Qi: Supervision, Funding acquisition.
408	Declaration of competing interest
409	The authors declare that they have no known competing financial interests or
410	personal relationships that could have appeared to influence the work reported in this
411	paper.
412	Acknowledgments
413	This work was supported by the National Natural Science Foundation of China
414	(grant numbers: 31961133014), and the European Union's Horizon 2020 research and
415	innovation programme under grant agreement No. 870292 (BIOICEP).
416	References
417	Alonso Villela, S.M., Kraiem, H., Bouhaouala-Zahar, B., Bideaux, C., Aceves Lara, C.A.,
418	Fillaudeau, L., 2020. A protocol for recombinant protein quantification by densitometry.
419	Microbiologyopen 9(6), 1175-1182. <u>https://doi.org/10.1002/mbo3.1027</u> .

420	Barnard, E., Rubio Arias, J.J., Thielemans, W., 2021. Chemolytic depolymerisation of PET: a
421	review. Green Chem. 23(11), 3765-3789. <u>https://doi.org/10.1039/d1gc00887k</u> .
422	Cui, Y., Chen, Y., Liu, X., Dong, S., Tian, Y.e., Qiao, Y., Mitra, R., Han, J., Li, C., Han, X.,
423	Liu, W., Chen, Q., Wei, W., Wang, X., Du, W., Tang, S., Xiang, H., Liu, H., Liang, Y.,
424	Houk, K.N., Wu, B., 2021. Computational redesign of a PETase for plastic
425	biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 11(3),
426	1340-1350. https://doi.org/10.1021/acscatal.0c05126.
427	Cui, Z., Zheng, H., Jiang, Z., Wang, Z., Hou, J., Wang, Q., Liang, Q., Qi, Q., 2021.
428	Identification and Characterization of the Mitochondrial Replication Origin for Stable
429	and Episomal Expression in Yarrowia lipolytica. ACS Synth Biol. 10(4), 826-835.
430	https://doi.org/10.1021/acssynbio.0c00619.
431	Curran, K.A., Leavitt, J.M., Karim, A.S., Alper, H.S., 2013. Metabolic engineering of
432	muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 15, 55-66.
433	https://doi.org/10.1016/j.ymben.2012.10.003.
434	Franden, M.A., Jayakody, L.N., Li, W.J., Wagner, N.J., Cleveland, N.S., Michener, W.E.,
435	Hauer, B., Blank, L.M., Wierckx, N., Klebensberger, J., Beckham, G.T., 2018.
436	Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.
437	Metab. Eng. 48, 197-207. <u>https://doi.org/10.1016/j.ymben.2018.06.003</u> .

- 438 Ghasemi, M.H., Neekzad, N., Ajdari, F.B., Kowsari, E., Ramakrishna, S., 2021. Mechanistic
- 439 aspects of poly(ethylene terephthalate) recycling-toward enabling high quality
- 440 sustainability decisions in waste management. Environ. Sci. Pollut. Res. 28(32), 43074-
- 441 43101. <u>https://doi.org/10.1007/s11356-021-14925-z</u>.
- 442 Ghosal, K., Nayak, C., 2022. Recent advances in chemical recycling of polyethylene
- 443 terephthalate waste into value added products for sustainable coating solutions hope vs.
- 444 hype. Mater Adv. 3(4), 1974-1992. <u>https://doi.org/10.1039/d1ma01112j</u>.
- 445 Ikenaga, K., Inoue, T., Kusakabe, K., 2016. Hydrolysis of PET by Combining Direct
- 446 Microwave Heating with High Pressure. Procedia Eng. 148, 314-318.
- 447 https://doi.org/10.1016/j.proeng.2016.06.442.
- 448 Johnson, C.W., Salvachua, D., Khanna, P., Smith, H., Peterson, D.J., Beckham, G.T., 2016.
- 449 Enhancing muconic acid production from glucose and lignin-derived aromatic
- 450 compounds via increased protocatechuate decarboxylase activity. Metab. Eng. Commun.
- 451 3, 111-119. <u>https://doi.org/10.1016/j.meteno.2016.04.002</u>.
- 452 Kaneko, A., Ishii, Y., Kirimura, K., 2011. High-yield Production of *cis, cis*-Muconic Acid
- from Catechol in Aqueous Solution by Biocatalyst. Chem. Lett. 40(4), 381-383.
- 454 <u>https://doi.org/10.1246/cl.2011.381</u>.

- 455 Kawai, F., 2021. The Current State of Research on PET Hydrolyzing Enzymes Available for
- 456 Biorecycling. Catalysts 11(2), 206. <u>https://doi.org/10.3390/catal11020206</u>.
- 457 Kawai, F., 2021. Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for
- 458 Biorecycling. ChemSusChem 14(19), 4115-4122.
- 459 https://doi.org/10.1002/cssc.202100740.
- 460 Kenny, S.T., Runic, J.N., Kaminsky, W., Woods, T., Babu, R.P., Keely, C.M., Blau, W.,
- 461 O'Connor, K.E., 2008. Up-cycling of PET (polyethylene terephthalate) to the
- 462 biodegradable plastic PHA (polyhydroxyalkanoate). Environ. Sci. Technol. 42(20),
- 463 7696-7701. <u>https://doi.org/10.1021/es801010e</u>.
- 464 Kim, D.H., Han, D.O., In Shim, K., Kim, J.K., Pelton, J.G., Ryu, M.H., Joo, J.C., Han, J.W.,
- 465 Kim, H.T., Kim, K.H., 2021. One-Pot Chemo-bioprocess of PET Depolymerization and
- 466 Recycling Enabled by a Biocompatible Catalyst, Betaine. ACS Catal. 11(7), 3996-4008.
- 467 <u>https://doi.org/10.1021/acscatal.0c04014</u>.
- 468 Kim, H.T., Kim, J.K., Cha, H.G., Kang, M.J., Lee, H.S., Khang, T.U., Yun, E.J., Lee, D.-H.,
- 469 Song, B.K., Park, S.J., Joo, J.C., Kim, K.H., 2019. Biological Valorization of
- 470 Poly(ethylene terephthalate) Monomers for Upcycling Waste PET. ACS Sustainable
- 471 Chem. Eng. 7(24), 19396-19406. <u>https://doi.org/10.1021/acssuschemeng.9b03908</u>.

472	Kubowicz, S., Booth, A.M., 2017. Biodegradability of Plastics: Challenges and
473	Misconceptions. Environ. Sci. Technol. 51(21), 12058-12060.
474	https://doi.org/10.1021/acs.est.7b04051.
475	Li, Q., Zheng, Y., Su, T., Wang, Q., Liang, Q., Zhang, Z., Qi, Q., Tian, J., 2022.
476	Computational design of a cutinase for plastic biodegradation by mining molecular
477	dynamics simulations trajectories. Comput. Struct. Biotechnol. J. 20, 459-470.
478	https://doi.org/10.1016/j.csbj.2021.12.042.
479	Li, W.J., Jayakody, L.N., Franden, M.A., Wehrmann, M., Daun, T., Hauer, B., Blank, L.M.,
480	Beckham, G.T., Klebensberger, J., Wierckx, N., 2019. Laboratory evolution reveals the
481	metabolic and regulatory basis of ethylene glycol metabolism by Pseudomonas putida
482	KT2440. Environ. Microbiol. 21(10), 3669-3682. https://doi.org/10.1111/1462-

the

- 483 2920.14703.
- 484 Liu, P., Zhang, T., Zheng, Y., Li, Q., Su, T., Qi, Q., 2021a. Potential one-step strategy for
- 485 PET degradation and PHB biosynthesis through co-cultivation of two engineered
- 486 microorganisms. Eng. Microbiol. 1, 100003.
- 487 https://doi.org/10.1016/j.engmic.2021.100003.

488	Liu, P., Zhang, T., Zheng, Y., Li, Q.B., Liang, Q.F., Qi, Q.S., 2021b. Screening and genome
489	analysis of a Pseudomonas stutzeri that degrades PET monomer terephthalate. Acta
490	Microbiol. Sin. 62(1), 200-212. https://doi.org/10.13343/j.cnki.wsxb.20210178.
491	Lowry, O., Rosebrough, N., Farr, A.L., Randall, R., 1951. Protein Measurement with the
492	Folin Phenol Reagent. J. Biol. Chem. 193(1), 265-275. https://doi.org/10.1016/s0021-
493	<u>9258(19)52451-6</u> .
494	Nikolaivits, E., Pantelic, B., Azeem, M., Taxeidis, G., Babu, R., Topakas, E., Brennan
495	Fournet, M., Nikodinovic-Runic, J., 2021. Progressing Plastics Circularity: A Review of
496	Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Front. Bioeng.
497	Biotechnol. 9, 696040. https://doi.org/10.3389/fbioe.2021.696040.
498	Qi, X., Yan, W., Cao, Z., Ding, M., Yuan, Y., 2021. Current Advances in the Biodegradation
499	and Bioconversion of Polyethylene Terephthalate. Microorganisms 10(1), 39.
500	https://doi.org/10.3390/microorganisms10010039.
501	Ray, P., Girard, V., Gault, M., Job, C., Bonneu, M., Mandrand-Berthelot, M.A., Singh, S.S.,
502	Job, D., Rodrigue, A., 2013. Pseudomonas putida KT2440 response to nickel or cobalt
503	induced stress by quantitative proteomics. Metallomics 5(1), 68-79.
504	https://doi.org/10.1039/c2mt20147j.

505	Sadler, J.C., Wallace, S., 2021. Microbial synthesis of vanillin from waste poly(ethylene
506	terephthalate). Green Chem. 23(13), 4665-4672. https://doi.org/10.1039/d1gc00931a.
507	Salvachúa, D., Johnson, C.W., Singer, C.A., Rohrer, H., Peterson, D.J., Black, B.A., Knapp,
508	A., Beckham, G.T., 2018. Bioprocess development for muconic acid production from
509	aromatic compounds and lignin. Green Chem. 20(21), 5007-5019.
510	https://doi.org/10.1039/c8gc02519c.
511	Sardon, H., Li, Z.C., 2020. Introduction to plastics in a circular economy. Polym. Chem.
512	11(30), 4828-4829. https://doi.org/10.1039/d0py90117b.
513	Sasoh, M., Masai, E., Ishibashi, S., Hara, H., Kamimura, N., Miyauchi, K., Fukuda, M., 2006.
514	Characterization of the terephthalate degradation genes of Comamonas sp. strain E6.
515	Appl. Environ. Microbiol. 72(3), 1825-1832. https://doi.org/10.1128/AEM.72.3.1825-
516	<u>1832.2006</u> .
517	Shirke, A.N., White, C., Englaender, J.A., Zwarycz, A., Butterfoss, G.L., Linhardt, R.J.,
518	Gross, R.A., 2018. Stabilizing leaf and branch compost cutinase (LCC) with
519	glycosylation: mechanism and effect on PET hydrolysis. Biochemistry 57(7), 1190-
520	1200. https://doi.org/10.1021/acs.biochem.7b01189.
521	Sonoki, T., Morooka, M., Sakamoto, K., Otsuka, Y., Nakamura, M., Jellison, J., Goodell, B.,
522	2014. Enhancement of protocatechuate decarboxylase activity for the effective
	35

- 523 production of muconate from lignin-related aromatic compounds. J. Biotechnol. 192, 71-
- 524 77. <u>https://doi.org/10.1016/j.jbiotec.2014.10.027</u>.
- 525 Su, L., Woodard, R.W., Chen, J., Wu, J., 2013. Extracellular location of Thermobifida fusca
- 526 cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide.
- 527 Appl Environ Microbiol 79(14), 4192-4198. <u>https://doi.org/10.1128/AEM.00239-13</u>.
- 528 Then, J., Wei, R., Oeser, T., Barth, M., Belisario-Ferrari, M.R., Schmidt, J., Zimmermann,
- 529 W., 2015. Ca^{2+} and Mg^{2+} binding site engineering increases the degradation of
- 530 polyethylene terephthalate films by polyester hydrolases from *Thermobifida fusca*.
- 531 Biotechnol. J. 10(4), 592-598. <u>https://doi.org/10.1002/biot.201400620</u>.
- 532 Then, J., Wei, R., Oeser, T., Gerdts, A., Schmidt, J., Barth, M., Zimmermann, W., 2016. A
- 533 disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal
- 534 stability and activity against polyethylene terephthalate. FEBS Open Bio 6(5), 425-432.
- 535 <u>https://doi.org/10.1002/2211-5463.12053</u>.
- 536 Tiso, T., Narancic, T., Wei, R., Pollet, E., Beagan, N., Schroder, K., Honak, A., Jiang, M.,
- 537 Kenny, S.T., Wierckx, N., Perrin, R., Averous, L., Zimmermann, W., O'Connor, K.,
- 538 Blank, L.M., 2021. Towards bio-upcycling of polyethylene terephthalate. Metab. Eng.
- 539 66, 167-178. <u>https://doi.org/10.1016/j.ymben.2021.03.011</u>.

540	Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka,
541	E., Desrousseaux, M.L., Texier, H., Gavalda, S., Cot, M., Guemard, E., Dalibey, M.,
542	Nomme, J., Cioci, G., Barbe, S., Chateau, M., Andre, I., Duquesne, S., Marty, A., 2020.
543	An engineered PET depolymerase to break down and recycle plastic bottles. Nature
544	580(7802), 216-219. https://doi.org/10.1038/s41586-020-2149-4.
545	Tsironi, T.N., Chatzidakis, S.M., Stoforos, N.G., 2022. The future of polyethylene
546	terephthalate bottles: Challenges and sustainability. Packag. Technol. Sci. 35(4), 317-
547	325. <u>https://doi.org/https://doi.org/10.1002/pts.2632</u> .
548	Vardon, D.R., Franden, M.A., Johnson, C.W., Karp, E.M., Guarnieri, M.T., Linger, J.G.,
549	Salm, M.J., Strathmann, T.J., Beckham, G.T., 2015. Adipic acid production from lignin.
550	Energy Environ. Sci. 8(2), 617-628. <u>https://doi.org/10.1039/c4ee03230f</u> .
551	Vardon, D.R., Rorrer, N.A., Salvachúa, D., Settle, A.E., Johnson, C.W., Menart, M.J.,
552	Cleveland, N.S., Ciesielski, P.N., Steirer, K.X., Dorgan, J.R., Beckham, G.T., 2016.
553	cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6
554	polymerization. Green Chem. 18(11), 3397-3413. <u>https://doi.org/10.1039/c5gc02844b</u> .
555	Weber, C., Bruckner, C., Weinreb, S., Lehr, C., Essl, C., Boles, E., 2012. Biosynthesis of
556	cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from

- renewable feedstocks by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 78(23),
- 558 8421-8430. https://doi.org/10.1128/AEM.01983-12.
- 559 Werner, A.Z., Clare, R., Mand, T.D., Pardo, I., Ramirez, K.J., Haugen, S.J., Bratti, F., Dexter,
- 560 G.N., Elmore, J.R., Huenemann, J.D., Peabody, G.L.t., Johnson, C.W., Rorrer, N.A.,
- 561 Salvachua, D., Guss, A.M., Beckham, G.T., 2021. Tandem chemical deconstruction and
- 562 biological upcycling of poly(ethylene terephthalate) to beta-ketoadipic acid by
- 563 Pseudomonas putida KT2440. Metab. Eng. 67, 250-261.
- 564 <u>https://doi.org/10.1016/j.ymben.2021.07.005</u>.
- 565 Xie, N.Z., Liang, H., Huang, R.B., Xu, P., 2014. Biotechnological production of muconic
- acid: current status and future prospects. Biotechnol Adv 32(3), 615-622.
- 567 https://doi.org/10.1016/j.biotechadv.2014.04.001.
- 568 Xu, S., Zhou, P., Li, H., Juhasz, A., Cui, X., 2021. Leaching and In Vivo Bioavailability of
- 569 Antimony in PET Bottled Beverages. Environ. Sci. Technol. 55(22), 15227-15235.
- 570 https://doi.org/10.1021/acs.est.1c02818.
- 571 Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K.,
- 572 Miyamoto, K., Kimura, Y., Oda, K., 2016. A bacterium that degrades and assimilates
- 573 poly(ethylene terephthalate). Science 351(6278), 1196-1199.
- 574 <u>https://doi.org/10.1126/science.aad6359</u>.

575	Yoshikawa, N., Mizuno, S., Ohta, K., Suzuki, M., 1990. Microbial-Production of Cis, Cis-
576	Muconic Acid. J. Biotechnol. 14(2), 203-210. https://doi.org/Doi 10.1016/0168-
577	1656(90)90009-Z.
578	Yoshioka, T., Grause, G., Eger, C., Kaminsky, W., Okuwaki, A., 2004. Pyrolysis of
579	poly(ethylene terephthalate) in a fluidised bed plant. Polym Degrad Stab. 86(3), 499-504
580	https://doi.org/10.1016/j.polymdegradstab.2004.06.001.
581	Yu, X., Jin, H., Liu, W., Wang, Q., Qi, Q., 2015. Engineering Corynebacterium glutamicum
582	to produce 5-aminolevulinic acid from glucose. Microb. Cell Fact. 14, 183.
583	https://doi.org/10.1186/s12934-015-0364-8.
584	Zhang, X., Zhang, J., Xu, J., Zhao, Q., Wang, Q., Qi, Q., 2018. Engineering Escherichia coli
585	for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid. J. Ind.
586	Microbiol. Biotechnol. 45(1), 43-51. https://doi.org/10.1007/s10295-017-1990-4.
587	Zhang, Y., Chen, Y., Cao, G., Ma, X., Zhou, J., Xu, W., 2021. Bacterial cellulose production
588	from terylene ammonia hydrolysate by Taonella mepensis WT-6. Int. J. Biol. Macromol.

- 589 166, 251-258. <u>https://doi.org/10.1016/j.ijbiomac.2020.10.172</u>.
- 590 Zhu, B., Wang, D., Wei, N., 2022. Enzyme discovery and engineering for sustainable plastic
- 591 recycling. Trends Biotechnol. 40(1), 22-37.
- 592 <u>https://doi.org/10.1016/j.tibtech.2021.02.008</u>.